
Prof. Anchordoqui

Problems set # 12 Physics 303 November 25 and December 2, 2014

1. A spherical black body of radius r at absolute temperature T is surrounded by a thin spher-

ical and concentric shell of radius R, black on both sides. Show that the factor by which this

radiation shield reduces the rate of cooling of the body (consider space between spheres evacuated,

with no thermal conduction losses) is given by the following expression aR2/(R2 + br2), and find

the numerical coefficients a and b.

Solution: Let the surrounding temperature be T0. The rate of energy loss of the black body

before being surrounded by the spherical shell is Q = 4πr2σ(T 4 − T 4
0 ). The energy loss per unit

time by the black body after being surrounded by the shell is Q′ = 4πr2σ(T 4 − T 4
1 ), where T1 is

the temperature of the shell. The energy loss per unit time by the shell is Q′′ = 4πR2σ(T 4
1 − T 4

0 ).

Since Q′′ = Q′, we obtain T 4
1 = (r2T 4 +R2T 4

0 )/(R2 + r2). Hence, Q′/Q = R2/(R2 + r2), i.e. a = 1

and b = 1.

2. The solar constant (radiant flux at the surface of the earth) is about 0.1 W/cm2. Find the

temperature of the sun assuming that it is a black body.

Solution: The radiant flux density of the sun is J = σT 4, where σ = 5.7×10−8 W/m2K4. Thus,

σT 4(R�/d⊕−�)2 = 0.1, where R� = 7.0×105 km is the radius of the sun and d⊕−� = 1.5×108 km

is the distance between the earth and the sun. Hence, T =

[
0.1
σ

(
d⊕−�
R�

)2
]1/4

≈ 6× 103 K.

3. Estimate the temperature of the sun’s surface given that the sun subtends an angle θ as seen

from the earth’s and the earth’s surface temperature is T0. (Assume the earth’s surface temperature

is uniform, and that the earth reflects a fraction, ε of the solar radiation incident upon it.) Use

your result to obtain a rough estimate of the sun’s surface temperature by putting in “reasonable”

values for all parameters.

Solution: The earth radiates heat while it is absorbing heat from the solar radiation. Assume

that the sun can be taken as a black body. Because of reflection, th earth is a greybody of emis-

sivity 1 − ε. The equilibrium condition is (1 − ε)J�4πR2
�πR

2
⊕/(4πd

2
⊕−�) = J⊕4πR2

⊕, where J�
and J⊕ are the radiated energy flux densities on the surfaces of the sun and the earth respec-

tively, R�, R⊕, and d⊕−� are the radius of the sun, the radius of the earth, and the distance

between the earth and the sun, respectively. Obviously R�/d⊕−� = tan(θ/2). From the Stefan-

Boltzmann law, we have: (i) for the sun J� = σT 4
� and for the earth J⊕ = (1− ε)σT 4

⊕. Therefore

T� = T⊕
(

2d⊕−�
R�

)1/2
≈ 300 K

(
21.5×108 km

7×105 km

)1/2
≈ 6000 K.

4. Consider an idealized sun and earth, both black bodies, in otherwise empty space. The sun

is at a temperature of T⊕ = 6000 K and heat transfer by oceans and atmosphere on the earth is

so effective as to keep the earth surface uniform. The radius of the earth is R⊕ = 6× 108 cm, the



radius of the sun is R� = 7 × 1010 cm, and the earth radius distance is d⊕−� = 1.5 × 1013 cm.

(i) Find the temperature of the earth. (ii) Find the radiation force on the earth. (iii) Compare

these results with those for an interplanetary “chondrule” in the form of a spherical, perfectly con-

ducting black-body with a radius of R = 0.1 cm, moving in a circular orbit around the sun with a

radius equal to the earth-sun distance d⊕−�.

Solution: (i) The radiation received per second by the earth from the sun is approximately

q⊕� = 4πR2
�(σT 4

�)
πR2
⊕

4πd2
⊕−�

. The radiation per second from the earth itself is q⊕ = 4πR2
⊕σT

4
⊕.

Neglecting the earth’s own heat sources, energy conservation leads to the relation q⊕ = q⊕�, so

that T 4
⊕ =

R2
⊕

4d2
⊕−�

T 4
�, that is T⊕ =

√
R�/(2d⊕−�)T� = 290 K = 17◦ C. (ii) The angles subtended

by the earth in respect of the sun and by the sun in respect to the earth are very small, so the

radiation force is F⊕ = q⊕
c = 1

c

R2
�

d2
⊕−�

πR2
⊕σT

4
� = 6 × 108 N. (iii) As R⊕ → R, T = T⊕ = 17◦ C,

F = (R/R⊕)2F⊕ = 1.7× 10−11 N.

5. Making reasonable assumptions, estimate the surface temperature of Neptune. Neglect any

possible internal source of heat. What assumptions have you made about the planet’s surface

and/or atmosphere? [Hint: Astronomical data which may be helpful: radius of sun = 7× 105 km;

radius of Neptune = 2.2 × 104 km; mean sun-earth distance = 1.5 × 108 km; mean sun-Neptune

distance = 4.5 × 109 km; temperature of the sun = 6000 K; rate at which sun’s radiation reaches

earth = 1.4 kW/m2; Stefan-Boltzmann constant = 5.7× 10−8 W/m2K4.]

Solution: We assume that the surface of Neptune and the thermodynamics of its atmosphere are

similar to those of the earth. The radiation flux on the earth’s surface is J⊕ = 4πR2
⊕σT

4
⊕/(4πd

2
⊕−�).

The equilibrium condition on Neptune’s surface gives
4πR2

�σT
4
�πR

2
N

4πd2
N�

= σT 4
N4πR2

N. Hence d2
⊕̇J⊕/d

2
N� =

4σT 4
N, and we have TN =

(
d2
⊕�J⊕

4σd2
N�

)1/4

≈ 52 K.

6. Consider a photon gas enclosed in a volume V and in equilibrium at temperature T . The

photon is a massless particle, so that ε = pc. (i) What is the chemical potential of the gas?

(ii) Determine how the number of photons in the volume depends upon the temperature. (iii) One

may write the energy density in the form

U

V
=

∫ ∞
0

ρ(ω)dω.

Determine the form of ρ(ω), the spectral density of the energy. (iv) What is the temperature

dependence of the energy U?

Solution: (i) The chemical potential of the photon gas is zero. Since the number of photons is

not conserved at a given temperature and volume, the average photon number is determined by

the expression
(
∂F
∂N

)
T,V

= 0, then µ =
(
∂F
∂N

)
T,V

= 0. (ii) The density of states is 8πV PdP/h3, or

V ω2dω/π2c3. Then the number of photons is N =
∫ V
π2c3

ω2 1
eh̄ω/kT−1

dω = V
π2c3

(
kT
h̄

)3 ∫∞
0

α2 dα
eα−1 ∝ T

3.

(iii), (iv) U
V =

∫ ω2

π2c3
h̄ω

eh̄ω/kT−1dω = (kT )4

π2c3h̄3

∫ ξ3dξ
eξ−1

. Hence, ρ(ω) = h̄
π2c3

ω3

eh̄ω/kT−1
, and U ∝ T 4.



7. Consider a gas of non-interacting, non-relativistic, identical bosons. Explain whether and

why the Bose-Einstein condensation effect that applies to a three-dimensional gas applies also to a

two -dimensional gas and to a one-dimensional gas.

Solution: Roughly speaking, the Bose-Einstein condensation occurs when µ = 0. For a two

dimensional gas it follows that N = 2πmA
h2

∫∞
0

dε
e(ε−µ)/kT−1

= 2πmA
h2

∫∞
0

(∑∞
l=1 e

−l(ε−µ)/kT
)
dε =

2πmA
h2 kT

∑∞
l=1

1
l e
lµ/kT . If µ = 0, the above expression diverges. Hence µ 6= 0 and Bose-Einstein

condensation does not occur. For a one-dimensional gas we have N =
√

2mL
2h

∫∞
0

dε√
ε(e(ε−µ)/kT−1)

. If

µ = 0, the integral diverges. Again, Bose-Einstein condenstaion does not occur.

8. The universe is pervaded by 3K black body radiation. In a simple view, this radiation arose

from the adiabatic expansion of a much hotter photon cloud which was produced during the big

bang. (i) Why is the recent expansion adiabatic rather than, for example, isothermal? (ii) Write

down an integral which determines how many photons per cubic centimeter are contained in this

cloud of radiation. Estimate the result within an order of magnitude. (iii) Show that a freely

expanding blackbody radiation remains described by the Planck formula, but with a temperature

that drops in proportion to the scale expansion. (iv) If in the next 1010 yr the volume of the

universe increases by a factor of 2, what then will be the temperature of the blackbody radiation.

Solution: (i) The photon cloud is an isolated system, so its expansion is adiabatic. (ii) In

1964, Arno Penzias and Robert Wilson were experiencing difficulty with what they assumed to be

background noise, or “static,” in their radio telescope. Eventually, they became convinced that it

was real and that it was coming from outside the Galaxy. They made precise measurements at

wavelength λ = 7.35 cm, in the microwave region of the electromagnetic spectrum. The intensity

of this radiation was found initially not to vary by day or night or time of the year, nor to depend

on the direction. It came from all directions in the universe with equal intensity, to a precision

of better than 1%. It could only be concluded that this radiation came from the universe as a

whole. The intensity of this cosmic microwave background (CMB) as measured at λ = 7.35 cm

corresponds to a blackbody radiation at a temperature of about 3 K. When radiation at other

wavelengths was measured, the intensities were found to fall on a blackbody curve, corresponding

to a temperature of 2.725 K. The CMB provides strong evidence in support of the Big Bang, and

gives us information about conditions in the very early universe. To understand why, let us look

at what a Big Bang might have been like. The temperature must have been extremely high at the

start, so high that there could not have been any atoms in the very early stages of the universe.

Instead the universe would have consisted solely of radiation (photons) and a plasma of charged

electrons and other elementary particles. The universe would have been opaque - the photons in a

sense “trapped,” travelling very short distances before being scattered again, primarily by electrons.

Indeed, the details of the CMB provide strong evidence that matter and radiation were once in

thermal equilibrium at very high temperature. As the universe expanded, the energy spread out over

an increasingly larger volume and the temperature dropped. Only when the temperature had fallen

to about 3,000 K was the universe cool enough to allow the combination of nuclei and electrons

into atoms. (In the astrophysical literature this is usually called “recombination,” a singularly



inappropriate term, for at the time we were considering the nuclei and electrons had never in the

previous history of the universe been combined into atoms!) The sudden disappearance of electrons

broke the thermal contact between radiation and matter, and the radiation continued thereafter to

expand freely. At the moment this happened, the energy in the radiation field at various wavelengths

was governed by the conditions of the thermal equilibrium, and was therefore given by the Planck

blackbody formula with a temperature equal to that of the matter ∼ 3, 000 K. In particular, the

typical photon wavelength would have been about one micron, and the average distance between

photons would have been roughly equal to this typical wavelength. What has happened to the

photons since then? Individual photons would not be created or destroyed, so the average distance

between photons would simply increase in proportion to the size of the universe, i.e., in proportion

to the average distance between typical galaxies. The Planck distribution that gives the energy

du of a blackbody radiation per unit volume, in a narrow range of wavelengths from λ to λ + dλ,

is du = 8πhc
λ5 dλ 1

ehc/λkT−1
. For long wavelengths, the denominator in the Planck distribution may

be approximated by ehc/λkT − 1 ' hc/λkT. Hence, in this wavelength region, du = 8πkT
λ4 dλ . This

is the Rayleigh-Jeans formula. If this formula held down to arbitrarily small wavelengths, du/dλ

would become infinite for λ → 0, and the total energy density in the blackbody radiation would

be infinite. Fortunately, as we saw before, the Planck formula for du reaches a maximum at a

wavelength λ = 0.2014052hc/kT and then falls steeply off for decreasing wavelengths. The total

energy density in the blackbody radiation is u =
∫∞

0
8πhc
λ5 dλ 1

ehc/λkT−1
. Integrals of this sort can

be looked up in standard tables of definite integrals; the result gives the Stefan-Boltzmann law

u = 8π5(kT )4

15(hc)3 = 7.56464 × 10−15 (T/K)4erg/cm3 . (Recall that 1 J ≡ 107 erg = 6.24 × 1018 eV.)

We can easily interpret the Planck distribution in terms of quanta of light or photons. Each

photon has an energy E = hc/λ. Hence the number dn of photons per unit volume in blackbody

radiation in a narrow range of wavelengths from λ to λ + dλ is dn = du
hc/λ = 8π

λ4 dλ
1

ehc/λkT−1
.

Then the total number of photons per unit volume is n =
∫∞

0 dn = 8π
(
kT
hc

)3 ∫∞
0

x2 dx
ex−1 , where

x = hc/(λkT ). The integral cannot be expressed in terms of elementary functions, but it can

be expressed as an infinite series
∫∞
0

x2 dx
ex−1 = 2

∑∞
j=1

1
j3
≈ 2.4. Therefore, the number photon

density is n = 60.42198
(
kT
hc

)3
= 20.28

(
T
K

)3
photons cm−3 ≈ 400 photons cm−3, and the average

photon energy is 〈Eγ〉 = u/n = 3.73 × 10−16 (T/K) erg . (iii) Now, let’s consider what happens

to blackbody radiation in an expanding universe. Suppose the size of the universe changes by a

factor f , for example, if it doubles in size, then f = 2. As predicted by the Doppler effect, the

wavelengths will change in proportion to the size of the universe to a new value λ′ = fλ. After

the expansion, the energy density du′ in the new wavelength range λ′ to λ′ + dλ′ is less than the

original energy density du in the old wavelength range λ+ dλ, for two different reasons: (a) Since

the volume of the universe has increased by a factor of f3, as long as no photons have been created

or destroyed, the numbers of photons per unit volume has decreased by a factor of 1/f3. (b) The

energy of each photon is inversely proportional to its wavelength, and therefore is decreased by a

factor of 1/f . It follows that the energy density is decreased by an overall factor 1/f3×1/f = 1/f4:

du′ = 1
f4 du = 8πhc

λ5f4 dλ
1

ehc/λkT−1
. If we rewrite the previous equation in terms of the new wavelengths

λ′, it becomes du′ = 8πhc
λ′5

dλ′ 1
ehcf/λ

′kT−1
, which is exactly the same as the old formula for du in

terms of λ and dλ, except that T has been replaced by a new temperature T ′ = T/f . Therefore,

we conclude that freely expanding blackbody radiation remains described by the Planck formula,



but with a temperature that drops in inverse proportion to the scale of expansion. (iv) The energy

density of black body radiation is u = aT 4, so that the total energy U ∝ V T 4. From the first

law TdS = dU + PdV , we have T
(
∂S
∂T

)
V

=
(
∂U
∂T

)
V
∝ V T 3. Hence, S = V T 3× constant. For a

reversible adiabatic expansion, the entropy S remains unchanged. Thus, when V doubles T will

decrease by a factor (2)−1/3. So after another 1010 yr, the temperature of black body radiation will

become T = 3 K/21/3.


