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12 – Oscillations and waves
Oscillations or vibrations are periodic motions in physical systems (such as mass on a 
spring) under the influence of restoring forces. Waves are motions of distributed systems 
(such as string) that are periodic in both time and space.
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Example: mass on a spring
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02 =+ xa ω − General equation for all kinds of oscillating systems (oscillators)
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Note that Newton’s second law does not result in the case of oscillations to a motion with 
constant acceleration because the force is not constant and depends on the displacement. 
Solutions of Newton’s second law for oscillations in the general form

02 =+ xa ω
can be easily obtained with the calculus. It has a sinusoidal form )cos( 0ϕω += tAx

where A is the amplitude of oscillations, ω is the anguilar velocity and ϕ0 is a phase 
that depends on the initial conditions. Once x(t) is known, one obtains the 
acceleration: 
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the velocity v can be obtained with the calculus or, alternatively, from the energy conservation law. 
At the turning points of the motion where x = ±A the velocity is zero and the whole energy is 
potential energy kA2/2 . Thus the energy conservation can be written in the form 
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It follows then 
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(Correct sign can be easily 
obtained with calculus)

Thus, all together, 
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− for all oscillators! 
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Find the phase ϕ0 and the dependence x(t) for the oscillatory motion that starts at t = 0 in the 
state where (a) velocity is zero and the displacement is maximal; (b) velocity is zero and the 
displacement is minimal; (c) displacement is zero and velocity is positive; (d) displacement is 
zero and velocity is positive.

Solution: (a) take the general solution                         and plug t = 0 and x = A:)cos( 0ϕω += tAx
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(b) take                                  and plug t = 0 and x = −A:)cos( 0ϕω += tAx
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(c) take                                  and plug t = 0 and x = 0:)cos( 0ϕω += tAx
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We see that there are two solutions. To find the proper one consider the velocity at t = 0:
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Positive velocity corresponds to the lower sign, thus take the lower sign to obtain 
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Plots for (a-d)

Frequency and period of oscillations
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Mass m = 0.5kg is attached to a spring with the stiffness constant k = 20 N/m on a 
horizontal frictionless table. The mass is pushed with the velocity v = 2 m/s in the 
positive direction out of the equilibrium position. What is (a) the amplitude of harmonic 
oscillations; (b) the maximal acceleration; (c) full time dependence x(t)? (d) Time to 
achieve maximal displacement for the first time?

Solution: (a) Use the energy conservation in the form 
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In the initial state x = 0 and v is known, thus the amplitude A is
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(b) From Newton’s second F=ma follows x
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The maximal acceleration corresponds to the maximal x, that is, to x=A. One obtains
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(c) Obviously 1s 32.6),sin( -
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tAx === ωω is the only solution that satisfies 

x = 0 and v>0

(d) The required time satisfies ωt = π/2, so that the sine attains its maximum. Thus
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Oscillations, pendulum
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Pendulum performs a rotational motion, thus we
have to write down the rotational Newton‘s
second law
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The torque and the moment of inertia for a point-mass
pendulum are given by
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The sign (−) in the torque shows that the torque is restoring. The Newton‘s second law above can be
rewritten as
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For small-amplitude oscillations θ << 1 one can use sinθ ≅θ that leads to the equation
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This equation is similar to that for a mass on a string above, with the replacements a � a and x � θ. 
Thus the solution for a pendulum is a sinusoidal (harmonic) motion with frequency ω.
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Waves

Oscillations occur in localized systems such as mass on a spring or pendulum and they are periodic in 
time. Wave occur in distributed (non-localized) systems such as guitar string or water in the sea or the air, 
and they are periodic both in time and space. Dependence of the deviation variable X in a plane harmonic
wave has the form 
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where A is the amplitude, ω is the frequency, and k is the wave vector that shows the direction of motion of 
the wave. Solution for a wave on one dimension (that is, along the x axis) can be written as

)cos( 0ϕω +−= kxtAX

where k > 0 corresponds to a wave that goes to the right (in the positive direction along the x axis) and k < 0
corresponds to a wave that goes to the left. The period T and wave length λ are given by

k
T

πλ
ω
π 2

,
2 ==

because the periods in time and space T and λ are defined by
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the velocity of the wave is given by
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and the wave equation can be rewritten as
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In a particular media (such as air) waves with different values of ω and k are possible. However the
speed of the wave v is a constant for a particular material. 

3100 m/sCopper

1210 m/s Lead

5971 m/s Stone

4540 m/s Glass

1400 m/sWater

355 m/sAir

60 m/sRubber

Speed of soundMaterial
In fluids sound can be only in the form of longitudinal waves. In 
solids that resist shear deformations, there is both longitudinal
and transverse sound waves. In the longitudinal waves, 
displacement of the media is along the wave vector whereas in 
transverse waves it is perpendicular to the wave vector. In 
longitudinal waves pressure oscillates around the equilibrium
level, that is why they are sometimes called pressure waves. 
Note that the velocities of the media‘s particles in the wave
have no relation to the speed of sound. The former depends on 
the amplitude of the wave whereas the latter does not.  


