Electron-Nanomagnet Interactions: A DFT Many-Body Approach for Quantum-Device Simulation

Mark R. Pederson

HAPPY BIRTHDAY EUGENE!

Thanks for your many contributions to Science, MM and human rights.

• OUTLINE
 • How do we study spin-dependent transport across a molecular magnet?
 • Electrons disrupt exchange coupling and anisotropies?
 • Other environmental effects (dislocations, pressure, water, leads etc) do as well.
 • DFT+NRLMOL: Magnetic Anisotropy and Exchange Coupling
 • A DFT-based many-electron approach.

Collaborators:

• S, Khanna (VCU)
• J. Kortus (TU Freiberg)
• S. Hellberg (NRL)
• T. Baruah (UTEP)
• K. Park (Vtech)
• S. Richardson (Howard)
• N. Bernstein (NRL)
• J. Ribas (Barcelona)
• C. Canali (Kalmer)

Work was supported by ONR, NSF, NRL and HPCMO
mark.pederson@nrl.navy.mil

TOOL: NRLMOL
All-Electron Density Functional Based Code.
Molecular Magnets: A new field for DFT Investigations

Questions for Theory

- What determines the magnetic reorientation barrier?
- What mediates the dynamics in resonant tunneling of magnetization?
- How can such simplicity arise from the so much complexity?
- What relative energy scales allow for molecular magnetism?

[Diagram of Mn₁₂O₁₂(RCOO)₁₆(H₂O)₄ with indications of Majority Spin Electrons and Minority Spin Electrons]

What other conditions are necessary?
Ingredients of Calculation:

Geometry Optimization
Electronic Structure
Exchange Interactions
Spin-Orbit Coupling

Heisenberg Hamiltonian
Single Spin Anisotropy Hamiltonian

Retrospective & Rational Approach
Amenable to systems where there are no low-energy one or two-electron excitations.
Density of States for Passivated Mn$_{12}$O$_{12}$ Magnet

- DOS are similar at energies below minority spin HOMO.
- Ten extra electrons between majority and minority HOMO states. Net Moment = 20
- Some O(2p)-Mn(3d) covalent bonding.
- Half Metallic Ferrimagnet?

Minority Gap: 2.03 eV
Majority Gap: 0.43 eV
Spin Manifolds in Mn$_{12}$-Acetate

Park, Pederson and Hellberg PRB 69 014416 (2004)

<table>
<thead>
<tr>
<th>Sz</th>
<th>Energy (eV)</th>
<th>MAE (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000</td>
<td>54.21</td>
</tr>
<tr>
<td>9-b</td>
<td>0.062</td>
<td>54.56</td>
</tr>
<tr>
<td>9-c</td>
<td>0.145</td>
<td>54.98</td>
</tr>
<tr>
<td>8</td>
<td>0.138</td>
<td>55.09</td>
</tr>
<tr>
<td>6-c</td>
<td>0.038</td>
<td>55.03</td>
</tr>
<tr>
<td>6-b</td>
<td>0.080</td>
<td>55.35</td>
</tr>
<tr>
<td>5-a</td>
<td>0.134</td>
<td>55.52</td>
</tr>
<tr>
<td>5-b</td>
<td>0.092</td>
<td>54.92</td>
</tr>
<tr>
<td>13</td>
<td>0.151</td>
<td>53.70</td>
</tr>
</tbody>
</table>

Spin Gap is in Excellent Agreement with Experiment

(Petukhov, Hill, Chakov, Christou, Aboud cond-mat0403435)
Multiplets Split Due to Interionic Exchange Coupling (K Park & MRP)

Each Spin Multiplets Splits due to LS Coupling
(Pederson and Khanna, PRB 1999)

(2S+1)-fold degeneracy

S=9

S=9

S=9

S=10

33 K

7 K

41 K

Good Agreement with Experiment in Many cases.

Multiplets Split Due to Interionic Exchange Coupling (K Park & MRP)
Other Contributions to Magnetic Anisotropy: Beyond Mean Field

\[|\Psi \rangle = C_0 |\Phi_0 \rangle + C_1 |\Phi_1 \rangle + C_2 |\Phi_2 \rangle + C_3 |\Phi_3 \rangle + \ldots \]

\[
(\Psi| V_{L.S} |\Psi \rangle = \sum_v C_v^* C_v <\Phi_v | V_{L.S} | \Phi_v > + \sum_{v \mu} C_v^* C_\mu <\Phi_v | V_{L.S} | \Phi_\mu >
\]

\[V_{L.S} = \sum_i f_i + \sum_{ij} g_{ij} \]

Interaction between electric fields due to nuclei with each moving electron. (1 electron operator)

Interaction between electric fields due to all electrons with each moving electron. (2 electron operator)

Try:
(1) All diagonal terms the same or \(|C_n|^2\) very small.
(2) Off diagonal terms small due to zero overlap or small \(C_n\)
NRLMOL: Linear Combination of Gaussian Orbitals

$$\Psi(r) = \sum_{i\sigma} C_i \exp[-\alpha_i (r-R_i)^2]|\sigma>$$

Place Gaussians on each atom in molecule or crystal

Reduce Problem to Finding Expansion Coefficients
Calculation of the Tunneling Barrier within DFT?

INCLUDE SPIN-ORBIT COUPLING VIA 2ND ORDER PERTURBATION THEORY

\[
\Delta_2 = \sum_{\sigma \sigma'} \sum_{xy} M_{\sigma \sigma'}^{xy} S_{\sigma \sigma}^{xy} S_{\sigma \sigma'}^{xy}
\]

\[
S_{\sigma \sigma'}^{xy} = \langle \chi_\sigma | S_x | \chi_\sigma \rangle
\]

\[
M_{\sigma \sigma'}^{xy} = M_{\sigma \sigma'}^{yx} = \sum_{ij} \frac{\langle \phi_{i \sigma} | V_x | \phi_{j \sigma'} \rangle < \phi_{j \sigma'} | V_y | \phi_{i \sigma} \rangle}{\varepsilon_{i \sigma} - \varepsilon_{j \sigma}}
\]

\[
= \sum_{ij} \frac{\frac{d \Phi}{dy} d\frac{d}{dz} - \frac{d \Phi}{dz} d\frac{d}{dy}}{|\phi_{i \sigma}|^2}
\]

\[
\equiv < \phi_{j \sigma'} | V_x | \phi_{i \sigma} > \frac{d \Phi}{dy} d\frac{d}{dz} - \frac{d \Phi}{dz} d\frac{d}{dy} |\phi_{i \sigma}|^2
\]
2nd-Order Anisotropy Hamiltonian

\[|\chi_1\rangle = \cos(\frac{\theta}{2})|\uparrow\rangle + e^{i\beta}\sin(\frac{\theta}{2})|\downarrow\rangle \]
\[|\chi_2\rangle = -e^{i\beta}\sin(\frac{\theta}{2})|\uparrow\rangle + \cos(\frac{\theta}{2})|\downarrow\rangle \]

\[\Delta_2 = \sum_{xy} \gamma_{xy} \langle S_x \rangle \langle S_y \rangle \rightarrow \left[-DS_z S_z - E(S_x S_x - S_y S_y) \right]/S^2 \]

Determine \(\gamma_{xy} \) from DFT, L.S and Perturbation Theory.
Magnetic Reorientation Barriers in Molecules

NRLMOL/PBE-GGA VS EXPERIMENT (1999-2003)

(MRP, Khanna, Kortus, Baruah, Park, Ribas)

<table>
<thead>
<tr>
<th>Molecule</th>
<th>S</th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Mn}{12}\text{O}{12}(\text{O}2\text{CH}){16} (\text{H}_2\text{O})_4)</td>
<td>10</td>
<td>(-0.56^a)</td>
<td>(-0.56^b)</td>
</tr>
<tr>
<td>([\text{Fe}_8\text{O}2(\text{OH}){12}(\text{C}6\text{H}{15}\text{N}_3)_6 \text{Br}_6]^{2+})</td>
<td>10</td>
<td>(-0.53^c)</td>
<td>(-0.30^d)</td>
</tr>
<tr>
<td>([\text{Mn}_{10}\text{O}_4(2,2'\text{-biphenoxide})4 \text{Br}{12}]^{4-})</td>
<td>13</td>
<td>(-0.06^e)</td>
<td>(-0.05^f)</td>
</tr>
<tr>
<td>(\text{Co}_4(\text{CH}_2\text{C}_5\text{H}_4\text{N}_4)(\text{CH}_3\text{OH})_4 \text{Acl}_4)</td>
<td>6</td>
<td>(-0.64^g)</td>
<td>(-0.7 \text{ to } -0.9^h)</td>
</tr>
<tr>
<td>(\text{Fe}_4(\text{OCH}_2)_6(\text{C}4\text{H}{9}\text{ON})_6)</td>
<td>5</td>
<td>(-0.56^i)</td>
<td>(-0.57^j)</td>
</tr>
<tr>
<td>(\text{Cr}[\text{N}(\text{Si}(\text{CH}_3)_3)_2]_3)</td>
<td>3/2</td>
<td>(-1.15^i)</td>
<td>(-2.66^k)</td>
</tr>
<tr>
<td>(\text{Mn}9\text{O}{34}\text{C}_{32}\text{N}3\text{H}{35})</td>
<td>17/2</td>
<td>(-0.33^m)</td>
<td>(-0.32^l)</td>
</tr>
<tr>
<td>(\text{Ni}4\text{O}{16}\text{C}{16}\text{H}{40})</td>
<td>4</td>
<td>(-0.385)</td>
<td>(-0.40^m)</td>
</tr>
<tr>
<td>(\text{Mn}_4\text{O}_3\text{Cl}_4(\text{O}_2\text{CCH}_2\text{CH}_3)_3(\text{NC}_5\text{H}_5)_3)</td>
<td>9/2</td>
<td>(-0.58^n)</td>
<td>(-0.72^o)</td>
</tr>
</tbody>
</table>

2004-2006: Additional challenges identified
Wannier Description of Magnetic Core of Molecule

NB: Four equivalent sites lead to nearly degenerate LUMO "band"
Interaction of Electrons with Molecular Magnets

BACKGROUND

Addition of localized electron on crown Mn decreases anisotropy.
Park and Pederson, PRB 70 045416 (2004)

Additional of electron delocalized over entire molecule increases anisotropy

QUESTIONS

Can magnetism be controlled by shuttling electrons back and forth?

In transport, does the traversing electron change the molecule?

What other environmental effects?

TABLE I: The GS properties from DFT: spin, energy and magnetic anisotropy energy as a function of charge

<table>
<thead>
<tr>
<th>State</th>
<th>(Q)</th>
<th>Spin</th>
<th>Energy (eV)</th>
<th>MAE (K)</th>
<th>MAE (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anion</td>
<td>-1</td>
<td>21/2</td>
<td>-3.08</td>
<td>137</td>
<td>11.8</td>
</tr>
<tr>
<td>Neutral</td>
<td>0</td>
<td>20/2</td>
<td>0.00</td>
<td>55</td>
<td>4.7</td>
</tr>
<tr>
<td>Cation</td>
<td>1</td>
<td>19/2</td>
<td>6.16</td>
<td>69</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Addition of Localized Excess Electrons and Delocalized Excess Electrons can have very different effects!

Localized Electron:

Closes D Shell on Mn Ion
Quenches Local Anisotropy on (Temperature independent?)
Changes the Exchange-Coupling Between Neighbors
(K. Park)

Delocalized Electron:

Visits all four equivalent sites and/or 4-nearly degenerate bands
Spin-Orbit/Axis changes ordering/occupations of nearly degenerate states

Large Environmentally Dependent Change in Anisotropy
Electron/Spin Transport across a Nanomagnet?

Need Many Electron / Many Spin Method that accounts for all interactions

Must be Computationally “Fast”
Step 1: Many-Electron Wavefunctions from DFT
(Pederson and Canali, to be submitted)

“Order parameters” \(\{ p \} \) for Many-Electron Wavefunctions

\[
H(E, B, Q, \theta, \phi) = H_0(Q) + E \cdot r + B \cdot (L + 2S) + V_{L+S}(\theta, \phi)
\]

- Treat Self-Consistently for Reference Hamiltonians
- With or without SCF
- Non SCF (Exact Diagonalization)
- Noncollinear Spin Orbitals

\[
H(p) \phi_k(p) = \lambda_k(p) \phi_k(p)
\]

\[
\phi_k(p) = \phi_{k1}(p) \chi_1(\theta, \phi) + \phi_{k2}(p) \chi_2(\theta, \phi)
\]

Step 2: Many-Electron Wavefunctions from DFT

\[\phi_k(p) = \phi_{k1}(p) \chi_1(\theta, \phi) + \phi_{k2}(p) \chi_2(\theta, \phi) \]

\[|\chi_1\rangle = \cos(\theta/2)|+\rangle + e^{i\phi} \sin(\theta/2)|-\rangle \]

\[|\chi_2\rangle = -e^{-i\phi} \sin(\theta/2)|+\rangle + \cos(\theta/2)|-\rangle \]

\[\Phi(p, 1, 2, \ldots N) = \frac{1}{(N!)^{1/2}} \begin{vmatrix} \phi_a(\tau_1) & \phi_a(\tau_2) & \phi_a(\tau_3) & \phi_a(\tau_4) & \ldots & \phi_a(\tau_N) \\ \phi_b(\tau_1) & \phi_b(\tau_2) & \phi_b(\tau_3) & \phi_b(\tau_4) & \ldots & \phi_b(\tau_N) \\ \phi_c(\tau_1) & \phi_c(\tau_2) & \phi_c(\tau_3) & \phi_c(\tau_4) & \ldots & \phi_c(\tau_N) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_N(\tau_1) & \phi_N(\tau_2) & \phi_N(\tau_3) & \phi_N(\tau_4) & \ldots & \phi_N(\tau_N) \end{vmatrix} \]

GROUND AND EXCITED SLATER DETERMINANTS
Step 3: Many-Electron Overlaps and Energies

Good Estimate of Energies from Single Hubbard U and p-dependent eigenvalues.

\[\Phi(p) = \frac{1}{(N!)^{1/2}} \begin{align*}
\phi_a(\tau_1) \phi_a(\tau_2) \phi_a(\tau_3) \phi_a(\tau_4) & \ldots \phi_a(\tau_N) \\
\phi_b(\tau_1) \phi_b(\tau_2) \phi_b(\tau_3) \phi_b(\tau_4) & \ldots \phi_b(\tau_N) \\
\phi_c(\tau_1) \phi_c(\tau_2) \phi_c(\tau_3) \phi_c(\tau_4) & \ldots \phi_c(\tau_N) \\
\phi_N(\tau_1) \phi_N(\tau_2) \phi_N(\tau_3) \phi_N(\tau_4) & \ldots \phi_N(\tau_N)
\end{align*} \]

Tunneling Probabilities and 1-Electron Green’s Function requires:

\[\langle \Phi(p_i) | \Phi(p_j) \rangle \]

N.B.: Noncollinear spin-orbitals from different p’s are not orthonormal

(Still an \(N^3 \) operation!)
Energies as a function of p and Q'

$$H(p) \phi_k(p) = \lambda_k(p) \phi_k(p)$$

$$E(p,Q;Q') = E_0(Q) + \sum_k q_k \lambda_k(p) + \frac{U}{2} (Q'-Q)^2$$

- **Ground state**: DFT for charge Q
- **Occupations numbers**: $Q' = \sum_k q_k$
- **Molecular Hubbard U (Capacitance)** as calculated from DFT energy vs Q
Step 4: Many-Electron Wavefunctions from DFT

COMPUTATIONAL DETAILS

• Common Rep for Rigid “Core” and “Sub Valence” States.
• Common Rep for Valence/Conduction (Active) States.
• We use neutral Mn$_{12}$ for NC spin-orbital basis.

\[\psi_1 \psi_2 \psi_3 \psi_4 \psi_5 \psi_6 \ldots \psi_N \]
Spin Selection Rules within a Semiclassical Magnetic State

FIG. 3: (Color online) Matrix elements for transitions between anionic and neutral charge states. (a) Giant-spin model; (b) SDFT results for transitions from neutral GS spin multiplet to anionic first excited multiplet; (c) SDFT results for transitions from neutral GS to anionic GS spin multiplets.
The theory of tunneling spectroscopy in a Mn_{12} single-electron transistor by DFT methods

L. Michalak1, C. M. Canali1, M. R. Pederson2, M. Paulsson1, and V. G. Benza3

1Division of Physics, Department of Natural Sciences, Kalmar University, 391 82 Kalmar, Sweden
2Naval Research Lab, Washington DC, USA and
3Universita’ dell’ Insubria, Como, Italy

(Dated: December 5, 2008; Received textdate; Revised textdate; Accepted textdate; Published textdate)

$$\chi^{\pm}(\theta, \varphi) = \cos(\theta/2)|\pm\rangle \pm \sin(\theta/2)e^{\pm i}|\mp i.$$
Conclusions

- Good Agreement with Experiment
- Some Verified Predictions within DFT

<table>
<thead>
<tr>
<th>Theoretical</th>
<th>Experiment</th>
<th>Prediction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mag. Anisotropy / Barriers, Tunneling Fields</td>
<td>Good/Excellent</td>
<td>Yes</td>
</tr>
<tr>
<td>Exchange Parameters / Spin Excitations</td>
<td>Good</td>
<td>Yes</td>
</tr>
<tr>
<td>Electronic Structure/ Optical Conductivity</td>
<td>Usual DFT</td>
<td>Yes</td>
</tr>
<tr>
<td>Vibrational Spectra (IR/Raman)</td>
<td>Very Good</td>
<td>?</td>
</tr>
<tr>
<td>Incommensurate Ordering between 2nd-order and 4th-order axes</td>
<td>Qualitative Accord</td>
<td>Partially</td>
</tr>
<tr>
<td>Local Moments / Neutron Scattering</td>
<td>Qualitative Accord</td>
<td>Maybe</td>
</tr>
</tbody>
</table>

…Still Lots of Questions Remain
Computer Aided Design of a Biologically Inspired Organic Photovoltaic

OBJECTIVE:
Simulate light weight, disposable molecular scale devices for power sources and sensing applications.

NEW METHODS FOR:
• Electron Excitation Rates
• Coupling DFT with Monte Carlo
• Molecular Electron Phonon interactions

ACCOMPLISHMENT:
PREDICT TIME CONSTANT FOR SOLAR TO ELECTRIC ENERGY CONVERSION

Motivations: Simulation of Molecular Devices
Where Light Harvesting, Nanomagnetics and Photomagnetism meets

DoD HPCMO Challenge Project:
Predict Charge Transfer Rates & Recombination Rates in
Light Harvesting Molecular Triad
(Baruah & Pederson JCP 125 164706 2006)

Spin-Orbit Coupling and Magnetic Fields allow for Spin Forbidden Transitions
[Pederson and Baruah, Handbook of Magnetism ad Magnetic Materials (2007)]

News from:
Gust et al
Nature, 1 May 2008

Washington Post - 5 May 2008
Weak terrestrial magnetism influences recombination rate and allows for bionavigation
Origin of 4th-Order Anisotropy? (responsible for tunnel splittings)

4th-Order Contributions:
Can have different angular dependence and different scaling with $1/[\text{speed of light}]$

Spin-Orbit Only: Wrong Sign and Wrong Order of Magnitude

Experiment: 5-10 K Electronic spin-orbit: -1 K
A Vibrational Contribution to Magnetic Anisotropies.

• Spin Orbit Interaction Depends on Electric Fields and Kohn-Sham Orbitals

• Electric Fields and Kohn-Sham Orbitals depend on Atomic Positions/ Vibrational Displacements

• Zero Point Energy of a Vibrational Mode Changes as a function of Spin Projection due to spin-orbit-vibron coupling.

• Lowest-Order effect is $1/[\text{Speed of Light}]^8$
SPIN-ORBIT MEDIATED SPIN VIBRON INTERACTION

\[E = \frac{\omega}{2} + \gamma_{zz} M^2 - A + B M^2 \frac{2}{(2 \omega^2)} \]

\[\frac{1}{2} S(S+1)[d/dQ(\gamma_{xx} + \gamma_{yy})] \]

\[d/dQ[\gamma_{zz} - (\gamma_{xx} + \gamma_{yy})/2] \]

Depends on accurate calculation of zero-field splittings as function of atomic position and vibrational frequencies/vectors.
Large Mn-crown contributions in Region identified as field-dependent in IR experiments. (Sushkov et al)

Good agreement between predicted Raman and recent experimental measurements (North et al)
EVOLUTION OF 4TH-ORDER ENHANCEMENT WITH COUPLING TO VIBRONS

\[\Delta(4) = 6K - 1K = 5K \]

EXPERIMENT: 5-10K

NRLMOL+GGA: 6K - 1K = 5K
Transverse 4th-order Anisotropy from spin-orbit-vibron

\[H = D S_z S_z + G S_z S_z S_z S_z + H[S_x S_x S_x S_x + S_y S_y S_y S_{zy}] \]

Translate D,G,H to Stephenson Polynomial Representation

Energies in Kelvin

<table>
<thead>
<tr>
<th></th>
<th>(A_1(4))</th>
<th>(A_2(4))</th>
<th>(B_1(4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt</td>
<td>-8.35</td>
<td>-0.334</td>
<td>-0.43</td>
</tr>
<tr>
<td>Vibrational</td>
<td>-5.58</td>
<td>-0.008</td>
<td>-0.01</td>
</tr>
<tr>
<td>Electronic</td>
<td>0.68</td>
<td>0.0005</td>
<td>-0.002</td>
</tr>
</tbody>
</table>

Additional transverse terms required for tunnel splittings … probably due to some symmetry breaking at 2nd-order
NANOSCALE MOLECULAR MAGNETS
Classical Barrier Hopping

vs

Resonant Tunneling of Magnetization

Barrier changes continuously with B field

Yellow States Aligned with Blue States only if:

\[B = \frac{[\Delta N] D}{2} \]

\[\Delta W = MB - DM^2/2 \]

\[<Sz> (M) \]

AKA: Zero-Field Splittings in atomic physics/radical chemistry
Molecular Magnets (Type 2): \([V_{15}As_6O_{42}(H_2O)] K_6\)

[Kortus, Hellberg, Pederson PRL 86, 3400 (2001)]

Couple NRLMOL and many-spin Heisenberg Hamiltonian

\[H\Phi = \lambda\Phi \]

- Electronic Structure
- Spin Ordering
- Exchange Parameters

Effective Moment vs Temperature

Expt. DFT+ Heisenberg

Diagonalize Many-Spin Hamiltonian for excitation spectra.
MAGNETOMOLECULAR
ANISOTROPY ENERGY

\[\Delta E \sim \frac{1}{4C^4} M^2 \]

\[E = \text{DFT Energy} + (\Theta) \]

\[(\Theta) = C^4 (3.5 \times 10^8) \]

Spin Orbit Energy

ME’s
Type 3: Electronic structure of the molecule-based magnet Mn[N(CN)2]2 from Theory and Experiment

- AF/FM Energy Splitting OK
- Magnetic Anisotropy OK
- Local Moments OK
- L_2/L_3 splitting OK
- Etc.

NRLMOL/VASP

EXPERIMENT
Schrödinger’s Equation with Spin-Orbit Coupling
\[[H + \frac{V}{\hbar} \cdot \mathbf{S}] \psi_{i\sigma}’ = \epsilon_{i\sigma}’ \psi_{i\sigma} > \] \(\tag{6} \)

Second Order Energy Shift (PT)
\[\Delta_2 = \sum_{\sigma'\tau} \sum_{x'z} M_{x'y}^{\sigma \sigma'} S_{x'}^\tau S_{y}^\tau \]
\[M_{x'y}^{\sigma \sigma'} = M_{y'z}^{\sigma' \sigma} = -\sum_{ij} \frac{\langle \phi_{i\sigma} | V_z | \phi_{j\sigma'} > \langle \phi_{j\sigma'} | V_z | \phi_{i\sigma} >}{\epsilon_{i\sigma} - \epsilon_{j\sigma'}} \]
\[S_{x'}^\tau = \langle \chi_{\sigma} | S_x | \chi’_{\sigma} > \] \(\tag{7} \)

Unitary Txn. between Minority/Majority Spinors and Quantized States
\[|\chi_1 > = e^{i\gamma} [\cos \frac{\theta}{2} | \uparrow > + e^{i\beta} \sin \frac{\theta}{2} | \downarrow > | \]
\[|\chi_2 > = e^{-i\gamma} [-e^{-i\beta} \sin \frac{\theta}{2} | \uparrow > + \cos \frac{\theta}{2} | \downarrow > | \] \(\tag{8} \)

For Closed Shell System With Uniaxial Symmetry:
\[\Delta_2 = (M_{xx}^{11} + M_{xx}^{20} + M_{zz}^{12} + M_{zz}^{21}) \frac{\sin^2(\theta)}{4} \]
\[+ (M_{xx}^{11} + M_{xx}^{20} + M_{zz}^{12} + M_{zz}^{21}) \frac{\cos^2(\theta)}{4} \]
\[= A + \frac{\gamma}{2} [\Delta N \cos \theta]^2 = A + \frac{\gamma}{2} <S_z>^2 \] \(\tag{9} \)

2ND ORDER ANISOTROPY BARRIER = $\frac{\gamma}{2} \times S^2$
Barrier vs Majority Filling Rigid Band Model
Mn$_{12}$-Acetate

Addition of Majority Spin Electrons (Fe/Mn sub?) should reduce barrier! (RBM)
SPIN ORBIT COUPLING:
CARTESIAN VS. L.S?

\[
U(r,p,S) = -\frac{1}{2c^2} S \cdot p \times \nabla \Phi(r)
\]

\[
U(r,L,S) = \frac{1}{2c^2} S \cdot L \left(\frac{1}{r} \frac{d\Phi(r)}{dr} \right)
\]

Most (all?) computational methods have used the L.S. representation.
"Slater Determinant" Ensures Wavefunction is Antisymmetric, Normalized and Managable

\[\Phi(\tau_1, \tau_2, \tau_3 \ldots) = \frac{1}{(N!)^{1/2}} \]

\[\phi_a(\tau_1) = \psi_\alpha(\vec{r}_1) \chi(\sigma_1) \]

IFF:

\[\langle \phi_a(\tau) | \phi_b(\tau) \rangle = \delta_{ab} \]
Configuration Interaction

\[|\Psi\rangle = C_0 |\Phi_0\rangle + C_1 |\Phi_1\rangle + C_2 |\Phi_2\rangle + C_3 |\Phi_3\rangle + \ldots \]

\[|\Phi_I\rangle = |\phi_a \phi_b \phi_c \ldots \rangle = \frac{1}{(N!)^{1/2}} \phi_a(\tau_1) \phi_a(\tau_2) \phi_a(\tau_3) \phi_a(\tau_4) \ldots \phi_a(\tau_N) + \phi_b(\tau_1) \phi_b(\tau_2) \phi_b(\tau_3) \phi_b(\tau_4) \ldots \phi_b(\tau_N) + \phi_c(\tau_1) \phi_c(\tau_2) \phi_c(\tau_3) \phi_c(\tau_4) \ldots \phi_c(\tau_N) + \ldots + \phi_N(\tau_1) \phi_N(\tau_2) \phi_N(\tau_3) \phi_N(\tau_4) \ldots \phi_N(\tau_N) \]

\[(\Phi_I | [H - E] | \Psi \rangle = (\Phi_I | [(\Sigma_i f_i + \Sigma_{ij} g_{ij}) - E] | \Psi \rangle = 0 \]

\[\Sigma_J (\Phi_I | [(\Sigma_i f_i + \Sigma_{ij} g_{ij}) - E] | \Phi_J \rangle C_J = 0 \]

Many Electron Secular Eqn.
Multiconfigurational Contributions to Magnetic Anisotropy

\[|\Psi\rangle = C_0 |\Phi_0\rangle + C_1 |\Phi_1\rangle + C_2 |\Phi_2\rangle + C_3 |\Phi_3\rangle + \ldots. \]

\[(\Psi| V_{L.S} |\Psi\rangle = \sum_v C_v^* C_v <\Phi_v| V_{L.S} |\Phi_v\rangle + \sum_{v\mu} C_v^* C_\mu <\Phi_v| V_{L.S} |\Phi_\mu\rangle\]

\[V_{L.S} = \sum_i f_i + \sum_{ij} g_{ij} \]

Interaction between electric fields due to nuclei with each moving electron. (1 electron operator)

Interaction between electric fields due to all electrons with each moving electron. (2 electron operator)

Try: (1) All diagonal terms the same or $|C_n|^2$ very small.

(2) Off diagonal terms small due to zero overlap or small C_n
Excited Configurations of the Mn_{12}-Acetate Molecule

- Mn(3d) - Mn(3d) Majority Excitations: >0.44 eV
- Localized single spin flip: >1.00 eV
- Concerted local moment flips (3 or 4 3d e- at once): ~0.05 eV
- Charge-Transfer: ~6.00 eV (?)

Self Consistency Shows that Local Charges and Moment Size Unchanged
Flipping spins of all d wannier functions on a single site represents a triple/quaduple excitation:

\[|\psi_l(r_1)\alpha_1\psi_m(r_2)\alpha_2\psi_n(r_3)\alpha_3>| \]

\[|\psi_l(r_1)\beta_1\psi_m(r_2)\beta_2\psi_n(r_3)\beta_3>| \]

Direct off-diagonal L.S matrix element vanishes.
Type 3: Prussian-Blue and Analogs -- Magnetic Crystals derived from molecules (Photomagnetism)

Spin-Orbit Induced Energy Splittings

<table>
<thead>
<tr>
<th></th>
<th>NRLMOL</th>
<th>DIRAC</th>
<th>EXPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kr 3d</td>
<td>1.282</td>
<td>1.303</td>
<td></td>
</tr>
<tr>
<td>Kr 3p</td>
<td>7.551</td>
<td>7.883</td>
<td></td>
</tr>
<tr>
<td>Kr 2p</td>
<td>50.97</td>
<td>53.43</td>
<td></td>
</tr>
<tr>
<td>Mn 2p</td>
<td>10.3</td>
<td></td>
<td>11-12</td>
</tr>
<tr>
<td>Ru 2p</td>
<td>121</td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

Mn[N-(CN)₂]₂ Molecular Magnetic Material