Series, sums, products

Series

Series is a number defined by
S=1 imN%m Sy

where Sy is a sum

N
SN = Z an
n=0

and a,, are series terms. Thus if the series is converging for N—oo, it is given by
fee]
S = Z an
n=0

Power series considered earlier is a generalization of the series that are functions of their arguments. Another generalization
of the series are series with summation over several indices. Example of series in physics are Coulomb or dipolar interaction
of atoms arranged in a crystal lattice. Also series may arise in calculating integrals and solving differential equations.

In some cases series can be calculated analytically. An example are Taylor series, e.g.
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I’1:01'1.

that is a particular case of the general result

X
_:ex
n:01'1!
or
21 1
Dt
n
n:02 1*3

that is a particular case of geometrical progression

Mathematica can calculate series

S
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® 1l+n

an
n=0 2

If Mathematica cannot do it analytically, it can do it numerically
© Log[n] Sin[n]
N ——|
n=1
0.0727061

Some series are expressed through special functions

Zeta[x]

- Riemann zeta-function.
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Sums also can be calculated by Mathematica

LI
In[437]:= Z —~
n=0 2

Simplify[%]
mo 1
D' — // simplify
2n
n=0
outazl= 27 (-1 + 2
Out[43g]= 2 - 27"

out[439]= 2 - 27"
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In general, the analytical expression for a series is simpler than that for the sum

e 2D
e 2w

(0]

eGamma [l +m, 1]

Gamma [1 + m]

Products

Products

N
P:ﬂbn

n=0
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can be reduced to sums by taking their logarithm:

Log[P] = Loq[ﬁbn] = iLog[b ]
n=0

n=

thus

P = Exp[iLog[bn]]

n=0

Mathematica can calculate products

etc.

Analytical calculation of sums and series

Different methods can be used

n Differentiation over parameter

To calculate

@

n
Jon

n=

consider, for Ixl<1,

HZX 1-x

One has
fee] fee] l
ann’l an“ =
n=0 n=0 (1 7X)2
From here follows
S X
g[x] = an“ =
v (1-x)?
Now
S of
—=g[1/2] =
2['1

n=

Series with higher powers of n can be calculated via high-order derivatives of the generating function f[x].
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Using discrete derivatives

The sum of the terms having the form
dn = bn+l - by
can be easily calculated:

N+1

ian:i Do.y - b mel ibn:an—ibn:bNmbo
n=0 n=1 n=0

n=0 n=

Here a,, can be interpreted as a discrete derivative of by, and the sum is similar to an integral of this derivative that is given
by the difference of b, between the upper and lower summation limits. One of the methods of summing the arithmetic
progression

N
2
n=0
uses this idea. Using the discrete derivative
(n+1)?2-n?=2n+1
one can write

N

(N +1)2 Z (n+1) n2> i(2n+l):2in+il:22n+N+l,

n= n=0 n=0 n=0 n=0
wherefrom one obtains

N

2.7

For the arithmetic progression this method if not the fastest. However, this method works for sums with higher powers. For

1 1
((N+1)?2-N-1) = — (N*+N) = N
2

N|I—‘

2

instance, one can calculate
N
), w
n=0
using the discrete derivative

(n+1)*-n*=3n%+3n+1

and the formula for 3_, n. One writes

N N (N +1)
Z(3n2+3n+l>: Zn +BZH+ZI Z —— +N+1,

n=0 n= n= n=

wherefrom one obtains
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N 1 3N (N+1)

anz—((N+l)3— —N—l]:

- 3 2

n=0
1 3N (N+1) N 3 (N+1)
—(N3+3N2+3N+17 —N—l]:—(N2+3N+3—7—1 =
3 2 3 2

N
— (N+1) (2N+1)
6

o =

Sums of any powers of n can be calculated with this method but calculations become more and more difficult.

Convergence of series

The main question about the series is their convergence, i.e., the existence of the limit S = 1imy., Sy. There are several

criteria of convergence.

= Ratio criterium

A useful criterion in the so-called ratio criterion. With the asymptotic ratio defined as

. An+1
0= lim,,e
an
the criterium reads
o<1, series converges
0 =1, series can converge or diverge
o>1, series diverges

For instance, for the series

& n!
r;‘ (2n)!
one has
(n+1)! (2n)! n+1
0= 1limy,e = limy,e =0
(2 (n+1))! n! (2n+2) (2n+1)

and the series converges. Mathematica can express this series via the error function:

d n!

x;' (2n)!

N[%]

i [2+e1/4\/?Erf{£}
2 2
1.5923

For the series representing the zeta function
> 1
2=

one has
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n* 1 1
0 =1imp,e —— = limy o — = =1
(n+1)* <l+£> limmw<l+£>

n n

and one cannot decide whether this series converges or diverges.

= |ntegral criterium

Even more useful is the integral criterion that says that the series converges or diverges if the similar integral converges or
diverges at the upper limit. This criterion is convenient because it is easier to analytically calculate integrals than series. In
particular, for the series representing the zeta function above one obtains that the series converges for x>1.

= Alternating series

Alternating series are series of the type

S:Z(—l)nan, ap > 0.
n=0

Alternating series converge if a,, decreases steadily to zero in the limit n—co. Example:

e

=1

N[%]
-Log[2]

-0.693147

n=1

N[%]
1

(—l +\/27) Zeta{;]

-0.604899

i (-1*
£ pi/ao

N[%]

1
(—l + 29/10) Zeta[—]
10

-0.52227

Coulomb energy of an ionic lattice

= General

Coulomb energy of a system of charges is given by

i d;i dj ,

| iz |

k
2
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where k is related to the system of units and the factor 1/2 compensates double counting of terms. The Coulomb energy
corresponding to charge g; is

i di 95 ,
j

k
2 |r—r

so that

U:ZUi.

j
Consider alternating +¢q charges on an infinite square lattice with lattice constant a. The energies corresponding to each

charge in this infinite system are the same, so that one can consider the energy of the charge at the origin of the coordinate

system, r;= 0. Using

_ _ 2 2
r; =e,any+e,any, ‘rjlf a~/ng+ny ,
one obtains
k g®
UO = — Y
2 a
where
<, (71)nx+ny

Dyy Ny=-® I‘li +n

is the Madelung constant. Prime at the sum means that the non-existent term with n, = n, = 0 is omitted. The sum can be
calculated numerically by at first summing in the range —N < n,, n, < N and then taking the limit N—oo. Similar formulas

can be written in 1d and 3d cases. In all cases M < 0, because alternating arrangements of positive and negative ions reduce
the energy.

= One-dimensional toy model
Let us at first consider the 14 model

(-n*
]

FMl[n_ ] := If[n =0,0, ——
Abs[n]

NN
MIN[NN_] := Zz.

2, (-1*

Zz

N[M1]

(* Exact result «x)

-2 Log[2]

-1.38629
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MINList = Table[{NN, MIN[NN]}, {NN, 10, 400, 5}] (* Approximations with different N «x)

({10, -1.29127}, {15, -1.45074}, {20, -1.33754}, {25, -1.42549}, {30, -1.35352},
(35, -1.41446), {40, -1.36161}, {45, -1.40827}, {50, -1.36649}, {55, -1.40431},
{60, -1.36977}, {65, -1.40156}, {70, -1.37211}, {75, -1.39954}, {80, -1.37387},
(85, -1.39799}, {90, -1.37524}, {95, -1.39677}, {100, -1.37634}, {105, -1.39577},
{110, -1.37724}, {115, -1.39495}, {120, -1.378}, {125, -1.39426}, {130, —-1.37863},
{135, -1.39367}, {140, -1.37918}, {145, -1.39317}, {150, -1.37965},
{155, -1.39273}, {160, -1.38006}, {165, —1.39234}, {170, -1.38043}, {175, -1.39199},
{180, -1.38075}, {185, -1.39169}, {190, -1.38105}, {195, -1.39141}, {200, -1.38131},
{205, -1.39116}, {210, -1.38154}, {215, —-1.39093}, {220, -1.38176}, {225, -1.39073},
{230, -1.38196}, {235, -1.39054}, {240, -1.38214}, {245, -1.39037}, {250, -1.3823},
{255, -1.39021}, {260, -1.38246}, {265, -1.39006}, {270, -1.3826}, {275, -1.38992},
(280, -1.38273}, {285, -1.3898}, {290, -1.38285}, {295, -1.38968}, {300, -1.38297},
{305, -1.38957}, {310, -1.38307}, {315, —-1.38946}, {320, -1.38317}, {325, -1.38937},
(330, -1.38327}, {335, -1.38927}, {340, -1.38336}, {345, -1.38919}, {350, -1.38344},
{355, -1.38911}, {360, -1.38352}, {365, -1.38903}, {370, -1.3836}, {375, -1.38896},
(380, -1.38367}, {385, -1.38889}, {390, -1.38373}, {395, -1.38882}, {400, -1.3838}}

PlotlExact = Plot[M1, {NN, 10, 400}, PlotStyle -» {Black, Thick}];
PlotlApprox = ListPlot [MINList, PlotRange -» All];
Show[PlotlApprox, PlotlExact]

-1.30

200 300 400

Convergence to the exact result is slow. To improve the convergence, take the contribution of the last point n=N with the
factor 1/2. This is reasonable because the last point in fact should be shared 50%-50% between the interval taken into
account and the remaining region. So we define

(-n*

NN
MINCorrected[NN_] := z: If[n==NN, 1, 2.]
=1

n
Now do everything again and compare

MINList = Table[{NN, MIN[NN]}, {NN, 5, 100, 5}]
M1lNCorrectedList = Table[ {NN, MINCorrected[NN]}, {NN, 5, 100, 5}]
(* Approximations with different N )

({5, -1.56667}, {10, -1.29127}, {15, -1.45074}, {20, -1.33754}, {25, —-1.42549},
{30, -1.35352}, {35, -1.41446}, {40, -1.36161}, {45, -1.40827}, {50, -1.36649},
{55, -1.40431}, {60, -1.36977}, {65, -1.40156}, {70, -1.37211}, {75, -1.39954},
(80, -1.37387}, {85, -1.39799}, {90, -1.37524}, {95, -1.39677}, {100, -1.37634}}

({5, -1.36667}, {10, -1.39127}, {15, -1.38408}, {20, -1.38754}, {25, -1.38549},
{30, -1.38685}), {35, -1.38589}, {40, -1.38661}, {45, -1.38605}, {50, -1.38649},
{55, -1.38613}, {60, -1.38643}, {65, -1.38618}, {70, -1.3864}, {75, -1.38621},
(80, -1.38637}, {85, -1.38623}, {90, -1.38636}, {95, -1.38624}, {100, -1.38634}}

|9
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PlotlExact = Plot[M1l, {NN, 5, 100}, PlotStyle » {Black, Thick}];
PlotlApprox = ListPlot [MINList, PlotStyle » {Blue, PointSize[0.015]}, PlotRange - All];
PlotlApproxCorr = ListPlot [MINCorrectedList,

PlotRange -» All, PlotStyle » {Red, PointSize[0.02]}, PlotRange -» All];
Show[PlotlApprox, PlotlApproxCorr, PlotlExact]
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One can see that the corrected procedure has much better convergence. Note that the total charge in the summation range is
zero, that is, the electroneutrality holds:

NN
QINCorrected[NN_] := Z (-1)"If[n=0||n=NN, 1., 2.]
n=0

QlNCorrected[20]
QlNCorrected[21]

0.

= Two-dimensional model

Here there is no analytical expression for the Madelung constant. Similarly to the 1d model we define

(_1 )nx+ny
FM2[nx_, ny_] := If[nx =ny=20, 0, ]
nx? + ny?
NN NN
M2N[NN_] := Z Z FM2 [nx, ny]
nx=-NN ny=-NN
NN NN 1
M2NCorrected[NN_] := > ' FM2[nx, ny] Which[Abs[nx] = Abs[ny] = NN, —,
4

nx=-NN ny=-NN

1
(Abs[nx] == NN) && (Abs[ny] # NN) || (Abs[ny] == NN) && (Abs[nx] # NN), —, True, 1]
2
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M2NList = Table[{NN, M2N[NN]}, {NN, 2, 50}]
M2NCorrectedList = Table[ {NN, M2NCorrected[NN]}, {NN, 1, 50}]

({2, -1.33507}, {3, -1.41457}, {4, -1.45889}, {5, -1.48724},
{6, -1.50692}, {7, -1.52137}, {8, -1.53243}, {9, -1.54116}, {10, -1.54824},
{11, -1.55408}, {12, -1.559}, {13, -1.56318}, {14, -1.56679}, {15, -1.56993},
{16, -1.5727}, {17, -1.57514}, {18, -1.57733}, {19, -1.57929}, {20, -1.58105},
{21, -1.58266}, {22, -1.58412}, {23, -1.58546}, {24, -1.58668}, {25, -1.58782},
{26, -1.58886}, {27, -1.58983}, {28, -1.59073}, {29, -1.59157}, {30, -1.59236},
{31, -1.5931}, {32, -1.59379}, {33, -1.59444}, {34, -1.59505}, {35, -1.59563},
{36, -1.59617}, {37, -1.59669}, {38, -1.59718}, {39, -1.59764}, {40, -1.59808},
{41, -1.5985}, {42, -1.59891}, {43, —-1.59929}, {44, -1.59965}, {45, -1.6},

{46, -1.60034}, {47, -1.60066}, {48, -1.60096}, {49, -1.60126}, {50, -1.60154}}

({1, -1.29289}, {2, -1.60687}, {3, -1.61052}, {4, -1.61351}, {5, -1.61449},
{6, -1.61493}, {7, -1.61516}, {8, —-1.61528}, {9, -1.61536}, {10, -1.61541},
{11, -1.61544}, {12, -1.61547}, {13, -1.61548}, {14, -1.61549}, {15, -1.6155},
{16, -1.61551}, {17, -1.61552}, {18, -1.61552}, {19, -1.61552}, {20, -1.61553},
{21, -1.61553}, {22, -1.61553}, {23, -1.61553}, {24, -1.61553}, {25, -1.61553},
{26, -1.61554}, {27, -1.61554}, {28, -1.61554}, {29, -1.61554}, {30, -1.61554},
{31, -1.61554}, {32, -1.61554}, {33, -1.61554}, {34, -1.61554}, {35, -1.61554},
{36, -1.61554}, {37, -1.61554}, {38, -1.61554}, {39, -1.61554}, {40, -1.61554},
{41, -1.61554}, {42, -1.61554}, {43, -1.61554}, {44, -1.61554}, {45, -1.61554},
{46, -1.61554}, {47, -1.61554}, {48, -1.61554}, {49, -1.61554}, {50, -1.61554}}

Plot2Approx = ListPlot [M2NList, PlotStyle » {Blue, PointSize[0.015]}, PlotRange -» All];
Plot2ApproxCorr = ListPlot [M2NCorrectedList,

PlotRange -» All, PlotStyle -» {Red, PointSize[0.02]}, PlotRange -» All];
Show[Plot2Approx, Plot2ApproxCorr]
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One can see that in 2d convergence of the Madelung constant to the exact result in 2d (M = —1.61554) is even much faster

than in 1d.



