Conceptual Physics

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson III September 12, 2017

https://arxiv.org/abs/1711.07445

L. A. Anchordoqui (CUNY)

Conceptual Physics

Table of Contents

Thermodynamics

- What is heat?
- Absolute zero
- So, what is heat?
- How do you get heat from mechanical work?
- How do you transfer heat?
- How much work makes how much heat?
- First law of thermodynamics
- Second law of thermodynamics
- Thermal efficiency

- Subjective sensation (familiar to everyone): when you touch something hot heat goes into your hand and burns it
- We talk of tansfer of heat
 e.g.
 from one object (the radiator) to another (your hand)
- Fact that radiator is hot expressed as "radiator is @ high temperature"
- Heat and work are mutually convertible:

you can do work and get heat or use heat and do work (a car engine or steam engine)

- The catch is region when you go from heat to useful work you never achieve 100% conversion there is always some heat wasted
- Reason for this will be given in today's class

- Thermal energy random motion of molecules in matter sample which constitutes form of kinetic energy
- Temperature 🖙 measure of average kinetic energy/molecule
- Temperature 🖙 generally measured in Celsius or Farenheit
- Relation between Fahrenheit (F) and Celsius (C) scales

$$F = \frac{9}{5}C + 32$$

- It'll be convenient to talk about temperature in absolute scale
- Define absolute zero of temperature to correspond with point where all molecular motion ceases

• For given V of gas replot pressure as function of temperature

- Line extrapolated to $P = 0 \bowtie T = -273^{\circ}$ C for absolute zero
- Make absolute zero $T = 0^{\circ}$ K is freezing water is $T = 273^{\circ}$ K
- Room temperature (68°F) is $20^{\circ}C = (273 + 20)^{\circ}K = 293^{\circ}K$
- We can never reach absolute zero (0°K) but temperatures as low as $5 \times 10^{-10\circ}$ K have been reached

- Heat is *also* kinetic energy ☞ moving energy
- It is kinetic energyof zillions of atoms in material vibrating (in solid) or zapping around (in gas) in a random way going nowehere in particular
- Heat is random energy of atoms and molecules
- This is very different from organized energy
- It is like throwing bag of hot popcorn (organized energy)
 vs. letting them pop around inside popper (random energy)
- Popcorn popping very quickly has a lot of heat energy

- Total heat energy of material depends on two things:
 - how many atomos there are
 - bow energetic each atom is (on average)
- Heat energy Q can be expressed as product of number of atoms N and average randon energy of single atom (ε)

$$Q = N \langle \varepsilon \rangle$$

• *Temperature* I direct measurement of second factor:

average energy of an atom

- High temperature means peppy atoms
- Low temperature means sluggish atoms
- When atoms are so sluggish that they don't move you've hit bottom in temperature scale
 ∞ absoulte zero which is T = -273°C
 ∞ very cold!

- When you push your hand across table (mechanical energy)
- you set molecules at surface of table into random vibration and create heat energy (friction in this case)

- You touch hot poker randly vibrrating atoms on surface of poker bombard molecules of your skin
- these start vibrating ratio causing all kind of neurochemical reactions which tell your brain: "It's hot, let go!"

- Important thing to know here same work W makes the same amout of heat Q always
- Equivalence will be given by example: for each 50 pounds of force which are pushed through one foot you make enough heat to raise T of 1 oz of water by about 1°F
- You can also push with force of 5 lb through 10 ft or with 10 lb through 5 ft as long as force × distance = 50 lb ft
- If you push twice as hard (100 lb) through one foot you make twice heat
- Rremember I Q and W are interconvertible in definite proportions 1,000 ft lb = 1.28 Btu = 1/3 Cal or 1 Btu = 779 ft lb

- This is an expression of conservation of energy
- Energy can cross boundaries of closed system as heat or work
- By system ☞ we mean well-defined group of particles or objects
- Heat = Q real energy transfer across system boundary due solely to T difference between system and environment
- For closed system ☞ first law of thermodynamics reads

$$E_{\rm in} - E_{\rm out} = \Delta E_{\rm system}$$

 $E_{in} = Q_{in} + W_{in}$ is total energy entering system $E_{out} = Q_{out} + W_{out}$ is total energy leaving system $\Delta E_{system} = E_{final} - E_{initial}$ is change in total energy of system

- Each m³ of air at room T has about 3×10^{25} molecules zipping around at random
- Average kinetic energy of each atom in air

$$\langle \varepsilon
angle = rac{3}{2} k_B T$$

Boltzmann constant is $k_B = 1.380 \times 10^{-23} \text{ J}^{\circ} \text{K}^{-1}$

- Joule (J) reason work done by force of 1 N when its point of application moves 1 m in direction of action of force
- Total kinetic energy of all these molecules is about 347 Btu
- Room may be thought of as *reservoir* of thermal energy @ $T = 70^{\circ}$ F (or 295°K)

 Question R Is it possible to extract some of this thermal energy and change it entirely into useful work? (such as turning a generator)

- There is no contradiction here with conservation of energy but it is a fact that no such process is known
- This negative statement 🖙 result of everyday experience
- second law of thermodynamics:

It is impossible to construct an engine that, operating in a cycle, will produce no effect other than extraction of heat from a reservoir and performance of an equivalent amount of work

 Reduced to its simplest terms important characteristics of heat-engine cycles are...

Heat engine

- $Q_1 \bowtie$ heat taken from boiler
- W 🖙 work done
- Q₂ Is heat transferred to condenser
- $Q_1 = W + Q_2$

Refrigerator (or air conditioner)

- Q_2 represented the end of th
- W IS energy pumped in by motor
- Q_1 represented the end of t
- $Q_1 = W + Q_2$

- Using idea of refrigerator r we can show that: violation of 2nd law would make it impossible to construct device which (operating in a cycle) will produce no effect other than transfer of heat from a cooler body to a warmer body
- Since this never happens refor statistical reasons we can then see why second law works
- Proof is as follows:
 - Suppose we had an engine which violates the second law (rejects no heat to the cold reservoir)
 - Then so we could use work liberated by engine to run refrigerator which operates between same two reservoirs and takes heat Q₂ from cold and puts W + Q₂ = Q₁ + Q₂ into hot
 - Net result is transfer of heat from cold to hot reservoir with nothing else

with nothing else occurring

This is impossible
 so engine is impossible

Engine which violates the 2nd law of thermodynamics

Efficiency

$\frac{\text{work out}}{\text{heat extracted from hot reservoir}} = \frac{W}{Q_1}$

• Maximum efficiency

maximum efficiency =
$$\eta_{\text{max}} = \frac{T_1 - T_2}{T_1}$$

 T_1 and T_2 are in °K.

- E.g. III steam engine
 - boiler heating the steam to 400° C (= 670° K)
 - condenser operating at 100°C (= 370°K)
 - Maximum theoretical efficiency

$$\eta_{\rm max} = \frac{670 - 370}{670} \simeq 45\%$$

• Coefficient of performance of refrigerator

 $CoP = \frac{\text{heat removed from cold reservoir}}{\text{work done (electrical energy used)}}$ $= \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2}$

Maximum value

$$\mathrm{CoP}_{\mathrm{max}} = \frac{T_2}{T_1 - T_2}$$

- E.g. 🖙 air conditioner operating between:
 - room at 70°F (= 295°K)
 - outdoors at $85^{\circ}F$ (= $395^{\circ}K$)
 - Maximum theoretical coefficient of performance

$$\text{CoP}_{\text{max}} = \frac{295}{309 - 295} = \frac{295}{14} = 20$$