Conceptual Physics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York

Lesson VI October 3, 2017

[^0]
Table of Contents

(1) How Light Works

- Electromagnetic waves
- Ray optics
- True colors shinning through
- In mid-1800's Faraday observed that
a changing magnetic field creates an electric field
- Magnet is moved inside loop ammeter deflects indicating current is induced in loop
- Magnet is held stationary there is no current induced
- Magnet moved away from loop ammeter deflects indicating induced current is
in opposite direction

- Shortly after Faraday's discovery Maxwell hypothesized that a changing electric field creates a magnetic field
- Putting all these together Maxwell predicted that if you begin changing \vec{E} and \vec{B} in any region of space wave of changing fields propagates at speed of light

$$
c \simeq 3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

outward from region where change first took place

- E.g. moving an electron causes a change in \vec{E} which causes a change in $\vec{B} \ldots$ etc...
- These changing fields zip over to a second electron which was jiggled by \vec{E} field that arrives at microscope time later
- In 1888 Maxwell's prediction passed important test when Hertz generated and detected EM waves in laboratory
- He performed a series of experiments that not only confirmed existence of electromagnetic waves but also verified that they travel at speed of light
- Light itself consists of electric and magnetic fields of this kind
- But what about photons? Good question
- We will deal with this soon But meanwhile... note important fact: we have a means of transporting energy through empty space without transporting matter
- Electromagnetic waves propagate any time an electron is jiggled

- We just learned that light is a wave
- Unlike particles waves behave in funny ways
e.g. they bend around corners
- However smaller wavelength λ is \Rightarrow weaker funny effects are
- λ of light is about 100 times smaller than diameter of human hair!
- For a long time no one noticed "wave nature" of light at all
- This means that for most physics phenomena of everyday life we can safely ignore wave nature of light
- Light waves travel through and around obstacles
whose transverse dimensions are much greater than wavelength and wave nature of light is not readily discerned
- Under these circumstances behavior of light
is described by rays obeying set of geometrical rules
- This model of light is called ray optics
- Ray optics is limit of wave optics
when wavelength is infinitesimally small
- To study more classical aspects of how light travels:
- We will ignore time variations $\left(10^{14} \mathrm{~Hz}\right.$ too fast to notice)
- We will assume light travels through a transparent medium in straight line
- Light can change directions in 3 main ways:
(1) Bouncing off objects (reflection)

2 Entering objects (e.g. glass) and bending (refraction)
(3) Getting caught and heating the object (absorption)

- In other words
- We consider that light travels in form of rays
- Rays are emitted by light sources and can be observed when they reach an optical detector
- We further assume that optical rays propagate in optical media
- To keep things simple we will assume that media are transparent
- Light only travels at $c \simeq 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in vacuum
- In materials it is always slowed down
- Index of refraction how fast light travels through material

$$
\text { index of refraction }=n=\frac{\text { speed of light (in vacuum) }}{\text { speed of light (in medium) }}
$$

- The bigger the n the slower the light travels

Material	Index of Refraction (n)
Vacuum	1.000
Air	1.000277
Water	1.333333
Ice	1.31
Glass	About 1.5
Diamond	2.417

- When ray of light traveling through transparent medium encounters boundary leading into another transparent medium part of energy is reflected and part enters second medium
- Ray that enters second medium is bent at boundary and is said to be refracted
- Incident ray, reflected ray, and refracted ray all lie in same plane

Experiments show angle of reflection θ_{1}^{\prime} equals angle of incidence θ_{1}

$$
\theta_{1}^{\prime}=\theta_{1}
$$

Perpendicular

 to surface

- Angle of refraction depends on:
\{ properties of two media angle of incidence through

$$
\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}=\text { constant }
$$

v_{1}, v_{2} speed of light in first and second medium

- Replacing v_{2} / v_{1} with ratio of refractive indexes n_{1} / n_{2}

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Path of a light ray through a refracting surface is reversible

- Ray travels from point A to point B
- If ray originated at B it would have traveled to left along line $B A$ to reach point A
- Reflected part would have pointed downward and to left in glass

- Light rays can pass through several boundaries
- E.g. you might have a sheet of glass: light ray from n_{1} enter to larger n_{2} and exit n_{2} to smaller n_{1}
- At each boundary refraction law will hold
- At left boundary we have $n_{1} \sin \theta_{\text {in }}=n_{2} \sin \theta_{2}$ when light beam moves from air into glass light slow down entering glass and its path is bent toward normal
- At right boundary we have $n_{2} \sin \theta_{3}=n_{1} \sin \theta_{\text {out }}$ light speeds up entering air and its path bends away from normal

- Geometry tells us (if walls are parallel) that $\theta_{2}=\theta_{3}$
- This means $\sin \theta_{2}=\sin \theta_{3}$
- So $n_{1} \sin \theta_{\text {in }}=n_{2} \sin \theta_{2}=n_{2} \sin \theta_{3}=n_{1} \sin \theta_{\text {out }}$
- This means (compare far left with far right of equation) $\sin \theta_{\text {in }}=\sin \theta_{\text {out }}$ which says $\theta_{\text {in }}=\theta_{\text {out }}$

- What if you have glass with walls that are not parallel?
- This is idea behind lenses
- As light enters it is bent and rays come out different depending on where and how they strike
- Focal length of optical system
measures of how strongly system converges or diverges light
- For optical system in air focal length is distance over which initially collimated (parallel) rays are brought to a focus
- Lens geometry usually looks complicated (and it is!) but for thin lenses result is relatively simple

$$
\frac{1}{\text { object distance }}+\frac{1}{\text { image distance }}=\frac{1}{\text { focal length }}
$$

- How do you know where objects are? How do you see them?
- You deduce direction and distance in complicated ways but arises from angle and intensity of bundle of light rays that make it into your eye
- Eye is adaptive optical system
- Crystalline lens of eye changes its shape to focus light from objects over a great range of distances

Summary of reflection and refraction

Prisms

- Triangular cut of glass produce rainbow of color from sun light
- Narrow beam of white light
incident at non-normal angle on one surface of glass is refracted
- Different colors of light have different speeds in glass
- Separated rays emerge from other interface
spread in familiar rainbow pattern

Light as composite of colors

- Newton placed prism in path of narrow beam of sunlight
- As expected beam was spread over band of angles
- He inserted second prism and allowed spread beam to enter it
- When arranged carefully
second prism reconstituted original beam in original direction
- He labeled the different colors
with continuously varying parameter that had the units of time
- λ and \mathcal{T} characterizing given color connected by speed of light

$$
\lambda / \mathcal{T}=c / n
$$

[^0]: https://arxiv.org/abs/1711.07445

