2 - Motion in one dimension

In Lecture 1 we have seen that each vector (say, position vector \mathbf{r}) in a three-dimensional space can be represented by its three components $\left(r_{x}, r_{y}, r_{z}\right)$ that can be considered independently of each other. In this Lecture we will concentrate on the behavior of one of these components, say $r_{\mathrm{x}} \equiv$ x. Other components either do not exist (as is the case for the motion in one dimension) or are ignored.

Let us repeat the definitions for the x-components of the velocity and acceleration

$$
\begin{aligned}
& v_{x}=\frac{\Delta x}{\Delta t}, \quad \Delta x=x_{2}-x_{1}, \quad \Delta t=t_{2}-t_{1} \\
& a_{x}=\frac{\Delta v_{x}}{\Delta t}
\end{aligned}
$$

Here 1 is the initial state and 2 is a final state. Note that v_{x} and a_{x} can be both positive and negative

Graphical representation of motion

Coordinate x depending on time t, that is, $x(t)$ can be represented graphically. Velocity v_{x} can be interpreted geometrically as the slope of the curve $x(t)$.

The average velocity is defined geometrically with the help of the secant (cutting) straight line that cuts the $x(t)$ curve in two points, 1 and 2.

The instantaneous velocity defines a straight line that is tangential to the curve $x(t)$ at a given point (shown on the right of the graph).

Motion with constant velocity

Motion with a constant velocity v_{x} is geometrically described as a straight line (see the graph on the left). Its analytical representation is

$$
x=x_{0}+v_{x} t, \quad v_{x}=\mathrm{const}
$$

Considering two points, 1 and 2 , one can write

$$
\begin{gathered}
x_{1}=x_{0}+v_{x} t_{1}, \quad x_{2}=x_{0}+v_{x} t_{2} \\
\Delta x=x_{2}-x_{1}=v_{x}\left(t_{2}-t_{1}\right)=v_{x} \Delta t
\end{gathered}
$$

Constant velocity plotted as a function of time is obviously a horizontal line (see the graph on the right). One can see that the change of the coordinate x during the elapsed time Δt is given by the area under the velocity curve: $\Delta x=v_{x} \Delta t$. Note: If $v_{x}<0$, the straight line representing v_{x} on the plot goes below the t-axis. In this and similar cases the area under the curve is defined as negative.

In the general case when the velocity v_{x} changes with time t, one can split the time interval $t_{2}-t_{1}$ into many small subintervals Δt_{i} and define the displacement $x_{2}-x_{1}$ as the area under the curve representing $v_{x}(t)$:

Practical application of the above requires calculus!

Graphical representation of acceleration

Acceleration a_{x} can be geometrically defined as the slope of the curve $v_{\mathrm{x}}(t)$, similarly to the definition of the velocity v_{x} from the graph $x(t)$.

In turn, the change of the velocity v_{x} during a time interval can be represented as the area under the curve $a_{\mathrm{x}}(t)$.

Motion with constant acceleration

This important kind of motion is represented by the formula

$$
v_{x}=v_{x 0}+a_{x} t, \quad a_{x}=\mathrm{const}
$$

where v_{x} is a shortcut for the function $v_{\mathrm{x}}(t)$ and the constant $v_{\mathrm{x} 0}$ is the velocity at zero time, $v_{x 0}=v_{x}(0)$. The time dependence of the x coordinate $x(t)$ can be found as the area under the "curve" $v_{\mathrm{x}}(t)$. This leads to

Initial condition
$1 / 2$ in the formula above appears because the area of the triangle is half of the area of the corresponding rectangle

If the motion begins at some moment of time t_{0}, the formulas for the motion with constant acceleration become

$$
\begin{gathered}
v_{x}=v_{x 0}+a\left(t-t_{0}\right) \\
x=x_{0}+v_{x 0}\left(t-t_{0}\right)+\frac{1}{2} a\left(t-t_{0}\right)^{2}
\end{gathered}
$$

Finally, there is a formula for the motion with constant acceleration is in terms of changes:

$$
\Delta v=a \Delta t, \quad \Delta x=v_{0} \Delta t+\frac{1}{2} a(\Delta t)^{2}
$$

Here $\Delta t \equiv t-t_{0}$ is the time elapsed since the initial moment of time t_{0},
$\Delta v \equiv v-v_{0}$ is the change of the velocity, and
$\Delta x \equiv x-x_{0}$ is the displacement or distance covered.

