
Integrals

Indefinite integrals

Indefinite integral of a function is a primitive (original, antiderivative) of this function. If

∂xF@xD = f@xD,
then the indefinite integral of f[x] is

F@xD = ‡ f@xD �x,

Indefinite integral is  just the inverse  to derivative. It  is defined up to an additive constant.  Indefinite integrals of  some

elementary functions can be  analytically expressed via  elementary functions.  In  simple  cases  it  is  sufficient  to know a

derivarive to obtain an integral

Power function:

∂xx
α

x−1+α
α

‡ xα �x

x1+α

1 + α

Note that Mathematica does not output an additive constant in indefinite integrals. Check:

∂x

x1+α

1 + α

xα

OK.

Trigonometric functions:

‡ Cos@xD �x

Sin@xD
Check:

∂xSin@xD
Cos@xD

OK.

Inverse trigonometric functions:

‡
1

1 + x2
�x

ArcTan@xD



∂x ArcTan@xD
1

1 + x2

In some cases analytical calculation of indefinite integrals is more complicated and requires more work and knowledge of

tricks.

‡
1

Sin@xD �x

−LogB2 CosB x
2
FF + LogB2 SinB x

2
FF

This is

LogBTanB x
2
FF

Check

SimplifyB∂xLogBTanB
x

2
FFF

Csc@xD
but it is not obvious how to force Mathematica to bring the result in this form. The idea of the calculation must be using

TanA x

2
E as the integration variable. 

y = TanB x
2
F, dy = ∂xTanBx

2
F dx =

1

2
SecBx

2
F2 dx

∂xTanB
x

2
F

1

2
SecB x

2
F
2

Now 

‡ 1

Sin@xD �x = ·
2 CosA x

2
E2

Sin@xD �y =

·
2 CosA x

2
E2

2 SinA x

2
E CosA x

2
E �y = ‡ CotBx

2
F �y = ‡ 1

y
�y = Log@yD = LogBTanBx

2
FF.

Another example

‡
1

x I1 + x2M �x

Log@xD −
1

2
LogA1 + x2E

This integral can be calculated by splitting the fraction in two:

ApartB 1

x I1 + x2M F

1

x
−

x

1 + x2
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and then using y = x2  as the integration variable in the second term. Probably it does not make a lot of sense to spend much

time on analytical calculating integrals by hand because it can be very tedious and computer does it fast.

‡
1 − 2 x + 3 x2

x I1 + x2M I1 + x + 2 x2M �x

2 ArcTan@xD −

9 ArcTanB 1+4 x

7

F
7

+ Log@xD −
1

2
LogA1 + x + 2 x2E

Although derivatives of elementary functions are elementary functions, primitives of elementary functions can be special

functions, or analytical results in terms of known functions do not exist. Below are so-called elliptic integrals of two different

kinds

·
1

1 − m Sin@xD2
�x

‡ 1 − m Sin@xD2 �x

EllipticF@x, mD
EllipticE@x, mD

In particular, EllipticE[x, 1] can be reduced to sinusoidal functions 

Plot@8EllipticE@x, 1D, Sin@xD<, 8x, 0, 2 π<, PlotStyle → 8Black, 8Black, Dashed<<D

1 2 3 4 5 6

-1

1

2

3

4

but, in general, elliptic integrals are special functions, non-reducible to elementary functions. Another example of a special

function is the error function Erf[x]:

‡ �−x2 �x

1

2
π Erf@xD
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Plot@Erf@xD, 8x, −5, 5<D

-4 -2 2 4

-1.0

-0.5

0.5

1.0

In other cases indefinite integrals cannot be expressed via any known function and have to be calculated numerically.

‡
�−x2

1 + x2
�x

‡
�−x2

1 + x2
�x

Definite integrals

ü Definition

Definite integrals are defined as the limit of the sum

‡
a

b

f@xD �x = limN→∞ ‚
n=0

N−1

f@xnD ∆x, xn = a + Hb − aL n

N
, ∆x ≡ h =

b − a

N
,

as illustrated in the figures below.

f@x_D := 1 + x2;

NN = 5;

a = 0; b = 1;

xn@n_D := a + Hb − aL n

NN

Plotting with lines

Pf = Plot@f@xD, 8x, a, b<, PlotRange → 80, 2<, PlotStyle → 8Thick<D;
LinesVert =

Graphics@Table@Line@88xn@nD, 0<, 8xn@nD, Max@f@xn@nDD, f@xn@n − 1DDD<<D, 8n, 0, NN<DD;
LinesHoriz = Graphics@Table@Line@88xn@nD, f@xn@nDD<, 8xn@n + 1D, f@xn@nDD<<D,

8n, 0, NN − 1<DD;
Show@Pf, LinesVert, LinesHorizD

Plotting with rectangles
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Pf = Plot@f@xD, 8x, a, b<, PlotRange → 80, 2<, PlotStyle → 8Thick, Black<D;
Rectangles = Graphics@Table@8EdgeForm@8Thick, Dashed<D,

Pink, Rectangle@8xn@nD, 0<, 8xn@n + 1D, f@xn@nDD<D<, 8n, 0, NN − 1<DD;
Show@
Pf,

Rectangles,

PfD

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Geometrical interpretation of a difinite integral is the area below the curve representing the function f[x]. The exact area is

first approximated by the total area of the rectangles and then the limit if infinitesimaly small rectangles is taken. 

For increasing as above, the sum always underestimates the definite integral, whereas for decreasing functions it overesti-

mates the definite integral. 
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f@x_D := 1 − x2;

NN = 5;

a = 0; b = 1;

xn@n_D := a + Hb − aL n

NN

Pf = Plot@f@xD, 8x, a, b<, PlotRange → 80, 1<, PlotStyle → 8Thick, Black<D;
Rectangles = Graphics@Table@8EdgeForm@8Thick, Dashed<D,

Pink, Rectangle@8xn@nD, 0<, 8xn@n + 1D, f@xn@nDD<D<, 8n, 0, NN − 1<DD;
Show@
Pf,

Rectangles,

PfD

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Note that there is no left-right symmetry in this definition of the integral and the rectangles can be chosen in two different

ways, over- and underestimating the integral.
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f@x_D := 1 − x2;

NN = 10;

a = 0; b = 1;

xn@n_D := a + Hb − aL n

NN

Pf = Plot@f@xD, 8x, a, b<, PlotRange → 80, 1<, PlotStyle → 8Thick, Black<D;
Rectangles1 = Graphics@Table@8EdgeForm@8Thick, Dashed<D,

Pink, Rectangle@8xn@nD, 0<, 8xn@n + 1D, f@xn@nDD<D<, 8n, 0, NN − 1<DD;
Rectangles2 = Graphics@Table@8EdgeForm@8Thick, Dashed<D, LightBlue,

Rectangle@8xn@nD, 0<, 8xn@n + 1D, f@xn@n + 1DD<D<, 8n, 0, NN − 1<DD;
Show@Pf, Rectangles1, Rectangles2, PfD

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Nevertheless, the limit NØ¶ in both methods is the same.

ü  Numerical calculation of integrals

ü Quadrature formulas

Let us discuss the convergence of the sums IN  to the integral I. The difference DIN = IN - I  is due to the triangles located

below the curve above the rectangles. The area of these triangles can be estimated as 

∆IN =
1

2

‚
n=0

N−1

f '@xnD H∆xL2∼H∆xL2 N ∼∆x = h

This is the so-called first-order convergence that is slow and insatisfactory for numerical approximation of an integral by a

sum. Convergence can be strongly improved if one replaces rectangles by trapezias.
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f@x_D := Cos@xD;
NN = 4;

a = 0; b = π ê 2;
xn@n_D := a + Hb − aL n

NN

Pf = Plot@f@xD, 8x, a, b<, PlotRange → 80, 1<, PlotStyle → 8Thick, Black<D;
Trapezias = Graphics@

Table@8EdgeForm@8Thick, Dashed<D, Pink, Polygon@88xn@nD, 0<, 8xn@nD, f@xn@nDD<,
8xn@n + 1D, f@xn@n + 1DD<, 8xn@n + 1D, 0<<D<, 8n, 0, NN − 1<DD;

Show@
Pf,

TrapeziasD

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

This construction has the right-left symmetry, and the approximation of the integral has the form

‡
a

b

f@xD �x = limN→∞ ‚
n=0

N−1 1

2
Hf@xnD + f@xn+1DL ∆x, xn = a + Hb − aL n

N
, ∆x ≡ h =

b − a

N
,

or

‡
a

b

f@xD �x =
1

2
f@x0D + ‚

n=1

N−1

f@xnD +
1

2
f@xND ∆x + O Ih2M.

This  approximation of  the  integral  by the  sum, the  so-called trapezoidal  rule,  is  one  of  many quadrature  formulas  for

integrals. The difference of the trapezoidal rule and the rectangle formula used for the definition of the integral is only in the

coefficients in front of the boundary terms, here 1/2. It can be shown that the convergence of the trapezoidal frule is h2 that is

much better that the convergence of the rectangle formula.  

Generally, an integral can be represented by a sum of the form

‡
a

b

f@xD �x = ‚
n=0

N

wn f@xnD

where xn  are nodes and wn are weights. Optimizing positions of the nodes and values of the weights, very precise and fast

convergent quandatures can be constructed. In all cases the function is approximated by polynomials within the interval

between nodes and these polynomials are integrated resulting in a quadrature formula. One group of quadratures are those

with equidistant nodes, such as the rectangle and trapezoidal rules above. Approximating the function by quadratic or cubic

polynomials, one obtains more precise Simpson formulas in which weights are alternating. Durand's rule
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‡
a

b

f@xD �x =
2

5
f@x0D +

11

10
f@x1D + ‚

n=2

N−2

f@xnD +
11

10
f@xND +

2

5
f@xND ∆x .

is only slightly more complicated than the trapezoidal rule, all the weight except those at the four boundary points being

equal to Dx. Durand's rule is much more precise and fast converging than the trapezoidal rule. The order of its convergence

is difficult to find but one can investigate it practically comparing convergence of the rectangular, trapezoidal, and Durand

rules.
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f@x_D := Cos@xD;
a = 0; b = π ê 2.;
II = ‡

a

b

f@xD �x

xNn@NN_, n_D := a + Hb − aL n

NN

NMax = 50;

INRectangular@NN_D :=
b − a

NN
‚
n=1

NN

f@xNn@NN, nDD

INTrapezoidal@NN_D :=
b − a

NN

1

2
f@xNn@NN, 0DD + ‚

n=1

NN−1

f@xNn@NN, nDD +
1

2
f@xNn@NN, NNDD

INDurand@NN_D :=
b − a

NN

2

5
f@xNn@NN, 0DD +

11

10
f@xNn@NN, 1DD +

‚
n=2

NN−2

f@xNn@NN, nDD +
11

10
f@xNn@NN, NN − 1DD +

2

5
f@xNn@NN, NNDD

INRectangularList = Table@8NN, INRectangular@NND<, 8NN, 2, NMax<D;
INTrapezoidalList = Table@8NN, INTrapezoidal@NND<, 8NN, 2, NMax<D;
INDurandList = Table@8NN, INDurand@NND<, 8NN, 2, NMax<D;

P1 = Plot@II, 8NN, 3, 1.03 NMax<, PlotRange → 80.97, 1.001<, PlotStyle → 8Black, Thick<,
AxesLabel → 8"N", "IN"<, BaseStyle → 8FontSize → 14, FontFamily → "Times", Plain<D;

PINRectangularList = ListPlot@INRectangularList, PlotStyle → 8Green, PointSize@0.015D<D;
PINTrapezoidalList = ListPlot@INTrapezoidalList, PlotStyle → 8Blue, PointSize@0.015D<D;
PINDurandList = ListPlot@INDurandList, PlotStyle → 8Red, PointSize@0.015D<D;

Show@P1, PINRectangularList, PINDurandList, PINTrapezoidalListD

1.

10 20 30 40 50
N

0.975

0.980

0.985

0.990

0.995

1.000

IN

To better illustrate convergence of different quadrature rules, one can make a Log-Log plot of DIN = IN - I . Our expecta-

tion is

DIN = a hh = b N-h,

where h is the order of convergence (h = 1 for the rectangular rule). In the Log-Log form this relation is a straight line: 
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Log@DIN D = Log@bD - h Log@ND,

and h can be found from its slope.

NMax = 100;

∆INRectangularList = Table@8NN, II − INRectangular@NND<, 8NN, 2, NMax<D;
∆INTrapezoidalList = Table@8NN, II − INTrapezoidal@NND<, 8NN, 2, NMax<D;
∆INDurandList = Table@8NN, Abs@II − INDurand@NNDD<, 8NN, 2, NMax<D;
ListLogLogPlot@8∆INRectangularList, ∆INTrapezoidalList, ∆INDurandList<,
PlotRange → All, PlotStyle → 8Green, Blue, Red<, AxesLabel → 8"N", "∆IN"<,
BaseStyle → 8FontSize → 14, FontFamily → "Times", Plain<D

5 10 20 50 100
N

10-5

10-4

0.001

0.01

0.1

DIN

Indeed, all three dependences are asymptotically straight lines. Surprizingly, the slopes for the trapezoidal and Durand rules

are the same, that is, their order is h = 2. However, the coefficient b is by a factor 8 or so smaller for the Durand rule.

There are even more precise quadratures with equal weights for most of the nodes, except for the boundary terms. If the

function is exponentially small near the ends of the interval, contributions of the boundary terms become negligible and one

can use the simplest quadrature with all equal weights to achieve exponentially precise approximations for the integral. As an

example we can calculate the integral

1

π

‡
−∞

∞

�−x2 �x

1

PlotB 1.

π

�−x2, 8x, −6, 6<F

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

0.5

numerically using the simplest quadrature rule
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‡
a

b

f@xD �x = ‚
n=0

N

f@xnD

f@x_D :=
1.

π

�−x2;

a = −6; b = 6; H∗ outside this interval the function becomes very small ∗L

xNn@NN_, n_D := a + Hb − aL n

NN

NMax = 20;

IN@NN_D :=
b − a

NN
‚
n=0

NN

f@xNn@NN, nDD

INList = Table@8NN, IN@NND<, 8NN, 2, NMax<D
P1 = Plot@1, 8NN, 3, NMax<, PlotRange → 80.5, 1.5<, PlotStyle → 8Black, Thick<,

AxesLabel → 8"N", "IN"<, BaseStyle → 8FontSize → 14, FontFamily → "Times", Plain<D;
PINList = ListPlot@INList, PlotStyle → 8Red, PointSize@0.015D<D;
Show@P1, PINListD

882, 3.38514<, 83, 0.0826679<, 84, 1.69299<, 85, 0.641633<, 86, 1.16971<, 87, 0.930422<,
88, 1.02489<, 89, 0.992238<, 810, 1.00211<, 811, 0.9995<, 812, 1.0001<,
813, 0.999981<, 814, 1.<, 815, 1.<, 816, 1.<, 817, 1.<, 818, 1.<, 819, 1.<, 820, 1.<<

10 15 20
N

0.8

1.0

1.2

1.4

IN

Here the convergence is faster than everything we have seen before. To better see it, let us make a Log-Log plot of DIN

∆INList = Table@8NN, Abs@II − IN@NNDD<, 8NN, 2, NMax<D;
ListLogLogPlot@∆INList, AxesLabel → 8"N", "∆IN"<,
BaseStyle → 8FontSize → 14, FontFamily → "Times", Plain<D

10.05.0 20.03.0 15.07.0
N

10-10

10-8

10-6

10-4

0.01

1

DIN
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This is not a straight line and the values of DIN  become extremely small. The results suggest an exponential dependence of

DIN  on N. We will see that this dependence has the form

DIN = b ExpA-c N2E

so that 

Log@DIN D = Log@bD - c N2.

Let us thus plot Log@DIN D vs N2 that is expected to be a straight line.

∆INList2 = TableA9NN2, Abs@II − IN@NNDD=, 8NN, 2, NMax<E;
ListLogPlotA∆INList2, AxesLabel → 9"N2", "∆IN"=,
BaseStyle → 8FontSize → 14, FontFamily → "Times", Plain<E

100 200 300 400
N2

10-10

10-8

10-6

10-4

0.01

1

DIN

Returning to more sophisticated quadratures, one can choose positions of the nodes in a way to achieve a faster convergence.

The  corresponding quadratures  with  non-equidistant  nodes  have  been  proposed  by Gauss  and  they are  superior  to  the

quadratures with equidistant nodes. 

Since highly efficient quadratures are implemented in the software, it does not make sense to study them in detail in our

course.

ü Numerical integration with Mathematica

Mathematica computes integrals numerically with the help of NIntegrate command

In[5]:= NIntegrateB �−x2

1 + x2
, 8x, −∞, ∞<F

Out[5]= 1.34329

that is equivalent to

In[6]:= NB‡
−∞

∞ �−x2

1 + x2
�xF

Out[6]= 1.34329

This particular integral can be calculated analytically via an error function
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In[8]:= ‡
−∞

∞ �−x2

1 + x2
�x

N@%D
Out[8]= � π Erfc@1D
Out[9]= 1.34329

but if the limits are finite, numerical evaluation is the only option. For numerical calculation, Mathematica can use a lot of

different quadratures. Using NIntegrate, one can specify which method should be used as an option. At least for smooth

functions as above, there is no big difference between the methods. 

Problems in numerical integration can arise if the integrand is singular

In[18]:= NIntegrateB 1

Abs@Hx − 1L Hx − 1.5L Hx − 2.3L Hx − 3LD3ê4
, 8x, 0, ∞<F

NIntegrate::ncvb : NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =
82.29999999999999982236431606000656554438399174033108762779787490503 <.
NIntegrate obtained 26.5073

-0.0000396187 Â and 0.002646888304811895` for the integral and error estimates. à

Out[18]= 26.5073 − 0.0000396187 �

Here  the  imaginary part  is  an  artefact  and the  integrator  complains  about  recursions.  (Integral  is  computed recursively

adapting the number of integration points) After adding the option for maximal number of recursions it becomes better

In[19]:= NIntegrateB 1

Abs@Hx − 1L Hx − 1.5L Hx − 2.3L Hx − 3LD3ê4
, 8x, 0, ∞<, MaxRecursion → 100F

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of the

integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

Out[19]= 26.5047 − 0.000406146 �

although the imaginary part is still there. Specifying positions of the singularities removes the imaginary part

In[25]:= NIntegrateB 1

Abs@Hx − 1L Hx − 1.5L Hx − 2.3L Hx − 3LD3ê4
, 8x, 0, 1, 1.5, 2.3, 3, ∞<F

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of the

integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb : NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =
81.50000000000000000004491444243086194495429070961375501233514494207 <.
NIntegrate obtained 26.503904173433682` and

0.0003573562230733503` for the integral and error estimates. à

Out[25]= 26.5039
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In[26]:= NIntegrateB 1

Abs@Hx − 1L Hx − 1.5L Hx − 2.3L Hx − 3LD3ê4
,

8x, 0, 1, 1.5, 2.3, 3, ∞<, MaxRecursion → 100F
NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of the

integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

Out[26]= 26.5033

In this case the result was not bad in all cases. But the problems with singularities can become more severe in the case of

multi-dimentional integrals.

Another example is integration of a strongly oscillating function SinA 1

x2
E

In[41]:= PlotBSinB 1

x2
F, 8x, 0, 10<, PlotRange → AllF

Out[41]=
2 4 6 8 10

-1.0

-0.5

0.5

1.0

Straightforward numerical integration yields
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In[36]:= NIntegrateBSinB 1

x2
F, 8x, 0, ∞<F

NIntegrateBSinB 1

x2
F, 8x, 0, ∞<, MaxRecursion → 100F

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of the

integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 80.0405914<.
NIntegrate obtained 1.2495271019265222` and

0.005010490593063631` for the integral and error estimates. à

Out[36]= 1.24953

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of the

integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :

The global error of the strategy GlobalAdaptive has increased more than 400 times. The global error is expected

to decrease monotonically after a number of integrand evaluations. Suspect one of

the following: the working precision is insufficient for the specified precision goal;

the integrand is highly oscillatory or it is not a HpiecewiseL smooth function; or the

true value of the integral is 0. Increasing the value of the GlobalAdaptive option

MaxErrorIncreases might lead to a convergent numerical integration. NIntegrate obtained

1.2529885263650704` and 0.0009725983946760894` for the integral and error estimates. à

Out[37]= 1.25299

The accuracy in both cases is insufficient, as follows from Mathematica warnings and comparison with the exact value of

this integral

In[34]:= IntegrateBSinB 1

x2
F, 8x, 0, ∞<F

N@%D

Out[34]=

π

2

Out[35]= 1.25331

In such cases is may be useful to analytically transform the integral before numerical integration. With the new variable

y = 1ë x2 one obtains 

x =
1

y

, dx = −
1

2

dy

y3ê2
, I = ‡

0

∞

SinB 1

x2
F �x =

1

2
‡
0

∞ Sin@yD
y3ê2

�y

and

In[39]:= NIntegrateB 1
2

Sin@yD
y3ê2

, 8y, 0, ∞<F

Out[39]= 1.25331

without any numerical problems. Indeed, the integrand 
Sin@yD
y3ê2  is less oscillatory than the original SinA 1

x2
E:
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In[48]:= PlotB 1
2

Sin@yD
y3ê2

, 8y, 0, 30<, PlotRange → 8−0.1, 0.5<F

Out[48]=

5 10 15 20 25 30

-0.1

0.1

0.2

0.3

0.4

0.5

ü  Analytical calculation of definite integrals

If the indefinite integral F[x] of f[x] is known, the definite integral of f[x] is given by the well-known formula

‡
a

b

f@xD �x = F@bD − F@aD.

If F[x] cannot be obtained, still in some cases definite integrals, especially with infinite limits, can be analyticaly calculated

by special methods or tricks. For instance, the integral arising in statistical thermodynamics

In[61]:= ‡
0

∞ x

�x − 1
�x

Out[61]=

π2

6

can be reduced to the series

In[64]:= ‚
n=1

∞ 1

n2

Out[64]=

π2

6

by expanding the integrand into the geometrical progression and integrating the resulting terms as

In[62]:= ‡
0

∞

x �−n x �x

Out[62]= IfBRe@nD > 0,
1

n2
, Integrate@�−n x x, 8x, 0, ∞<, Assumptions → Re@nD ≤ 0DF

One obtains

‡
0

∞ x

�x − 1
�x = ‡

0

∞ x �−x

1 − �−x
�x = ‡

0

∞

x I�−x + �−2 x + �−3 x + ...M �x = 1 +
1

22
+

1

32
+ ... =

π2

6

Summation of this series is more involved and it can be done by expressing it via a double integral that can be analytically

calculated.

The most powerful method of calculating definite integrals is using complex calculus. 
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If the integrand depends on parameters, the possibility to calculate the definite integral depends of these parameters. Thus

the result includes conditions on the parameters as in the integral above. To obtain a nicer output in the cases when the

convergence conditions are clear, one can use the option Assumptions in Integrate:

In[66]:= Integrate@x �−n x, 8x, 0, ∞<, Assumptions → n > 0D

Out[66]=

1

n2

In this way one can define a function like

In[67]:= fn@n_D := Integrate@x �−n x, 8x, 0, ∞<, Assumptions → n > 0D
fn@nD

Out[68]=

1

n2

that is impossible without using Assumptions

ü Convergence of integrals

Integrals can be convergent or divergent at singular points and at infinity. The most frequent type of singularity is a power

singularity Hx - aLa. The integral can also contain a non-singular function having a finite value at the singularity. Integral

‡
a

bHx − aLα f@xD �x

converges if a > −1 independently of the exact form of f[x] that can be replaced by f[a] for the investigation of convergence.

For −1 < a < 0 the integrand diverges and numerical calculation becomes slightly more difficult. To avoid numerical calculat-

ing a diverging function, one can rewrite the integral in the form

‡
a

bHx − aLα f@xD �x = f@aD ‡
a

bHx − aLα + ‡
a

bHx − aLα Hf@xD − f@aDL �x =
f@aD
α + 1

Hx − aLα

a

b

+

‡
a

bHx − aLα Hf@xD − f@aDL �x =
f@aD
α + 1

Hb − aLα + ‡
a

bHx − aLα Hf@xD − f@aDL �x.

Here the singular part of the integral has been calculated analytically and the remainder is an integral of a non-diverging

function. Indeed, near x=a one has

Hx − aLα Hf@xD − f@aDL ≈ Hx − aLα f'@aD Hx − aL∼Hx − aLα+1.

This method can be used in many cases to kill singularities. If the integrand behaves as a power at infinity,

‡
a

∞

x
α f@xD �x, f@∞D = const,

the integral converges if a < −1, independently of the exact form of f[x]. By comparison with this type of integrals, one can

investigate convergence of series.
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