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The Problem

We have a set of reactions.
Eg. DNA transcription

Gene D → mRNA M;

mRNA M → Protein P;

Both M and P can
degrade.

Describe in chemical reaction
equations:

D
k1−→ D + M

M
k2−→ M + P

M
k3−→ Φ

P
k4−→ Φ
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The Problem

We know a set of the chemical reactions;

We know the concentration of each molecules at initial time t = 0;

We want to know the concentration of each molecule at time t.
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Simulation Algorithms in BioNetGen

Two Simulation Algorithms are used in BioNetGen:

i simulation ode()
An Ordinary Differential Equation (ODE) solver

I Explicit Euler Method
I Implicit Euler Method

ii simulation ssa()
Stochastic Simulation Algorithm (SSA)

I Gillespie Algorithm
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Simulation Algorithms in BioNetGen

ODE

When the numbers of
molecules are large, any
two reactions can happen
at the same time.

ODE (Euler method)
represents the collection
of reactions occurring
simultaneously all through
the reaction volume.

Concentration Description

SSA

When the numbers of
molecules are small,
reactions happen in some
random order, rather than
simultaneously.

SSA (Gillespie Algorithm)
represents one reaction
occurring at a time.

Probability Description
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Simulating by Ordinary Differential Equation (ODE)
Solver
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Chemical Reactions as Differential Equations

The chemical reactions we
have:

D
k1−→ D + M

M
k2−→ M + P

M
k3−→ Φ

P
k4−→ Φ

Translate to differential
equations:

d [D]

dt
=?

d [M]

dt
=?

d [P]

dt
=?
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Chemical Reactions as Differential Equations

The chemical reactions we
have:

D
k1−→ D + M

M
k2−→ M + P

M
k3−→ Φ

P
k4−→ Φ

Translate to differential
equations:

d [D]

dt
= k1[D]− k1[D] = 0

d [M]

dt
= k1[D] + k2[M]− k2[M]− k3[M]

= k1[D]− k3[M]

d [P]

dt
= k2[M]− k4[P]
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Initial Value Problem

The Initial Value Problem (IVP)
I Differential Equations
I Initial Condiitons {

y ′(t) = f (t, y)

y(t0) = y0

Problem
What is the value of y at time t?
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Numerical Differentiation

Definition of Differentiation:

df

dx
= f ′(x) = lim

h→0

f (x + h)− f (x)

h

Problem
We do not have an infinitesimal h.

Solution
Use a small h as an approximation.
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Forward Difference & Backward Difference

Forward Difference

df

dx
≈ f ′(x)approx =

f (x + h)− f (x)

h

Backward Difference

f ′(x)approx =
f (x)− f (x − h)

h
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Numerical Differentiation: Example

Compute the derivative of function

f (x) = ex

At point x = 1.15

f ′(1.15) = f (1.15) ≈ 3.1581

Forward Difference, h = 0.001:

f ′(1.15) ≈ f (1.151)− f (1.15)

0.001
= 3.1598
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Explicit Euler Method

Consider Forward Difference

y ′(t) ≈ y(t + ∆t)− y(t)

∆t

which implies
y(t + ∆t) ≈ y(t) + ∆t · y ′(t)
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Explicit Euler Method

Split time t into n slices of equal length ∆t
t0 = 0

ti = i ·∆t

tn = t

The Explicit Euler Method Formula

y(ti+1) = y(ti ) + ∆t · y ′(ti )
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Explicit Euler Method: Algorithm

Input: f , y0, t0, t, dt
Output: yc
tc ← t0

yc ← y0

while tc < t do
yc ← yc + dt · f (tc , yc)
tc ← tc + dt

end
return yc
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Implicit Euler Method

Consider Backward Difference

y ′(t) ≈ y(t)− y(t −∆t)

∆t

which implies
y(t) ≈ y(t −∆t) + ∆t · y ′(t)
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Implicit Euler Method

Split the time into slices of equal length

y(ti+1) ≈ y(ti ) + ∆t · y ′(ti+1)

The above differential equation should be solved to get the value of
y(ti+1)

I Extra computation
I Sometimes worth because implicit method is more accurate
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A Simple Example

Try to solve IVP {
y ′(t) = e−t + t

y(0) = 1

What is the value of y when t = 0.5?

The analytical solution is

y = −e−t +
1

2
t2 + 2
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A Simple Example

Using explicit Euler method

yi+1 = yi + dt · (eti + ti )

We choose different dts to compare the accuracy:
dt1 = 0.05 ⇒ t = 0, 0.05, 0.1, . . . , 0.5

dt2 = 0.025 ⇒ t = 0, 0.025, 0.05, . . . , 0.5

dt3 = 0.0125 ⇒ t = 0, 0.0125, 0.025, . . . , 0.5
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A Simple Example

t exact error dt1 = 0.05 error dt2 = 0.025 error dt3 = 0.0125

0.1 1.10016 0.00014 0.00006 0.00003
0.2 1.20126 0.00050 0.00024 0.00011
0.3 1.30418 0.00107 0.00052 0.00025
0.4 1.40968 0.00182 0.00089 0.00044
0.5 1.51846 0.00274 0.00135 0.00067

At some given time t, error is proportional to dt.
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Euler Method: Instability

For some equations called Stiff Equations, Euler method requires an
extremely small dt to make result accuracy

y ′(t) = −k · y(t), k > 0

Explicit Euler method Formula

yi+1 = yi −∆t · t · yi = (1−∆t · k)yi

The choice of ∆t matters!
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Euler Method: Instability

Assume k = 5 {
y ′(t) = −5y(t)

y(0) = 1

Analytical Solution is
y(t) = e−5t

Try Explicit Euler Method with different dts.
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Explicit Euler Method: Instability

dt = 0.002 works.

Kai Zhao (CMACS Workshop 2012, Lehman College) Simulation Algorithms January 12, 2012 24 / 39



Explicit Euler Method: Instability

dt = 0.25 oscillates, but works.
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Explicit Euler Method: Instability

dt = 0.5, instability.
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Explicit Euler Method: Instability

For large dt, explicit Euler Method does not guarantee an accurate result.

t exact err % dt = 0.5 err % dt = 0.25 err % dt = 0.002

0.4 0.135335 6.389056 2.847264 0.010017
0.8 0.018316 82.897225 1.853096 0.019933
1.2 0.002479 906.714785 1.393973 0.02975
1.6 0.000335 10061.73321 1.181943 0.039469
2 0.000045 111507.9831 0.663903 0.04909
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Implicit Euler Method

Implicit Euler Method Formula

yi+1 = yi − dt · 5 · yi+1

which implies:

yi+1 =
yi

1 + 5dt
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Impilcit Euler Method: Instability

dt = 0.5, Oscillation eliminated.

Kai Zhao (CMACS Workshop 2012, Lehman College) Simulation Algorithms January 12, 2012 29 / 39



Simulating by Stochastic Simulation Algorithm
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Gillespie Algorithm: Overview

Iteration:

Determine next reaction time

Determine which reaction happens

Update number of molecules
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Chemical Reaction as a Stochastic Process

Poisson Process
I An event can happen in a time interval with probability p
I Counts the number of events and the times these events occur
I Event: a reaction takes place
I Time: the time step the system moves forward

The simulation process is a Poisson process. The times that an event
occurs follow an exponential distribution.
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Exponential Distribution

Assume in time interval ∆t, the probability of an event happens is p
I p only depends on ∆t
I The probability of two or more events happen is ignored because it is

too small

The time that next event happens:
I Event does not happen in time interval τ1 + τ2: P(t > τ1 + τ2)
I Event does not happen in time interval τ1: P(t > τ1), AND Event does

not happen in time interval τ2: P(t > τ2).

Memorylessness:

P(t > τ1 + τ2) = P(t > τ1) · P(t > τ2)
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Exponential Distribution

P(t > τ =
m

n
) = P(t >

m − 1

n
)P(t >

1

n
)

P(t > τ =
m

n
) = Pm(t >

1

n
)

P(t > 1 =
n

n
) = Pn(t >

1

n
)

P(t > τ) = Pm/n(t > 1) = Pτ (t > 1)

Let λ = − ln P(t > 1), then

P(t > τ) = e−λτ
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Exponential Distribution

With P(t > τ) = e−λτ , we can get:
Cumulative Distribution Function (CDF):

F (t) = 1− e−λt

Probability Distribution Function (PDF):

f (t) = λe−λt

Conclusion: The time follows an exponential distribution.
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Determine Time

Assume the probability of a reaction happens in time ∆t is p∗∆t,
when ∆t is extremely small:

F (∆t) = 1− e−λ∆t = p∗∆t

As ∆t is extremely small, with Taylor expansion:

F (∆t) = 1− e−λ∆t ≈ λ∆t = p∗∆t

⇒ λ = p∗

The time of next reaction follows an exponential distribution:

f (t) = p∗e−p
∗t
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Choose a Reaction

Denote the probability of ONLY Reaction Ri :

Rcti1 + Rcti2
ki−→ Pdti1 + Pdti2

happens in time period ∆t as pi∆t.
I If Rcti1 and Rcti2 are different.

pi = ci · Rcti1Rcti2

I If Rcti1 and Rcti2 are identical.

pi = ci · Rcti1(Rcti1 − 1)

where
I Rcti1 and Rcti2 are the numbers of molecules in the volume
I ci is a reaction rate description, proportional to ki
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The Gillespie Algorithm

Initialize number of each molecules from initial concentrations; set
t ← 0.

Iterate until t is larger than end time
I At time t, determine a time interval τ that a reaction will happen.

Draw a random number from an exponential distribution with
parameter p∗:

f (τ) = p∗e−p
∗τ

p∗ =
∑
i

pi

I Choose the reaction that happens at in time (t, t + τ)
Reaction Ri has probabiltity pi

p∗

I Update molecule numbers based on reaction chosen.
I Update t ← t + τ .
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The END
Thanks!
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