Modern Physics

Luis A. Anchordoqui

Department of Physics and Astronomy
Lehman College, City University of New York

Lesson VII
October 5, 2023

Table of Contents

(1) Particle Decay and Collisions

- Two-body scattering
- Threshold energy
- Transverse mass, rapidity, and pseudorapidity

- In high energy physics cross sections and decay rates are written using kinematic variables that are relativistic invariants
- For any "two particle to two particle" process $a b \rightarrow c d$ we have at our disposal 4-momenta associated with each particle
- Invariant variables are six scalar products:

$$
p_{a} \cdot p_{b}, p_{a} \cdot p_{c}, p_{a} \cdot p_{d}, p_{b} \cdot p_{c}, p_{b} \cdot p_{d}, p_{c} \cdot p_{d}
$$

- Rather than these use Mandelstam variables

$$
s=c^{2}\left(\boldsymbol{p}_{a}+\boldsymbol{p}_{b}\right)^{2} \quad t=c^{2}\left(\boldsymbol{p}_{a}-\boldsymbol{p}_{c}\right)^{2} \quad u=c^{2}\left(\boldsymbol{p}_{a}-\boldsymbol{p}_{d}\right)^{2}
$$

- Because $\boldsymbol{p}_{i}^{2}=m_{i}^{2} c^{2}$ (with $i=a, b, c, d$) and $\boldsymbol{p}_{a}+\boldsymbol{p}_{b}=\boldsymbol{p}_{c}+\boldsymbol{p}_{d}$

$$
s+t+u=\sum_{i} m_{i}^{2} c^{4}+c^{2}\left[2 \boldsymbol{p}_{a}^{2}+2 \boldsymbol{p}_{a} \cdot\left(\boldsymbol{p}_{b}-\boldsymbol{p}_{c}-\boldsymbol{p}_{d}\right)\right]=\sum_{i} m_{i}^{2} c^{4}
$$

Only 2 of 3 variables are independent

Møller scattering

Møller scattering scattering in CM frame

4-momenta are

$$
\boldsymbol{p}_{a}=\left(E / c, \vec{p}_{i}\right), \boldsymbol{p}_{b}=\left(E / c,-\vec{p}_{i}\right), \boldsymbol{p}_{c}=\left(E / c, \vec{p}_{f}\right), \boldsymbol{p}_{d}=\left(E / c,-\vec{p}_{f}\right)
$$

$$
E=\left(p^{2} c^{2}+m_{e}^{2} c^{4}\right)^{1 / 2} \text { mass-shell condition }
$$

$$
s=4\left(p^{2} c^{2}+m_{e}^{2} c^{4}\right)
$$

$$
t=-c^{2}\left(\vec{p}_{i}-\vec{p}_{f}\right)^{2}=-2 p^{2} c^{2}\left(1-\cos \theta^{*}\right)
$$

$$
u=-c^{2}\left(\vec{p}_{i}+\vec{p}_{f}\right)^{2}=-2 p^{2} c^{2}\left(1+\cos \theta^{*}\right)
$$

θ^{*} scattering angle $\Rightarrow \vec{p}_{i} \cdot \vec{p}_{f}=p^{2} \cos \theta^{*}$

- As $p^{2} \geq 0$ 的 $s \geq 4 c^{4}$
- Since $-1 \leq \cos \theta^{*} \leq 1$ and $u \leq 0$
- $t=0(u=0)$ corresponds to forward (backward) scattering
- In CM frame for reaction $a b \rightarrow c d$
- $s \equiv$ square CM energy $E_{\mathrm{CM}}^{2} E_{\mathrm{CM}}=E_{a}+E_{b}$
- $t \equiv$ square of momentum transfer between particles a and c
- $u \equiv$ square of momentum transfer between particles a and d (not independent variable)
- This is called s-channel process
- In s-channel s is positive while t and u are negatives
- The process is elastic if $m_{a}=m_{c}$ and $m_{b}=m_{d}$

Take a closer look at general process $a b \rightarrow c d$
CM frame is defined by $\vec{p}_{a}+\vec{p}_{b}=\overrightarrow{0}=\vec{p}_{c}+\vec{p}_{d}$
4-momenta are
$\boldsymbol{p}_{a}=\left(E_{a}^{*} / c, \vec{p}_{i}\right), \boldsymbol{p}_{b}=\left(E_{b}^{*} / c,-\vec{p}_{i}\right), \boldsymbol{p}_{c}=\left(E_{c}^{*} / c, \vec{p}_{f}\right), \boldsymbol{p}_{d}=\left(E_{d}^{*} / c,-\vec{p}_{f}\right)$
On-shell conditions lead to

$$
\begin{array}{ll}
E_{a}^{*}=\sqrt{\vec{p}_{c}^{2} c^{2}+m_{c}^{2} c^{4}} & E_{b}^{*}=\sqrt{\vec{p}_{c}^{2} c^{2}+m_{c}^{2} c^{4}} \\
E_{c}^{*}=\sqrt{\vec{p}_{f}^{2} c^{2}+m_{c}^{2} c^{4}} & E_{d}^{*}=\sqrt{\vec{p}_{c}^{2} c^{2}+m_{c}^{2} c^{4}}
\end{array}
$$

After some algebra ...
we express $E_{a, b, c, d}^{*},\left|\vec{p}_{i}\right|,\left|\vec{p}_{f}\right|$ in terms of $s=c^{2}\left(\boldsymbol{p}_{a}+p_{b}\right)^{2}=\left(E_{a}^{*}+E_{b}^{*}\right)^{2}$

$$
\begin{aligned}
& E_{a, c}^{*}=\frac{1}{2 \sqrt{s}}\left(s+m_{a, c}^{2} c^{4}-m_{b, d}^{2} c^{4}\right) \quad E_{b, d}^{*}=\frac{1}{2 \sqrt{s}}\left(s+m_{b, d}^{2} c^{4}-m_{a, c}^{2} c^{4}\right) \\
& p_{i}^{2} c^{2}=E_{a}^{* 2}-m_{a}^{2} c^{4}=\frac{1}{4 s} \lambda\left(s, m_{a}^{2} c^{4}, m_{b}^{2} c^{4}\right) \quad p_{f}^{2} c^{2}=\frac{1}{4 s} \lambda\left(s, m_{c}^{2} c^{4}, m_{d}^{2} c^{4}\right)
\end{aligned}
$$

Källen (triangle) function $\lambda(a, b, c)=a^{2}+b^{2}+c^{2}-2 a b-2 a c-2 b c$

$$
\begin{aligned}
\lambda(a, b, c) & =a^{2}+b^{2}+c^{2}-2 a b-2 a c-2 b c \\
& =\left[a-(\sqrt{b}+\sqrt{c})^{2}\right]\left[a-(\sqrt{b}-\sqrt{c})^{2}\right] \\
& =a^{2}-2 a(b+c)+(b-c)^{2}
\end{aligned}
$$

- Properties of Källen function
- λ is symmetric under $a \leftrightarrow b \leftrightarrow c$
- $\lambda(a, b, c) \rightarrow a^{2}$, for $a \gg b, c$
- This enables to determine properties of scattering processes
- High energy limit $s \gg m_{a, b, c, d}^{2} c^{4}$
$E_{a, b, c, d}^{*},\left|\vec{p}_{i}\right|$, and $\left|\vec{p}_{f}\right|$ simplify because of asymptotic behavior of λ

$$
E_{a}^{*}=E_{b}^{*}=E_{c}^{*}=E_{d}^{*}=c\left|\vec{p}_{i}\right|=c\left|\vec{p}_{f}\right|=\sqrt{s} / 2
$$

In CM frame scattering angle defined by

$$
\vec{p}_{i} \cdot \vec{p}_{f}=\left|\vec{p}_{i}\right| \cdot\left|\vec{p}_{f}\right| \cos \theta^{*}
$$

using

$$
\begin{aligned}
& \boldsymbol{p}_{a} \cdot \boldsymbol{p}_{c}=E_{a}^{*} E_{c}^{*} / c^{2}-\left|\vec{p}_{a}^{*}\right|\left|\vec{p}_{c}^{*}\right| \cos \theta^{*} \\
& \text { and } \\
& =c^{2}\left(\boldsymbol{p}_{a}-\boldsymbol{p}_{c}\right)^{2}=\left(m_{a}^{2}+m_{c}^{2}\right) c^{4}-2 c^{2} \boldsymbol{p}_{a} \cdot p_{c} \\
& =\left(m_{a}^{2}+m_{c}^{2}\right) c^{4}-2 E_{a} E_{c}+2 c^{2} \vec{p}_{a} \cdot \vec{p}_{c} \\
& =\left(m_{a}^{2}+m_{c}^{2}\right) c^{4}-2 E_{a} E_{c}+2 c^{2} p_{i} p_{f} \cos \theta^{*}=c^{2}\left(p_{b}-p_{d}\right)^{2} \\
& \text { we write scattering angle as function of } s, t, m_{a, b, c, d}^{2} \\
& \cos \theta^{*}=\frac{s(t-u)+\left(m_{a}^{2}-m_{b}^{2}\right)\left(m_{c}^{2}-m_{d}^{2}\right) c^{8}}{\sqrt{\lambda\left(s, m_{a}^{2} c^{4}, m_{b}^{2} c^{4}\right)} \sqrt{\lambda\left(s, m_{c}^{2} c^{4}, m_{d}^{2} c^{4}\right)}}
\end{aligned}
$$

This means that $2 \rightarrow 2$ scattering is described by two variables:
$\left(\sqrt{s}, \theta^{*}\right)$ or else (\sqrt{s}, t)

- One way to create exotic heavy particle X
is to arrange collision between two lighter particles

$$
a+b \rightarrow X+d+e+\cdots+g
$$

d, e, \ldots, g are other possible particles produced in reaction

- In all such cases theoretical minimum expenditure of energy occurs when all end-products are mutually at rest
- Consider projectile a and stationary target b with p_{a} and p_{b}
- If emergent particles have 4-momenta $p_{i}(i=1,2, \cdots)$

$$
\begin{equation*}
p_{a}+p_{b}=p_{X}+p_{d}+p_{e} \cdots+p_{g}=\sum_{i} p_{i} \tag{1}
\end{equation*}
$$

Interlude

- Consider two particles with p_{a} and p_{b} and relative speed $v_{a b}$ ($v_{a b}$ speed of one in rest-frame of the other)

$$
\begin{equation*}
\boldsymbol{p}_{a} \cdot \boldsymbol{p}_{b}=m_{a} E_{b}=m_{b} E_{a}=c^{2} \gamma\left(v_{a b}\right) m_{a} m_{b} \tag{2}
\end{equation*}
$$

m_{a} rest-mass of first particle
E_{b} energy of second particle in rest-frame of first

- To verify (2)

evaluate $p_{a} \cdot p_{b}$ in rest-frame of either particle
- Squaring (1)

$$
\begin{equation*}
m_{a}^{2}+m_{b}^{2}+\frac{2 m_{b} E_{a}}{c^{2}}=\sum_{i} m_{i}^{2}+2 \sum_{(i<j)} m_{i} m_{j} \gamma\left(v_{i j}\right) \tag{3}
\end{equation*}
$$

- All the masses in (3) are fixed
- Only variable on I.h.s. is E_{a} energy of projectile relative to lab
- Minimum of r.h.s. when all Lorentz factors are unity there is no relative motion between any of the outgoing particles
- Threshold energy of projectile

$$
\begin{equation*}
E_{a}=\frac{c^{2}}{2 m_{b}}\left[\left(\sum_{i} m_{i}\right)^{2}-m_{a}^{2}-m_{b}^{2}\right] \tag{4}
\end{equation*}
$$

- (4) also applies if projectile is $\underbrace{\gamma}$ getting absorbed in collision photon

Example

$$
\begin{gathered}
p p \rightarrow p p \pi^{0} \\
E_{p}-m_{p} c^{2}=c^{2}\left(2 m_{\pi}+\frac{m_{\pi}^{2}}{2 m_{p}}\right)
\end{gathered}
$$

- Efficiency k ratio of π rest energy to p kinetic energy

$$
k=m_{\pi}\left(2 m_{\pi}+\frac{m_{\pi}^{2}}{2 m_{p}}\right)^{-1}=\frac{2}{4+\left(m_{\pi} / m_{p}\right)}
$$

- Efficiency always less than 50%
- For $p p \rightarrow p p \pi^{0} m_{\pi} / m_{p} \approx 0.14$ and $k \approx 48 \%$
- If $m_{X} \gg m_{e}, m_{g}, \cdots$

$$
k \approx 2 m_{b} / m_{X}
$$

Example

- $e^{+} e^{-} \rightarrow J / \psi$ 有 $k \sim 1850$
- Colliding beams to the rescue almost 100\% efficiency
- Both target and projectile particles are accelerated to high energy
- No "waste" kinetic energy need be present after collision since there was no net momentum going in
- For $m_{b}=m_{e} \approx 0.5 \mathrm{MeV} / c^{2}$ and $m_{J / \psi} \approx 3100 \mathrm{MeV} / c$

$$
E_{\mathrm{CM}} \approx m_{J / \psi} c^{2} \approx 3100 \mathrm{MeV}
$$

whereas

$$
E_{\mathrm{lab}} \approx \frac{m_{J / \psi}^{2} c^{2}}{2 m_{e}}=9600000 \mathrm{MeV}
$$

- Introduce invariants of common use in collider physics which derive from the fact that velocities of colliding particles are along beam axis
- Invariants with respect to observers who are Lorentz boosted with respect to the z-axis
- What is special about these observers?
- Accelerators collide particles
whose momentum is not equal and opposite but whose directions are down a common beam z-axis
- CM frame is moving at some velocity down z-axis so you will often wish to study physics in this frame
- However if you are stuck in lab frame
you are boosted with some velocity v_{z} with respect to this frame and the direction of the boost is parallel to the beam axis

Rapidity

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z} c}{E-p_{z} c}\right)
$$

Why would you want to define such a quantity?

- Suppose we are dealing with high energy product of a collision (highly relativistic regime)
- If particle is directed in $x-y \perp$ to beam direction

$$
p_{z} \text { will be small } y \rightarrow 0
$$

- If particle is directed down beam axis say in $+z$ direction

$$
E \simeq p_{z} \mathcal{C} y \rightarrow+\infty
$$

- Similarly if particle is travelling down beam axis in $-z$ direction

$$
E \simeq-p_{z} c y \rightarrow-\infty
$$

- Rapidity related to: angle between $x-y$ plane and direction of secondary product

Transverse mass

- E and p_{z} can separately be expressed as functions of rapidity
- Rewrite energy-momentum-mass relation

$$
\begin{equation*}
E^{2}=M_{T}^{2} c^{4}+p_{z}^{2} c^{2} \tag{5}
\end{equation*}
$$

in terms of transverse mass

$$
M_{T}^{2} c^{4}=p_{x}^{2} c^{2}+p_{y}^{2} c^{2}+m^{2} c^{4}
$$

- x and y components of momentum and particle mass are all invariant with respect to boosts parallel to z-axis
- Rewriting (5) as $\left(\frac{E}{M_{T} c^{2}}\right)^{2}-\left(\frac{p_{z}}{M_{T} c}\right)^{2}=1$ and comparing with $\cosh ^{2} y-\sinh ^{2} y=1$

$$
p \equiv\left(E / c=M_{T} c \cosh y, p_{x}, p_{y}, p_{z}=M_{T} c \sinh y\right)
$$

- Upon Lorentz boost parallel to beam axis with velocity $v=\beta c$ equation for transformation on rapidity is a particularly simple one

$$
y^{\prime}=y-\tanh ^{-1} \beta
$$

- Assume two secondaries have rapidities y_{1} and y_{2} measured in S
- Another observer moving along z-axis in S^{\prime} measures y_{1}^{\prime} and y_{2}^{\prime}
- Difference between rapidities

$$
y_{1}^{\prime}-y_{2}^{\prime}=y_{1}-\tanh ^{-1} \beta-y_{2}+\tanh ^{-1} \beta=y_{1}-y_{2}
$$

is invariant with respect to Lorentz boosts along z-axis

- Key variable in accelerator physics:

Histograms binned in rapidity separation of events are undistorted by CM frame boosts parallel to beam axis as dependent variable is invariant wrt sub-class of Lorentz boosts

- Rapidity can be hard to measure for highly relativistic particles need to measure both energy and total momentum
- @ high rapidities where z component of momentum is large beam pipe can prevent measuring momentum precisely
- Define quantity that is almost same as rapidity
but it is much easier to measure

$$
y \simeq \eta=-\ln \left(\tan \frac{\theta}{2}\right)
$$

θ angle made by particle trajectory with beam pipe

- Pseudorapidity η is particularly useful in hadron colliders composite nature of colliding protons means that interactions rarely have their CM frame coincident with detector rest frame

