Ordering due to disorder and
gauge-like degeneracy in the
large-S antiferromagnet on the
highly frustrated pyrochlore lattice

Uzi Hizi and Christopher L. Henley,
[Support: U.S. National Science Foundation]

Chudnovsky fest, New York, March 13, 2009
Effective HamiltonianS of the large-S pyrochlore antiferromagnet: outline

0. Introduction:
 pyrochlore lattice (vs. Bethe lattice); effective Hamiltonians

1. Harmonic-order spinwaves
 [CLH, PRL 96, 047201 (2006)]
 [U. Hizi & CLH, PRB 73, 054403 (2006)]

2. Trace expansion and loop effective Hamiltonian \mathcal{H}_{eff}.

3. Gauge-like degeneracy of ground states
 - [4.]. Quartic-order spinwaves and large-N expansion
 (summary only)

5. Conclusions: (i) comparison to kagomé lattice
 (ii) related systems (field plateaus)?
 (iii) spin disordered states??
0. Introduction

Pyrochlore lattice

Corner sharing tetrahedra = bond midpoints of diamond lattice
Hamiltonian: Heisenberg Antiferromagnet

\[\mathcal{H} = \sum J_{ij} S_i \cdot S_j = \frac{1}{2} \sum_{\text{tetra.}} |L_\alpha|^2 + \text{const.} \]

\[\Rightarrow \quad L_\alpha \equiv \sum_{i \in \alpha} S_i = 0 \quad \text{(tetrahedron sum in ground state)} \]

Classically, any state with \(L_\alpha = 0 \) is ground state. Massive degeneracy \(\Rightarrow \) rich phase diagrams of correlated states

Our question: what is \(S \gg 1 \) ground state? expect spin order!

- disordered for classical [Moessner & Chalker 1998]
- ... or for \(S = 1/2 \) [Canals & Lacroix 1998]
Experimental pyrochlore systems?

Many $A_2B_2O_7$ oxides (pyrochlore structure) or AB_2O_4 (spinels):

- $Gd_2Ti_2O_7$: noncollinear (dipolar interaction) [Champion et al, PRL 2001]

- $ZnCr_2O_4$: $S = 3/2$; Heisenberg behavior but distortion at lower T (magnetoelastic interaction) [S. H. Lee et al, PRL 2000, Nature 2002; see Tchernyshyov PRL 2002, 2004]

- $CdCr_2O_4$: Magnetization plateau; complicated helical ordering (Dzyaloshinskii-Moriya) [J.-H. Chung et al, PRL 2006]

Future clean realizations in cold gases? [e.g. L. Santos et al 2004, theory kagomé optical lattice]
Effective Hamiltonian notion

Expect perturbation energies E' to split the degeneracies.

- Usual approach: (i) guess 2 or 3 simple/high symmetry states
 (ii) compute E' for each (iii) compare

- Our approach: define a function H^eff for every state.

Advantages and disadvantages

+ If true ground state isn’t one of those you guessed!?

+ Building block: (i) $T > 0$ simulation (ii) H^eff + disorder, anisotropy, or tunneling among discrete states
 - Usually uncontrolled expansion, crude (truncated) form.

Want: (i) analytic form (ii) energy scale
(iii) ground states (iv) their degeneracy
Remark: Bethe lattice versus loops

We’ll see the important states are discrete, like Ising model.

On Bethe lattice, all Ising states are symmetry equivalent (hence exactly degenerate)

In pyrochlore lattice, \Rightarrow effective Hamiltonian \mathcal{H}^eff must depend on loops.
1. Harmonic zero-point energy

Break degeneracy with zero-point spin wave energy:

\[E_{\text{harm}}(\{\hat{n}_i\}) = \sum_{m} \frac{1}{2} \hbar \omega_m = O(JS) \ll E_{\text{class}} = O(JS^2) \]

- Implicitly function of classical directions \(\{\hat{n}_i\} \)
- Splits states because different magnon spectra

Collinear ground states \(\hat{n}_i = \eta_i \hat{z} \)
favored by \(E_{\text{harm}} \).

\[\Rightarrow \text{Assume minimum } E_{\text{harm}} \text{ is collinear state.} \]
\[\Rightarrow E_{\text{harm}}(\{\eta_i\}) \text{ will give } \mathcal{H}_{\text{harm}}^{\text{eff}}. \]
An aside about collinear selection

Shender 1982 (later CLH 1989): zero point energy favors states in which spins are collinear. (Why: this gives maximum coupling between fluctuations of different spins.) Like the entire spin wave energy it is down by $1/S$ relative to classical energy; coefficient is small.

In Kagome lattice, of corner sharing triangles, each triangle has 120° spin state; collinearity impossible, coplanarity favored instead. In Kagome, all the (many) coplanar states have identical spin wave spectra hence degenerate at harmonic order (extensive entropy of such states).

That was a consequence of neighbor spin angles $\theta_{ij} = \pm 2\pi/3$ everywhere; pyrochlore has $\theta_{ij} = 0, \pi$. So should split even in harmonic order!
2. Trace expansion and loop \mathcal{H}_{eff}

Spinwave equation of motion

Linearized eqn. of motion for “ordinary” spinwave modes?
[the other modes have $\omega = 0$]

Reduces to one for tetrahedron spin L_α:

$$\delta \dot{L}_\alpha = -SJ \sum_\beta \mu_{\alpha \beta} \hat{z} \times \delta L_\beta, \quad (1)$$

$$\mu_{\alpha \beta} \equiv \eta_{i(\alpha \beta)} \quad (2)$$

$[i(\alpha, \beta) \equiv \text{pyrochlore site between diamond lattice sites } \alpha \text{ and } \beta]$.

The dynamical matrix μ is the classical configuration $\{\eta_i\}$.
(And its eigenvalues are ω_m.)
Trace expansion for E_{harm}

Eigenvalues of matrix μ^2 are $(\hbar \omega_m)^2$.

$$E_{\text{harm}}(\{\eta_i\}) \equiv \frac{1}{2} \sum_m \hbar \omega_m = JS\text{Tr} \left(\sqrt{\frac{1}{4} \nu^2} \right)$$

Formally Taylor-expand square root about constant matrix $A1$:

$$E_{\text{harm}} = S\text{Tr} \left[A1 + \left(\frac{\mu^2}{4} - A1 \right) \right]^{1/2} \quad (3)$$

$$= S \sum_{k=0}^{\infty} c_{2k} A^{-(k-1)/2} \text{Tr} \left(\nu^{2k} \right) \quad (4)$$

[$\{c_{2l}\}$ have closed expressions]

[Result converges to A-indep. result, as long as $A > 1.4$].
Loop expansion

Each term of E_{harm} is $\text{Tr}(\mu^{2k})$: a sum over products of $2k$ $\mu_{\alpha\beta}$’s: i.e., $\prod \eta_i$ (Ising spins) on all possible closed paths of $2k$ steps.

Retraced portions: trivial factors $\eta_i^2 \to 1$ (“decorations”). To resum, approximate (well) by Bethe lattice paths.

Path around a loop: contributes configuration-dependent factor $\prod \eta_i$ around that loop.
Loop expansion 2

[Recall: Zero-point energy was:]

\[E_{\text{harm}} = J S Tr \left(\sqrt{\frac{1}{4} \mu^2} \right), \quad \mu_{\alpha\beta} \equiv \eta_{i(\alpha\beta)}. \]

Example of two factors in a term:

\[
(\mu^2)_{\alpha\gamma} = \begin{cases}
4 & \alpha = \gamma \\
\eta_{i(\alpha\beta)} \eta_{i(\beta\gamma)} & \alpha, \gamma \text{ next-nearest neighbors} \\
0 & \text{otherwise}
\end{cases}
\]
Result: Loop effective Hamiltonian

\[\mathcal{H}_{\text{harm}}^{\text{eff}} = -0.5640N_{\text{spins}} + 0.0136\Phi_6 - 0.0033\Phi_8 + \ldots \]

(Here \(\Phi_{2l} \equiv \sum \prod_{k=1}^{2l} \eta_i \).

Numerical check (from database of numerous ground states.)
3. Gauge-like symmetry

Consider: take Ising configuration \(\{ \eta_i \} \), and

\[
\eta_i'(\alpha, \beta) \equiv \tau_\alpha \tau_\beta \eta_i(\alpha, \beta)
\]

with \(\tau_\alpha = \pm 1 \) arbitrarily (for every diamond site \(\alpha \)).

Matrix \(\mu' = \tau \mu \tau^{-1} \), is similarity transformation. Same eigenvalues \(\Rightarrow \) same \(E_{\text{harm}} \).

- Explains why \(\mathcal{H}_{\text{harm}}^{\text{eff}} \) had form of gauge model.
- Large \(\exp(\text{const} L) \) degeneracy!
- Gauge-like only: still must satisfy ground-state condition

\[
\sum_{i \in \alpha} \eta_i = 0, \quad \text{(each tetrahedron } \uparrow\uparrow\downarrow\downarrow).\]
Ground-state degeneracy

Any collinear classical ground state with spin product $\prod_{i \in \bigcirc} \eta_i = -1$ around every hexagon is a degenerate ground state.

- Called “π-flux” state
- The smallest magnetic unit cell has 16 spins.
- The residual entropy is at least $O(L)$ and at most $O(L \ln L)$
4. Beyond harmonic spin-waves

Two routes to further break degeneracy

- Quartic-order spinwaves

- Large-N [Sp(N)] mean-field theory
 [U. Hizi, P. Sharma, and C. L. Henley PRL 95, 167203 (2005)]

These also lead to loop effective Hamiltonians

Effective Hamiltonian that splits harmonic states:

\[\mathcal{H}_{\text{quart}}^{\text{eff}} = C_6(S)\mathcal{P}_6 + C_8(S)\mathcal{P}_8 + \ldots , \]

where \(\mathcal{P}_{2l} = \text{no. AFM } (\uparrow\downarrow\uparrow\downarrow \ldots) \text{ loops of length } 2l; \]
\(C_{2l}(S) = O(\ln S^2). \)
Ground states for large N?

Monte Carlo simulate $\mathcal{H}_{\text{eff}}^{Sp(N)}$ (≤ 3456 sites): hunt ground states.

- nearly degenerate stacks of layers (alternate $a/4$, $a/2$ thick)
- Splitting $\sim 10^{-7}$ per spin (from length $2l = 16$ loops) \Rightarrow unique ground state (96 site cell).

Oops! $1/N$ expansion gave wrong answer!

- Harmonic term of $1/S$ expansion must dominate at $S \gg 1$

\Rightarrow Physical ($SU(2)$) ground state must be “π-flux” state.

\Rightarrow ground states of $\mathcal{H}_{\text{eff}}^{Sp(N)}$ are not π-flux states.

Spin waves at quartic order give a similar (but not identical) stacked state with even longer period, which we think is right.
5. Conclusions: summary/discussion

Key tricks used:

- Get configuration labels as **coefficients** (in matrix)
- Zero-point energy in terms of **trace** \([\text{(matrix)}^2]\)

Common features between harmonic/quartic/large-N calculations:

- Effective Hamiltonian as loop sum

 ![Graphs (a), (b), and (c)]

- Degenerate (or nearly) states, entropy \(O(L)\) (non extensive).

Practically: Energy differences too small to be seen experimentally.
Discussion

Details surprisingly unlike Kagomé case [E. P. Chan & CLH, 1994]

- Kagomé: always $\hat{n}_i \cdot \hat{n}_j = -1/2 \Rightarrow$ all coplanar states degenerate (extensive entropy) at harmonic order.
- Kagomé: zonefull of divergent modes $\Rightarrow E_{anh} = O(S^{2/3})$

Applicable to other systems

- checkerboard (planar pyrochlore) – confirm known answers
- Field plateau states (e.g. pyrochlore collinear $\uparrow\uparrow\uparrow\downarrow$)
 (harmonic: **opposite sign** for loop product, $\prod \eta_i = +1.$)

Will addition of tunneling give spin-disordered superposition?

- No! $O(L)$ ground state entropy \Rightarrow must flip $O(L^2)$ spins \Rightarrow tunnel amplitude exponentially small.
- **Will** work in kagomé case. [See von Delft & Henley PRB 1993]
Disc. details 1: Comparison to Kagomé case

<table>
<thead>
<tr>
<th></th>
<th>Kagomé</th>
<th>Pyrochlore</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Spin order</td>
<td>Coplanar</td>
<td>Collinear</td>
</tr>
<tr>
<td>2. Symmetry between deviation components</td>
<td>⇒ No (in-plane and out-of-plane)</td>
<td>⇒ Yes (x and y)</td>
</tr>
<tr>
<td>3. Divergent modes in \vec{q} space</td>
<td>⇒ entire zone</td>
<td>⇒ Along lines</td>
</tr>
<tr>
<td>4. Anharm. E scale</td>
<td>$S^2/3$</td>
<td>$(\ln S)^2$</td>
</tr>
<tr>
<td>5. Neighbor spin angles</td>
<td>$2\pi/3$</td>
<td>0 or π</td>
</tr>
<tr>
<td>6. $\mathcal{H}_{\text{harm}}$ gr. st. degen.?</td>
<td>⇒ all</td>
<td>⇒ $O(L)$ entropy</td>
</tr>
<tr>
<td>7. Anharmonic terms</td>
<td>$\mathcal{H}{\text{cubic}} + \mathcal{H}{\text{quart}}$</td>
<td>$\mathcal{H}_{\text{cubic}}=0$</td>
</tr>
<tr>
<td>8. \mathcal{H}_{eff} interactions</td>
<td>⇒ nonlocal</td>
<td>⇒ local</td>
</tr>
</tbody>
</table>
Discussion details 2: Other systems

(1) Harmonic $\mathcal{H}_{\text{harm}}^{\text{eff}}$:

- checkerboard (planar pyrochlore) lattice
 [Done by Tchernyshyov-Starykh-Moessner-Abanov PRB 2003]
- field plateaus (kagomé $\uparrow\uparrow\downarrow$, pyrochlore $\uparrow\uparrow\uparrow\downarrow$)
 (Opposite sign for loop product of Ising spins!)

(2) Quartic $\mathcal{H}_{\text{quart}}^{\text{eff}}$:

- checkerboard lattice [But lattice already breaks symmetry.]
- field plateaus (see list above): undone

(3) Large-N $\mathcal{H}_{\text{Sp}(N)}^{\text{eff}}$:

- checkerboard lattice [same answer as Bernier et al PRB 2004]
- Kagomé lattice [same answer as Sachdev PRB 1992]
Disc. details 3: disordered superpositions??

Just add to effective Hamiltonian the “off-diagonal” terms, representing tunneling between collinear states?

[See von Delft & Henley PRB 1993, kagomé; see Bergman et al, nearly-Ising pyrochlore at mag. plateau]

- Expect, if diagonal terms (i.e. \mathcal{H}^{eff}) \ll tunneling amplitudes.
- The extra terms are ring-exchanges [like Hermele et al, 2004]
- Mixture would be quantum spin nematic.

But no!:

- $O(L)$ ground state entropy \Rightarrow need to flip $O(L^2)$ spins \Rightarrow tunnel amplitude exponentially small.
- Try kagomé lattice (or garnet lattice – 3D!) built from triangles: there, harmonic-order ground states with extensive entropy.
4a. Quartic (self-cons.) spin-waves: details

Holstein-Primakoff transformation/expansion

- Relate standard bosons to spin deviation operators:
 \[a_i = \left(\eta_i \sigma_i^x + i \sigma_i^y \right) / \sqrt{2S}. \]

- Hamiltonian: classical + harmonic + quartic
 \[
 \mathcal{H} = -J N_s S^2 \\
 + J \left(1 + \frac{1}{2S} \right) \sum_i |\vec{\sigma}_i|^2 \\
 + J \left(1 + \frac{1}{4S} \right)^2 \sum_{\langle ij \rangle} \vec{\sigma}_i \cdot \vec{\sigma}_j \\
 + \frac{J}{4S^2} \sum_{\langle ij \rangle} \left(\eta_i \eta_j |\vec{\sigma}_i|^2 |\vec{\sigma}_j|^2 - \frac{1}{2} \vec{\sigma}_i \cdot \vec{\sigma}_j \left(|\vec{\sigma}_i|^2 + |\vec{\sigma}_j|^2 \right) \right) + \mathcal{O}(S^{-1}).
 \]

(Harmonic term – which gave \(E_{\text{harm}} \) –)
depends on \(\{\eta_i\} \) via \([\sigma^x_i, \sigma^y_j] = i\eta_i S \delta_{ij}\)
Self-consistent decoupling (standard)

“Mean-field” Hamiltonian: as if modify bonds

\[\delta J_{ij} = -\frac{1}{2S^2} \left[\frac{1}{2} \left(\langle \sigma_i^2 \rangle + \langle \sigma_j^2 \rangle \right) - \eta_i \eta_j \langle \sigma_i \cdot \sigma_j \rangle \right] \]

Numerically: dominated by \textbf{divergent} modes (with \(\hbar \omega_m = 0 \)).

Consider only harmonic ground (“\(\pi \)-flux”) states: totally uniform in space (for harmonic=gauge-invariant properties).

Symmetry \(\Rightarrow \langle \sigma_i \cdot \sigma_j \rangle \) depends only on \(\eta_i \eta_j \) \(\Rightarrow \)

\[\delta J_{ij} \cong -\frac{\epsilon}{8} \eta_i \eta_j \]

with \(\epsilon = O(\ln S/S) \) [from integrate across divergence in B.Z.]
Effective Hamiltonian for quartic energy

Most of anharmonic energy is actually “gauge”-invariant

Effective Hamiltonian that splits harmonic states:

\[\mathcal{H}_{\text{quart}}^{\text{eff}} = C_6(S)P_6 + C_8(S)P_8 + \ldots, \]

where \(P_{2l} = \text{no. AFM (↑↓↑↓... loops of length } 2l; \)

- Obtained from empirical fit (first!)
- Lead term \((P_6) \) derived (later!) by inserting \(\delta J_{ij} = (\ldots)\epsilon \eta_i \eta_j \)
 into loop expansion from harmonic calculation.
- Energy scale \(C_{2l}(S) = O(\ln S^2). \)

Ground state(s) – our grand answer – but complicated/unclear:

- Independent slabs, 2 choices/slab, alternately \(a/2 \) or \(a/4 \) thick
- Degenerate (?) \(\Rightarrow \) entropy = \(O(L) \)? I think not, but shortest loop that **might** split them is length 26(!)
Numerical check

Using database of many “π-flux” (harmonic ground states)
5b. Large-N approach to large-S limit

with: Dr. Prashant Sharma

Motivation for large N approach
[U. Hizi, P. Sharma, and C. L. Henley, PRL 2005]

Another systematic approach beyond classical/harmonic level

- Generalized spins with $\text{Sp}(N)$ symmetry
 [Physical: $\text{Sp}(1) = \text{SU}(2)$].

- Can solve $N \to \infty$ exactly. [Read & Sachdev, 1989]

N flavors of boson; representation labeled by κ (generalizes $2S$).

- Usual: small κ to approximate $S = 1/2$

- Ours: large κ – breaks degeneracies at lowest nontrivial order
 (first nontrivial term in $1/\kappa$ expansion)
Set-up: Large-\(N\) mean field theory

Spin operators: bilinear in boson operators \(b_{i\sigma m}, b_{i\sigma m}^\dagger\) [\(\sigma = \uparrow, \downarrow\); flavor \(m = 1, \ldots, N\)]

Exchange interaction: bilinear in “valence bond” operators

\[
\hat{Q}_{ij} \equiv b_{i\uparrow, m}^\dagger b_{j\downarrow, m}^\dagger - b_{i\downarrow, m}^\dagger b_{j\uparrow, m}^\dagger.
\]

Decoupling gives

\[
\mathcal{H}_{Sp(N)} = \frac{1}{2} \sum_{\langle ij \rangle} \left(N|Q_{ij}|^2 + Q_{ij} \hat{Q}_{ij} + H.c. \right) + \sum_i \lambda_i \left(\hat{N}_i^b - N\kappa \right)
\]

with classical coeff. \(Q_{ij} \equiv \langle \hat{Q}_{ij} \rangle / N\) (self-consistent).

Lagrange multipliers \(\lambda_i \to 4\kappa\) (every \(i\)): enforce \(\kappa\) bosons, each site

Ordered state: has \(\langle b_{i\sigma, m} \rangle \neq 0\).
Trace expansion for large-N case

Bogoliubov diagonalization \(\Rightarrow \) zero-point energy is

\[
E_{Sp(N)}(\{Q_{ij}\}) = \frac{N}{2} \left[\text{Tr} \sqrt{\lambda^2 \mathbb{1} - Q^\dagger Q} - N_s \lambda \right]
\]

If a **collinear** type ordered state:

\[
Q_{ij} = \kappa (\eta_i - \eta_j)/2 \quad [= 0 \text{ or } \pm \kappa].
\]

Expand trace as previous cases!

- Different matrix (only connects on satisfied bonds)
- Different lattice (pyrochlore \(\Rightarrow \) trivial loops on 1 tetrahedron)
Effective Hamiltonian for large N case

Real-space expansion in loops of valence bonds:

$$\mathcal{H}_{\text{Sp}(N)}^{\text{eff}} = \frac{N\kappa}{2} \left(0.59684N_{\text{spins}} - 0.003482 \mathcal{P}_6 - 0.0000344 \mathcal{P}_8 + \cdots \right)$$

[As in quartic. $\mathcal{P}_{2l} \equiv$ no. AFM loops ($\uparrow\downarrow\uparrow\downarrow\ldots$) of length $2l$.]

Numerical check
with general
collinear ground states