5. The nucleus of ${ }^{8} \mathrm{Be}$, which consists of 4 protons and 4 neutrons, is very unstable and spontaneously breaks into two alpha particles (helium nuclei, each consisting of 2 protons and 2 neutrons). (i) What is the force between the two alpha particles when they are $5.00 \times 10^{-15} \mathrm{~m}$ apart, and (ii) what will be the magnitude of the acceleration of the alpha particles due to this force? Note that the mass of an alpha particle is $4.0026 u$.

Solution (i) Since the charges have opposite signs, the force is repulsive. The magnitude of the force is given by Coulombs law, $F=\frac{1}{4 \pi \epsilon_{0}} \frac{4 e^{2}}{r^{2}}=8.99 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \frac{4\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(5.00 \times 10^{-15} \mathrm{~m}\right)^{2}}=36.8 \mathrm{~N}$. (ii) The mass of an alpha particle is $m=4.0026 u$, where $u=1.66 \times 10^{-27} \mathrm{~kg}$ is the unified mass unit. Applying Newton's 2nd law, the acceleration of either alpha particle is then $a=\frac{F}{m}=\frac{36.8 \mathrm{~N}}{4.0026 \cdot 1.66 \times 10^{-27} \mathrm{~kg}}=5.54 \times 10^{27} \mathrm{~m} / \mathrm{s}^{2}$. Of course from Newton's 3rd law, both alpha particles experience the same force, and hence undergo the same acceleration.

