4 - Newton's laws

Aristotle (384-322 b.c.)
Dominating views for centuries
„Forces cause objects to move;
No force - no velocity"
Aristotle disregarded friction forces

Galilei (1564-1642 +2000 years!)
Questioned Aristotles
„Forces cause objects to accelerate;
No force - velocity constant"

$$
\begin{aligned}
& v=v_{0}+a t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Newton (1642-1727)
1687 - The mathematical Principles of Natural Philosophy (Principia)

Newton's laws: Foundation of modern Physics

Relativistic mechanics $v \sim c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$	
Newton mechanics	Quantum Mechanics $\mathrm{m} \sim \mathrm{m}_{\mathrm{e}} \sim 10^{-30} \mathrm{~kg}$

- Newton's first law:

Objects that are not subject to action of forces are moving with zero or constant velocity (follows from the second law; has historical significance - disproves Aristotle)

- Newton's second law: F = ma

F - force; m-mass; a - acceleration
Unit of force:
$\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}=\mathrm{N}$ (ewton)
Allows to compute acceleration from force etc.
Consequences: (i) First law for $\mathbf{F}=0$;
(ii) Statics for $\mathbf{a}=0$, i.e., $\mathbf{F}=0$ (important applications in engineering)

Example: gravitational force: $\mathbf{F}_{G}=m \mathbf{g}$, where \mathbf{g} is directed down and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Force \mathbf{F} is the sum of all forces acting on the object:

$$
\begin{gathered}
\mathbf{F}=\sum_{i} \mathbf{F}_{i}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\ldots \\
\text { Addition of vectors }
\end{gathered}
$$

Mass m is a positive scalar, the measure of inertia of the object

- Newton's third law: $\mathbf{F}_{12}=-F_{21}$

Helps to identify forces in systems of interacting bodies

Example: Measuring weight with a spring scale

Using the 2-nd law: Using the 3-rd law:

$$
\begin{aligned}
& m \mathbf{g}+\mathbf{F}_{12}=0 \\
& \Longrightarrow \mathbf{F}_{12}=-m \mathbf{g}
\end{aligned}
$$

In this way the weight $\mathbf{W}=m \mathrm{~g}$ is measured

Two objects pressed against each other

Two objects connected by a cord and pulled apart

In isolated systems
the sum of all (internal) forces is zero;
Only external forces
can accelerate the system as the whole
Examples:

- rocket
- car,
- smart mule
- Baron Münchhausen

Examples of the workings of Newton's third law

Accelerating car: internal forces, including those in the motor and transmission cancel each other according to Newton's third law. The only force that makes the car accelerate is the external friction force.

- Dry friction

Friction - Rolling friction

- Viscous friction

Dry friction

$$
\begin{array}{cc}
F_{f r}=\mu F_{N}, & v \neq 0 \\
F_{f r}=F \leq \mu_{s} F_{N}, & v=0
\end{array}
$$

μ_{s} is the static friction coefficient, $\mu_{\mathrm{s}}>\mu$ for all pairs of materials

Here $\mu_{\mathrm{k}}=\mu$

TABLE 4-2 Coefficients of Friction ${ }^{\dagger}$

Surfaces	Coefficient of Static Friction, $\boldsymbol{\mu}_{\mathbf{s}}$	Coefficient of Kinetic Friction, $\boldsymbol{\mu}_{\mathbf{k}}$
Wood on wood	0.4	0.2
Ice on ice	0.1	0.03
Metal on metal (lubricated)	0.15	0.07
Steel on steel (unlubricated)	0.7	0.6
Rubber on dry concrete	1.0	0.8
Rubber on wet concrete	0.7	0.5
Rubber on other solid surfaces	$1-4$	1
Teflon ${ }^{\text {on }}$ Teflon in air	0.04	0.04
Teflon on steel in air	0.04	0.04
Lubricated ball bearings	<0.01	<0.01
Synovial joints (in human limbs)	0.01	0.01

[^0]
Rolling friction

If the surface is elastically deformable, the rolling object pushes it down and creates a dynamic pit that is moving with the rolling body. The latter goes uphill and the total force $m \mathbf{g}+\mathbf{F}_{M}$ is nonzero and directed back, being the rolling friction force. The same effect arises if the body is deformable. If both the surface and the rolling body are absolutely rigid, there is no rolling friction.

The coefficient of viscous friction α increases with the size of the body and is proportional to the viscosity of the fluid.

Problem: Two connected blocks

- Two blocks joined by a cord
 a-?

\mathbf{F}_{12} - ? (tension of the cord)

Solution 1: Use Newton's second law for the individual masses + Newton's third law. As all vectors are directed along the same line, one can discard vector notations.

$$
m_{1} a=F_{12}, \quad m_{2} a=F+F_{21}
$$

Add these equations and use Newton's third law

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) a=F+\underbrace{F_{12}+F_{21}}_{0}=F \longrightarrow & \begin{array}{l}
a=\frac{F}{m_{1}+m_{2}} \\
\\
F_{12}=m_{1} a=\frac{m_{1}}{m_{1}+m_{2}} F
\end{array}
\end{aligned}
$$

Solution 2: Use Newton's second law for the whole system, taking into account only external forces

$$
\left(m_{1}+m_{2}\right) a=F \longrightarrow a=\frac{F}{m_{1}+m_{2}}
$$

Problem: Apparent weight of a person in the elevator

Find the apparent weight of a person in an elevator moving with the acceleration a Solution. The apparent weight is defined as the normal force \mathbf{F}_{N} acting on the person from the floor. This is what the person feels as his/her weight

Newton's second law:

$$
F_{N}-m g=m a \longrightarrow F_{N}=m(g+a)
$$

For $a>0$ (acceleration up) the apparent weight is greater than the actual weight, $F_{N}>m g$.

The elevator is an example of a non-inertial frame. The person inside does not know that it is moving with acceleration and can think that there is a
 gravity force $F_{G}=m(g+a)$

- Simple mechanical devices: pulley

Static case, $a=0$

Mass M is the load

To lift the load slowly (without acceleration), One has to pull with the force F so that

$$
2 F-M g=M a=0,
$$

that is, only

$$
F=M g / 2
$$

Using more blocks, one can further reduce the pulling force. However, in this case the weight of many blocks reduces the efficacy of the machine.

Pulling a non-motorized boat

Live reconstruction of Repin's painting

Alien burlaki

A Chinese caricature of the Soviet-Russian leadership

Problem: Pulling a non-motorized boat

Known: F, α

Find: pushing force f, net force
Solution. To ensure that the boat moves horizontally, one should apply a pushing force that cancels the vertical component of the pulling force. Projecting forces onto the y axis, one
 obtains:

$$
f-F \sin \alpha=0 \longrightarrow f=F \sin \alpha
$$

The net force is then directed along the direction of the river:

$$
F_{n e t}=F_{x}=F \cos \alpha
$$

There is also a resistance force acting on the boat from the water and directed to the left so that it compensates for the net force and ensures zero acceleration.

Incline

Newton's second law

$$
m \mathbf{g}+\mathbf{F}_{N}+\mathbf{F}_{f r}=m \mathbf{a}
$$

In components

$$
\begin{array}{ll}
\text { "z": } & F_{N}-m g \cos \theta=0 \longrightarrow F_{N}=m g \cos \theta \\
\text { "x": } & -F_{f r}+m g \sin \theta=m a
\end{array}
$$

If the block is sliding, $F_{f r}=\mu F_{N}$
If the result for the acceleration is negative, it means that the block is not moving

$$
a=g(\sin \theta-\mu \cos \theta)>0
$$

Condition for sliding:

$$
F_{f r}=m g \sin \theta \leq \mu_{s} F_{N}=\mu_{s} m g \cos \theta
$$

$$
\tan \theta>\mu
$$

$$
\rightarrow \tan \theta<\mu_{s}-\text { condition for resting }
$$

Example: A person in shoes with rubber soles is on a concrete slope. For what slope angles θ the person will be resting? Sliding?

Condition for sliding: $\quad \tan \theta>\mu \quad \rightarrow \quad \theta>\arctan \mu=\arctan 0.8=38.7^{\circ}$
Condition for resting: $\quad \tan \theta<\mu_{s} \rightarrow \theta<\arctan \mu_{s}=\arctan 1=45^{\circ}$
In the interval $\quad 38.7^{\circ} \leq \theta \leq 45^{\circ}$ both resting and sliding are possible

[^0]: ${ }^{\dagger}$ Values are approximate and intended only as a guide.

