PHY 167 Recitation 2

Chapters 19 and 20.
March 17, 2019

Figure 1: Picture of the setup in problem 1.
1.) (a.) Calculate the equivalent resistance for the circuit above and (b.) find the current that flows through each resistor.

Figure 2: Picture of the setup in problem 2.
2.) (a.) Calculate the equivalent capacitance for the circuit above and (b.) find the charge on each capacitor.

Figure 3: Picture of the setup in problem 3.
3.) Sketch the circuit above, labeling the currents I_{1}, I_{2}, I_{3} going through resistors R_{1}, R_{2}, R_{3}, respectively. Using Kirchoff's rules, write down the equations that would determine the currents I_{1}, I_{2}, I_{3} and solve.

Figure 4: Picture of the setup in problem 4.
4.) Two long parallel wires carry current $I_{1}=25 A$ and $I_{2}=15 A$ as indicated above. They are separated by a distance of 6 cm .
(a.) A charge $q=-50 \mu C$ is placed at point A midway between the two wires with a velocity $v=5 \times 10^{3} \mathrm{~m} / \mathrm{s}$ towards I_{1}. Find the magnitude and direction of the magnetic force on the charge.
(b.) Find a point along the vertical line connecting I_{1} and I_{2} where the total magnetic field due to I_{1} and I_{2} is zero. How far away is that point from I_{2} ? Draw the point on your diagram.

