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2 – Motion in one dimension  

In Lecture 1 we have seen that each vector (say, position vector r) in a three-dimensional space 

can be represented by its three components (rx , ry , rz ) that can be considered independently of 

each other. In this Lecture we will concentrate on the behavior of one of these components, say rx  

x. Other components either do not exist (as is the case for the motion in one dimension) or are 

ignored. 

Let us repeat the definitions for the x-components of the velocity and acceleration 
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Here 1 is the initial state and 2 is a final state. Note that vx and ax can be both positive and 

negative 
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Graphical representation of motion 
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Coordinate x depending on time t, that is, x(t) can be represented graphically. Velocity vx can 

be interpreted geometrically as the slope of the curve x(t).  

 

The average velocity is defined geometrically with the help of the secant (cutting) straight line 

that cuts the x(t) curve in two points, 1 and 2. 

The instantaneous velocity defines a straight line that is tangential to the curve x(t) at a given 

point (shown on the right of the graph).  
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∆𝑡
= tan 𝜃 = slope 
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Motion with a constant velocity vx is geometrically described as a straight line (see the graph on 

the left). Its analytical representation is 
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Motion with constant velocity 

const ,0  xx vtvxx

Considering two points, 1 and 2, one can write 

Constant velocity plotted as a function of time is obviously a horizontal line (see the graph on 

the right). One can see that the change of the coordinate x during the elapsed time t is 

given by the area under the velocity curve: x=vxt. Note: If vx<0, the straight line 

representing vx on the plot goes below the t-axis. In this and similar cases the area under the 

curve is defined as negative.  

𝑥1 = 𝑥0 + 𝑣𝑥𝑡1,    𝑥2 = 𝑥0 + 𝑣𝑥𝑡2 

∆𝑥 = 𝑥2 − 𝑥1 = 𝑣𝑥 𝑡2 − 𝑡1 = 𝑣𝑥∆𝑡 
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Displacement for the motion with a variable velocity 
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In the general case when the velocity vx changes with time t, one can split the time interval 

t2-t1 into many small subintervals ti and define the displacement x2-x1 as the area under the 

curve representing vx(t): 

Practical application of the above requires calculus! 
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Graphical representation of acceleration 

Acceleration ax can be geometrically defined as the slope of the curve vx(t), similarly to the 

definition of the velocity vx from the graph x(t).  
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In turn, the change of the velocity vx during a time interval can be represented as the area under 

the curve ax(t).   
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Motion with constant acceleration 

const ,0  xxxx atavv

This important kind of motion is represented by the formula 

where vx is a shortcut for the function vx(t) and the constant vx0 is the velocity at zero time, 

vx0 = vx(0). The time dependence of the x coordinate x(t) can be found as the area under 

the „curve“ vx(t). This leads to 

2

00
2

1
tatvxx xx 

t 

vx 

vx0 

t vx0 vx0 

0 

axt 

½ in the formula above appears because the 

area of the triangle is half of the area of the 

corresponding rectangle 

Initial condition 
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Finally, there is a formula for the motion with constant acceleration is in terms of changes:  

∆𝑣 = 𝑎∆𝑡,       ∆𝑥 = 𝑣0∆𝑡 +
1

2
𝑎 ∆𝑡 2. 

Here ∆𝑡 ≡ 𝑡 − 𝑡0 is the time elapsed since the initial moment of time 𝑡0,  

 

∆𝑣 ≡ 𝑣 − 𝑣0 is the change of the velocity, and  

 
∆𝑥 ≡ 𝑥 − 𝑥0 is the displacement or distance covered. 

If the motion begins at some moment of time t0, the formulas for the motion with constant 

acceleration become 

𝑣𝑥 = 𝑣𝑥0 + 𝑎 𝑡 − 𝑡0  

 

𝑥 = 𝑥0 + 𝑣𝑥0 𝑡 − 𝑡0 +
1

2
𝑎 𝑡 − 𝑡0
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