
Multiple integrals

Definition

Multiple integrals are definite integrals and they arise in many areas of physics, in particular, in mechanics, where volumes,

masses, and moments of inertia of bodies are of interest. Definition of multiple integrals is the extention of the definition of

simple integrals: The volume of integration V is being split into many small cubes or other small elements of the volumes

∆Vi and the integral is defined as the limit of the sum. For a 3d integral one defines

‡
V

f@rD �V ≡ ‡ ‡ ‡
V

f@x, y, zD �x �y �z = limN→∞ ‚
i=1

N

f@riD ∆Vi

In particular, for the moment of inertia around the z axis Izz one has

Izz = ρ ‡
V

Ix2 + y2M �V ≡ ρ ‡ ‡ ‡
V

Ix2 + y2M �x �y �z = limN→∞ ‚
i=1

N

ri,¶
2 ∆Mi

where ∆Mi = r ∆Vi and r is the mass density. 

Recursive calculation of integrals

Another equivalent definition of a multiple integral is recursive and reduces it to simple integrals. In particular, a double

integral can be introduced as the repeated integral of the type  

‡ ‡ f@x, yD �x �y = ‡
x1

x2

F@xD �x, F@xD = ‡
y1@xD
y2@xD

f@x, yD �y.

It can be shown that the result does not depend on the order of integrations over x and y and is the same as according to the

symmetric definition above. As an example les us calculate the area of a rectangle -a/2 < x < a/2,  -b/2 < y < b/2: 

S = ‡ ‡
−aê2 < x < aê2
−bê2 < y < bê2

�x �y = ‡
−aê2
aê2

�x ‡
−bê2
bê2

�y = ‡
−aê2
aê2

�x b = ab

The same can be done by the Mathematica command  

‡
−bê2

bê2
‡
−aê2

aê2
�x �y

a b

or

‡
−aê2

aê2
‡
−bê2

bê2
�y �x

a b

or

Integrate@1, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<D
a b

Another example is the area of a circle r < R.   



S = ‡ ‡
r < R

�x �y = ‡
−R

R

�x ‡
− R2−x2

R2−x2

�y =

‡
−R

R

�x 2 R2 − x2 = x R2 − x2 + R2 ArcTanB x

R2 − x2

F
−R

R

= πR2

In this case, there is no elegant Mathematica command to integrate over the region x2 + y2 < R2. Instead, one has to do work

and set the integration limits explicitly 

‡
−R

R

‡
− R2−x2

R2−x2

�y �x êê Timing

:7.672, π R R2 >
or

IntegrateB1, 8x, −R, R<, :y, − R2 − x2 , R2 − x2 >, Assumptions → R > 0F êê Timing

90.234, π R2=
Ellipsoid is defined by the equation

x2

a2
+
y2

b2
+
z2

c2
= 1

The volume of the ellipsoid is given by the integral

Vellipsoid = IntegrateB1, 8x, −a, a<, :y, −b 1 −
x2

a2
, b 1 −

x2

a2
>,

:z, −c 1 −
x2

a2
−
y2

b2
, c 1 −

x2

a2
−
y2

b2
>, Assumptions → 8a > 0, b > 0, c > 0<F

4

3
a b c π

For the sphere one obtains

Vsphere = Vellipsoid ê. 8a → R, b → R, c → R<
4 π R3

3

ü Moments of inertia of the cone

Let us calculate the momentz of inertia of a cone with the base of radius R and height h. Putting the origin of the coordinate

system in the apex of the cone, the z axis being directed from the apex to the base of the cone, one obtains
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Izz = ρ IntegrateBx2 + y2, 8z, 0, h<, :x, −
z

h
R,

z

h
R>,

:y, −
z

h
R

2

− x2 ,
z

h
R

2

− x2 >, Assumptions → 8h > 0, R > 0<F

1

10
h π R4 ρ

Ixx = ρ IntegrateBy2 + z2, 8z, 0, h<, :x, −
z

h
R,

z

h
R>,

:y, −
z

h
R

2

− x2 ,
z

h
R

2

− x2 >, Assumptions → 8h > 0, R > 0<F

1

20
h π R2 I4 h2 + R2M ρ

Iyy = Ixx by symmetry. It is convenient to express the density r via the mass of the cone M using r = M/V. With

V = IntegrateB1, 8z, 0, h<, :x, −
z

h
R,

z

h
R>,

:y, −
z

h
R

2

− x2 ,
z

h
R

2

− x2 >, Assumptions → 8h > 0, R > 0<F

1

3
h π R2

one obtains, finally

Izz = Izz ê. ρ →
M

V

Ixx = Ixx ê. ρ →
M

V

3 M R2

10

3

20
M I4 h2 + R2M

The moments of inertia of the cone above are defined with respect to its apex. Also of interest are moments of inertia with

respect to the center of mass rCM defined by 

rCM =
1

V
‡
V

r �V, ρ = const

The center of mass of the cone is located, by symmetry, on its z axis, 

zCM =
1

V
IntegrateBz, 8z, 0, h<, :x, −

z

h
R,

z

h
R>,

:y, −
z

h
R

2

− x2 ,
z

h
R

2

− x2 >, Assumptions → 8h > 0, R > 0<F

3 h

4
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Now putting the origin of the coordinate system in the center of mass, one obtains another value of the xx moment of inertia,

IxxCM

IxxCM =
M

V
IntegrateBy2 + Hz − zCML2, 8z, 0, h<, :x, −

z

h
R,

z

h
R>,

:y, −
z

h
R

2

− x2 ,
z

h
R

2

− x2 >, Assumptions → 8h > 0, R > 0<F

3

80
M Ih2 + 4 R2M

Let us check the relation

Ixx = Ixx
HCML + Ma2,

where a is the distance between the center of mass and the point used in the definition of Ixx

a = zCM;

Ixx == IxxCM + M a2 êê Simplify

True

Numerical calculation of multiple integrals

Numerical calculation of multiple integrals in Mathematica is done by the similar command as for their analytical calcula-

tion. For instance, consider the trips integral P[G] that appears in the theory of magnetism

λ@x_, y_, z_D =
1

3
HCos@xD + Cos@yD + Cos@zDL;

P@G_D :=
1

H2 πL3 ‡
−π

π

‡
−π

π

‡
−π

π 1

1 − G λ@x, y, zD �x �y �z

This and related integrals can be calculated analytically but Mathematica cannot do it because analytical calculation requires

a dosen of nontrivial transformations. The command

N@P@1DD
$Aborted

Does not  produce  any result  because  Mathematica  attempts  first  to calculate  the  integral  analytically and then  find its

numerical value at G = 1. To proceed, one has to define this function as a numeric integral

P@G_D :=
1

H2 πL3
NIntegrateB 1

1 − G λ@x, y, zD , 8x, −π, π<, 8y, −π, π<, 8z, −π, π<F

P[1]  is the famous Watson integral W. In this case the integrand becomes divergent at x = y = z = 0

Normal@Series@1 − λ@x, y, zD, 8x, 0, 2<, 8y, 0, 2<, 8z, 0, 2<DD
x2

6
+
y2

6
+
z2

6

This is why Mathematica complains numerically calculating this integral and the accuracy is lower than usual, although not

bad.
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P@1D
NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of the

integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

1.51639

Consulting the Help and increasing the order of the Mutidimensional rule solves the accuracy problem

P@G_D :=
1

H2 πL3
NIntegrateB 1

1 − G λ@x, y, zD , 8x, −π, π<, 8y, −π, π<,

8z, −π, π<, Method → 8"MultiDimensionalRule", "Generators" → 6<F

P@
1D

1.51639

Also in this case one can analytically integrate over one of the variables and then integrate over the two remaining variables

without problems and faster

PP@G_, x_, y_D =
1

2 π
IntegrateB 1

1 − G λ@x, y, zD, 8z, −π, π<, GenerateConditions → FalseF

3 2

Log@2D − LogB− 2 H−3 − G + G Cos@xD + G Cos@yDL
−18 − G2 Cos@2 xD + 12 G Cos@yD − 4 G Cos@xD H−3 + G Cos@yDL − G2 Cos@2 yD

F +

LogB −3 − G + G Cos@xD + G Cos@yD
−18 − G2 Cos@2 xD + 12 G Cos@yD − 4 G Cos@xD H−3 + G Cos@yDL − G2 Cos@2 yD

F ì

Kπ −18 − G2 Cos@2 xD + 12 G Cos@yD − 4 G Cos@xD H−3 + G Cos@yDL − G2 Cos@2 yD O

P@G_D :=
1

H2 πL2
NIntegrate@PP@G, x, yD, 8x, −π, π<, 8y, −π, π<D

P@1D
1.51639

Change of variables in multiple integrals

ü Polar, spherical, or cylindrical coordinates

If the integration region has a circular, spherical, or cylindrical symmetry, it is convenient to use polar, spherical, or cylindri-

cal coordinates.

ü Polar coordinates

In two dimensions, one can use the polar coordinates (r,f), instead of the Descarde cordinates (x,y). The relation betwen the

two reads
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x = r Cos@φD
y = r Sin@φD

The infinitesimal area element dS in the polar coordinates is a nearly-square with sides dr and rdf, that is

dS = rdrdφ

Now two-dimensional integrals can be rewritten as

‡ ‡
S

f@x, yD �x �y = ‡ ‡
S

f@r Cos@φD, r Sin@φDD r �r �φ,

with the appropriate change of integration limits. In particular, the area of a circle is given by a simple integral

Scircle = ‡
0

R

‡
0

2 π

r �φ �r

π R2

or, in the factorized form,

Scircle = ‡
0

R

r �r ‡
0

2 π

�φ

π R2

The moments of inertia of a circle around the z and x axes are 

Izz = ρ ‡ ‡
S

Ix2 + y2M �x �y = ρ ‡ ‡
S

r3 �r �φ

Ixx = ρ ‡ ‡
S

y2 �x �y = ρ ‡ ‡
S

r3 Sin@φD2 �r �φ

where r is the surface mass density. Integration and substitution r = M/S yields

Izz =
M

Scircle
‡
0

R

r3 �r 2 π

Ixx =
M

Scircle
‡
0

R

r3 �r ‡
0

2 π

Sin@φD2 �φ

M R2

2

M R2

4

As an application of the polar coordinates, let us consider the trick of calculating the Gaussian integral

I = ‡
−∞

∞

−x2 �x.

Square of this integral can be represented as the product of two similar integrals over x and y, a double integral that can be

rewriten in the polar coordinates and easily calculated

I2 = ‡
−∞

∞

−x2 �x ‡
−∞

∞

−y2 �y = ‡
−∞

∞

‡
−∞

∞

−Hx2+y2L �x �y =

‡
0

∞

‡
0

2 π

−r2 r �φ �r = 2 π ‡
0

∞

−r2 r �r = π ‡
0

∞

−r2 dr2 = −π−r2

0

∞

= π.

Thus

I = π .
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Cylindrical coordinates

Cylindrical  coordinates  is  the  straightforward  extention  of  the  polar  coordinats  into  3  dimensions  leaving  the  z  axis

untouched.

x = r Cos@φD
y = r Sin@φD
z = z

The infinitesimal volume in cylindrical coordinates reads

dV = rdrdφdz

Now three-dimensional integrals can be rewritten as

‡ ‡ ‡
V

f@x, y, zD �x �y �z = ‡ ‡ ‡
V

f@r Cos@φD, r Sin@φD, zD r �r �φ �z

Moment if inertia Izz of a cylinder is given by the same formula as that of a disc. Let us calculate Ixx  with respect to the

center of mass of a cylinder with radius R and height h.

Vcylinder = π R2 h;

Ixx =
M

Vcylinder
‡
−hê2

hê2
‡
0

R

‡
0

2 πIr2 Sin@φD2 + z2M r �φ �r �z

1

12
M Ih2 + 3 R2M

For a very short cilinder, h`R, the result for the disc is reproduced,

Ixx ê. h → 0

M R2

4

For a very long cilinder, hpR, the result for the thin rod is reproduced,

Ixx ê. R → 0

h2 M

12

Cylindrical coordinate system is convenient to calculate the volume of a thorus because the thorus has a rotational symmetry

around the z axis and integrarion over f yields simply 2p. 
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R = 3; r = 1;

x@u_, v_D := HR + r Cos@vDL Sin@uD;
y@u_, v_D := HR + r Cos@vDL Cos@uD;
z@u_, v_D := r Sin@vD;
ParametricPlot3D@8x@u, vD, y@u, vD, z@u, vD<, 8u, 0, 2 Pi<, 8v, 0, 2 Pi<, PlotStyle → 8Red<D

The remaining integration is over a circle of radius r centered at the distance R from the z axis.

R = 3; r = 1; z = 0.5;

ShowBPlot@Null, 8ρ, 0, R + 2 r<, PlotRange → 8−1.5, 1.5<, AxesLabel → 8"ρ", "z"<D,
Graphics@8Yellow, Rectangle@80, −r<, 8R, r<D<D,
Graphics@8Orange, Disk@8R, 0<, rD<D,
GraphicsBArrowB::R − r2 − z2 , z>, :R + r2 − z2 , z>>FF,
Graphics@Arrow@88R, −r<, 8R, r<<DD,
Graphics@Disk@8R, z<, 0.03DD

F

1 2 3 4 5
r

-1.5

-1.0

-0.5

0.5

1.0

1.5

z

Vthorus = 2 π ‡
−r

r

‡
R− r2−z2

R+ r2−z2

ρ �ρ �z

2 π2 r r2 R

or better
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Vthorus =

2 π IntegrateBρ, 8z, −r, r<, :ρ, R − r2 − z2 , R + r2 − z2 >, Assumptions → 8R > 0, r > 0<F
2 π2 r2 R

It is interesting that one can straighten the thorus replacing it by the cylinder of radius r and height 2pR. The volume remains

the same and given by V = Ipr2)(2pR) = 2 π2 r2 R. The moment of inertia of the thorus with respect to the z axis is given by

Izz =
M

Vthorus
2 π IntegrateBρ3, 8z, −r, r<,

:ρ, R − r2 − z2 , R + r2 − z2 >, Assumptions → 8R > 0, r > 0<F êê Simplify

M
3 r2

4
+ R2

In the limit r = 0 this reduces to the moment of inertia of a ring MR2.

ü Spherical coordinates

Spherical coordinates (r,J,f) are defined by

x = r Sin@ϑD Cos@φD
y = r Sin@ϑD Sin@φD
z = r Cos@ϑD

where J is the polar angle and f is the azimuthal angle. The infinitesimal volume in the spherical coordinates is a nearly-

cube with the sides dr, rdJ, r Sin[J]df, that is,

dV = r2 Sin@ϑD drdϑdφ
As an illustration, let us calculate the volume of a sphere

Vsphere = ‡
0

R

‡
0

π

‡
0

2 π

r2 Sin@ϑD �φ �ϑ �r

4 π R3

3

or, in the factorized form

Vsphere = ‡
0

R

r2 �r ‡
0

π

Sin@ϑD �ϑ ‡
0

2 π

�φ

4 π R3

3

This integration is much simpler than that for the ellipsoid in the Descarde coordinates above. On the oher hand, integration

in the spherical coordinates is simple only for a sphere, but for an ellipsoid it becomes complicated. 

Let  us calculate  the  moment of  inertia  of a  solid  sphere  in  the  spherical coordinates.  To find Izz, one  has to integrate

x2 + y2 = r2 Sin@JD2 over the sphere's volume

Izz =
M

Vsphere
‡
0

R

r4 �r ‡
0

π

Sin@ϑD3 �ϑ ‡
0

2 π

�φ

2 M R2

5
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General change of variables

General change of variables (x,y,z)Ø(u,v,w) etc in multi-dimensional integrals can be effectuated by  

‡ ‡ ‡ f@x, y, zD �x �y �z =

‡ ‡ ‡ f@x@u, v, wD, y@u, v, wD, z@u, v, wDD ∂Hx, y, zL
∂Hu, v, wL �u �v �w,

where J[u, v, w]ª
∂Hx,y,zL
∂Hu,v,wL  is the Jacobian of the transformation defined as a determinant of partial derivatives

∂Hx, y, zL
∂Hu, v, wL ≡

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

In fact the Jacobian is determined as the absolute value of this. The results above are valid in all dimentions. For instance,

the Jacobian of the transition to the polar coordinate system is

∂Hx, yL
∂Hr, φL ≡

∂x

∂r

∂x

∂φ

∂y

∂r

∂y

∂φ

= ¢ Cos@φD −r Sin@φD
Sin@φD r Cos@φD ¶ = r I Cos@φD2 + Sin@φD2M = r

in accordance with our previous consideration. Let us calculate the Jacobian of the spherical coordinate system with the help

of Mathematica. 

x = r Sin@ϑD Cos@φD;
y = r Sin@ϑD Sin@φD;
z = r Cos@ϑD;

J = DetB
∂rx ∂ϑx ∂φx

∂ry ∂ϑy ∂φy

∂rz ∂ϑz ∂φz

F êê Simplify

r2 Sin@ϑD
again in accordance with previous considerations.

As an illustration of a general change of variables, let us calculate the double integral

II = ‡
0

1

‡
0

1 1

1 − x2 y2
�x �y

π2

8

In terms of new variables (u,v) so that 

x =
Sin@uD
Cos@vD ; y =

Sin@vD
Cos@uD ;

the denominator of the integrand becomes

1 − Tan@uD2 Tan@vD2
On the other hand, the Jacobian is
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J = DetB ∂ux ∂v x

∂uy ∂v y
F êê Simplify

1 − Tan@uD2 Tan@vD2

Thus in the new variables the integrand is 1. It remains to figure out the integration region in (u,v). Let us first invert the

transformation

SolveB:x ==
Sin@uD
Cos@vD , y ==

Sin@vD
Cos@uD >, 8u, v<F

Solve::ifun :

Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete

solution information. à

::v → −ArcSecB− −1 + x2 y2

−1 + y2

F, u → −ArcSinB x −1 + y2

−1 + x2 y2

F>,

:v → ArcSecB− −1 + x2 y2

−1 + y2

F, u → −ArcSinB x −1 + y2

−1 + x2 y2

F>,

:v → −ArcSecB −1 + x2 y2

−1 + y2

F, u → ArcSinB x −1 + y2

−1 + x2 y2

F>,

:v → ArcSecB −1 + x2 y2

−1 + y2

F, u → ArcSinB x −1 + y2

−1 + x2 y2

F>>

Take the positive solution

vxy@x_, y_D := ArcSecB −1 + x2 y2

−1 + y2

F

uxy@x_, y_D := ArcSinB x −1 + y2

−1 + x2 y2

F

Draw the four lines in the (u,v) plane that corresponds to the four sides of the square in the (x,y) plane. As our transformation

becomes singular at x = 1 and y = 1, go a bit away from these lines.
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a = 0.00000000001;

Show@
ParametricPlot@8uxy@x, 0D, vxy@x, 0D<,
8x, 0, 1 − a<, PlotRange → All, PlotStyle → 8Thick, Green<D,

ParametricPlot@8uxy@x, 1 − aD, vxy@x, 1 − aD<, 8x, 0, 1 − a<,
PlotRange → All, PlotStyle → 8Thick, Red<D,

ParametricPlot@8uxy@0, yD, vxy@0, yD<, 8y, 0, 1 − a<,
PlotRange → All, PlotStyle → 8Thick, Black<D,

ParametricPlot@8uxy@1 − a, yD, vxy@1 − a, yD<, 8y, 0, 1 − a<,
PlotRange → All, PlotStyle → 8Thick, Blue<D

D

0.5 1.0 1.5

0.5

1.0

1.5

Thus the integration region is bordered by the lines 

u = 0, v = 0, u + v =
π

2
.

The integral is equal to the area of this triangle,

II =
1

2
×
π

2
×
π

2
=

π2

8

Let us now express our integral via series expanding the integrand

II = ‡
0

1

‡
0

1 1

1 − x2 y2
�x �y =

‡
0

1

‡
0

1J1 + x2 y2 + Ix2 y2M2 + Ix2 y2M3 + ...N �x �y = 1 +
1

32
+

1

52
+

1

72
+ ...

This allows to calculate the series

S = ‚
n=1

∞ 1

n2

π2

6
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The sum of odd terms of this series is Sodd =
π2

8
. The sum of its even terms is

Seven =
1

22
+

1

42
+

1

62
+ ... =

1

4
1 +

1

22
+

1

32
+ ... =

1

4
S

Thus

S = Seven + Sodd =
1

4
S +

π2

8

and S =
π2

6
.
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