2 – Motion in one dimension

In Lecture 1 we have seen that each vector (say, position vector **r**) in a three-dimensional space can be represented by its three components (r_x , r_y , r_z) that can be considered independently of each other. In this Lecture we will concentrate on the behavior of one of these components, say $r_x \equiv x$. Other components either do not exist (as is the case for the motion in one dimension) or are ignored.

Let us repeat the definitions for the x-components of the velocity and acceleration

$$v_x = \frac{\Delta x}{\Delta t}, \qquad \Delta x = x_2 - x_1, \qquad \Delta t = t_2 - t_1$$

 $a_x = \frac{\Delta v_x}{\Delta t}$

Here 1 is the initial state and 2 is a final state. Note that v_x and a_x can be both positive and negative

Graphical representation of motion

Coordinate x depending on time t, that is, x(t) can be represented graphically. Velocity v_x can be interpreted geometrically as the <u>slope</u> of the curve x(t).

The average velocity is defined geometrically with the help of the <u>secant</u> (cutting) straight line that cuts the x(t) curve in two points, 1 and 2.

The instantaneous velocity defines a straight line that is <u>tangential</u> to the curve x(t) at a given point (shown on the right of the graph).

Motion with constant velocity

Motion with a constant velocity v_x is geometrically described as a straight line (see the graph on the left). Its analytical representation is

 $x = x_0 + v_r t$, $v_r = \text{const}$ $x_1 = x_0 + v_r t_1$, $x_2 = x_0 + v_r t_2$ Considering two points, 1 and 2, one can write $\Delta x = x_2 - x_1 = v_r(t_2 - t_1) = v_r \Delta t$ V_x X Vx $x = x_0 + v_x t$, $v_x = \text{const}$ $\Delta \mathbf{X} = \mathbf{V}_{\mathbf{v}} \Delta \mathbf{t}$ **X**₀ Δt t₁ t_2 0 0

Constant velocity plotted as a function of time is obviously a horizontal line (see the graph on the right). One can see that the change of the coordinate *x* during the elapsed time Δt is given by the area under the velocity curve: $\Delta x = v_x \Delta t$. Note: If $v_x < 0$, the straight line representing v_x on the plot goes below the *t*-axis. In this and similar cases the area under the curve is defined as <u>negative</u>.

Displacement for the motion with a variable velocity

In the general case when the velocity v_x changes with time t, one can split the time interval t_2 - t_1 into many small subintervals Δt_i and define the displacement x_2 - x_1 as the area under the curve representing $v_x(t)$:

Practical application of the above requires calculus!

Graphical representation of acceleration

Acceleration a_x can be geometrically defined as the slope of the curve $v_x(t)$, similarly to the definition of the velocity v_x from the graph x(t).

In turn, the change of the velocity v_x during a time interval can be represented as the area under the curve $a_x(t)$.

Motion with constant acceleration

This important kind of motion is represented by the formula

$$v_x = v_{x0} + a_x t, \qquad a_x = \text{const}$$

where v_x is a shortcut for the function $v_x(t)$ and the constant v_{x0} is the velocity at zero time, $v_{x0} = v_x(0)$. The time dependence of the *x* coordinate x(t) can be found as the area under the "curve" $v_x(t)$. This leads to

If the motion begins at some moment of time t_0 , the formulas for the motion with constant acceleration become

$$v_x = v_{x0} + a(t - t_0)$$

$$x = x_0 + v_{x0} (t - t_0) + \frac{1}{2}a(t - t_0)^2$$

Finally, there is a formula for the motion with constant acceleration is in terms of changes:

$$\Delta v = a \Delta t$$
, $\Delta x = v_0 \Delta t + \frac{1}{2} a (\Delta t)^2$.

Here $\Delta t \equiv t - t_0$ is the time elapsed since the initial moment of time t_0 ,

 $\Delta v \equiv v - v_0$ is the change of the velocity, and

 $\Delta x \equiv x - x_0$ is the displacement or distance covered.