
Systems of many ordinary differential equations: 

Molecular dynamics

Many particles with interaction in 2 dimensions

Theory

ü Statistical distribution at equilibrium

If the gas of particles is rarified, collisions between particles serve to establish thermodynamic equilibrium in which potential

energy of particle's interaction does not play a role. At equilibrium, the components of the particles' velocities satisfy the

Maxwell distribution
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etc. This distribution function is normalized by 

‡ �N = N

and the average kinetic energy of the motion along the x direction is given by
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Let  us  consider  now  the  distribution  over  kinetic  energies  for  the  particles  moving  in  two  dimensions.  Replacing

�vx�vy =2pv„v, one obtains
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The average kinetic energy reads
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that is, twice as much as before because we take into account motions along both x and y axes. The quadratic dispersion of

the kinetic energy at equilibrium ∆Ek is given by
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the same as the average kinetic energy.

ü Approaching equilibrium

Starting from any initial state of a gas, collisions between particles slowly make the system relax to the equilibrium described

by the Maxwell distribution above. To illustrate the process of approaching the equilibrium, we start with, say, a state in

which all particles in a container move to the right with the kinetic energy kB T  per particle and run a molecular dynamic

(MD) simulation solving Newtonean equations of motion for each of N  weakly interacting particles in a container described

by a confining potential.

After several elastic collisions with the walls of the container, the particles will be equidistributed over directions of their

velocities. This process is called chaotization. However,  in the absence of collisions, each particle will  retain its kinetic

energy, except for short moments of hitting the walls of the container. Thus, after chaotization, the particles will have the

correct value of the average kinetic energy Ek = kB T but the energy dispersion ∆Ek  will be zero. Then, because of rarer

collisions,  ∆Ek  will  slowly increase  to its  asymptotic  value  kB T  that  corresponds  to  the  equilibrium.  Thus  the  energy

dispersion ∆Ek can be used as an indicator of relaxation. 
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Parameters and definitions

NPart = 50; H∗ Number of particles ∗L
tMax = 1000; H∗ Maximal time of the calculation ∗L
m = 1; H∗ Mass of a particle ∗L
kB = 1; H∗ Boltzmann constant ∗L

H∗ Interaction between the particles ∗L
rInt = .01; H∗ Set to zero to kill interaction ∗L
PowInt = 4; UInt@r_D :=

rInt

r

PowInt

;

H∗ Confinement of the particles ∗L
rConf = 10; PowConf = 50; UConf@r_D :=

r

rConf

PowConf

;

H∗ Total potential energy ∗L
U := ‚

i=1

NPart

UConfB x@iD@tD2 + y@iD@tD2 F +

‚
i=1

NPart

‚
j=1

i−1

UIntB Hx@iD@tD − x@jD@tDL2 + Hy@iD@tD − y@jD@tDL2 F

H∗ Initial condition for particle's speed ∗L
T = 1; H∗ Temperature of the system ∗L

v0x =
2 kB T

m
; H∗ The whole thermal energy in the x−motion ∗L

v0y = 0; H∗ and no energy in the y motion ∗L

tConf =
rConf

v0x
; H∗ Time to cross the confinement region ∗L

H∗ Initial localization for particle's positions ∗L
aIni = 0.5 rConf; H∗ In the initial state particles

are randomly localized within a square of side aIni ∗L

Plot@8UInt@Abs@r − 0.5 rConfDD, UConf@rD<, 8r, 0, 1.1 rConf<, PlotRange → 80, 2<D
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Equations of motions and their solution

TimingA
Equations = FlattenATableA9

m vx@iD'@tD 	 −∂x@iD@tDU, x@iD'@tD == vx@iD@tD,
m vy@iD'@tD 	 −∂y@iD@tDU, y@iD'@tD == vy@iD@tD

=, 8i, 1, NPart<EE;
E

IniConds = Join@
Flatten@Table@8

x@iD@0D 	 RandomReal@8−aIni, aIni<D,
y@iD@0D 	 RandomReal@8−aIni, aIni<D

<, 8i, 1, NPart<DD,
Flatten@Table@8vx@iD@0D 	 v0x, vy@iD@0D 	 v0y<, 8i, 1, NPart<DD

D;

Vars = Flatten@Table@8x@iD, vx@iD, y@iD, vy@iD<, 8i, 1, NPart<DD;

Timing@
Sol = NDSolve@Join@Equations, IniCondsD, Vars, 8t, 0, tMax<, MaxSteps → 10000 000D;

D

xt@i_D@t_D := x@iD@tD ê. Sol@@1DD; vxt@i_D@t_D := vx@iD@tD ê. Sol@@1DD;
yt@i_D@t_D := y@iD@tD ê. Sol@@1DD; vyt@i_D@t_D := vy@iD@tD ê. Sol@@1DD;

82.938, Null<
88.797, Null<

Plotting results

ü Without interaction

Trajectory of a particle in the absence of interactions, rInt ã 0, is regular.

4   Mathematical_physics-11-Molecular_dynamics.nb



ii = 1;

Show@
ParametricPlot@8xt@iiD@tD, yt@iiD@tD<, 8t, 0, tMax<,
PlotRange → 8−1.01 rConf, 1.01 rConf<, PlotPoints → 300D,

Graphics@8
8Thick, Circle@80, 0<, rConfD<
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Kinetic energy of a particle has many narrow dips due to collisions with the walls, but on average kinetic energy is conserved
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PlotB m
2

Ivxt@iiD@tD2 + vyt@iiD@tD2M, 8t, 0, tMax<, PlotPoints → 300, PlotRange → AllF

PlotB m
2

Ivxt@iiD@tD2 + vyt@iiD@tD2M, 8t, 0, 0.02 tMax<, PlotRange → AllF
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ü With interaction

Trajectory of a particle in the presence of interactions, rInt > 0, shows collisions with other particles and looks random,

although it is deterministic.
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ii = 1;

Show@
ParametricPlot@8xt@iiD@tD, yt@iiD@tD<, 8t, 0, tMax<,
PlotRange → 8−1.01 rConf, 1.01 rConf<, PlotPoints → 300D,

Graphics@8
8Thick, Circle@80, 0<, rConfD<
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Kinetic energy of a particle has many narrow dips due to collisions with the walls and has jumps because or rare collisions

with other particles
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PlotB m
2

Ivxt@iiD@tD2 + vyt@iiD@tD2M, 8t, 0, tMax<, PlotPoints → 300F
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Analysis of the energy distribution

ü Definitions

Ekx@i_D@t_D :=
m

2
vxt@iD@tD2 H∗ Kinetic energy of the x−motion of particle i ∗L

Eky@i_D@t_D :=
m

2
vyt@iD@tD2 H∗ Kinetic energy of the y−motion of particle i ∗L

Ek@i_D@t_D := Ekx@iD@tD + Eky@iD@tD

EkxAvr@t_D :=
1

NPart
‚
i=1

NPart

Ekx@iD@tD H∗ Average kinetic energies of the particles ∗L

EkyAvr@t_D :=
1

NPart
‚
i=1

NPart

Eky@iD@tD

EkAvr@t_D :=
1

NPart
‚
i=1

NPart

Ek@iD@tD

∆Ek@t_D :=
1

NPart
‚
i=1

NPart

HEk@iD@tD − EkAvr@tDL2 ; H∗ Energy dispersion ∗L

∆Ek@t_D :=
1

NPart
‚
i=1

NPart

Ek@iD@tD2 − EkAvr@tD2 ; H∗ Energy dispersion rearranged ∗L
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ü Without interaction

Direction of motion of one particle changes because of collision with the container walls and the energies of motion along x

and y are converted into each other.

ii = 1;

Plot@8Ekx@iiD@tD, Eky@iiD@tD<, 8t, 0, 0.2 tMax<,
PlotRange → All, PlotStyle → 88Blue, Thick<, 8Red, Thick<<D
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However, the total kinetic energy is conserved, except for the dips due to collision with the container walls

ii = 1;

Plot@Ek@iiD@tD, 8t, 0, 0.1 tMax<, PlotRange → All, PlotStyle → 8Black, Thick<D
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After averaging over N  particles one can see the chaotization that is not complete because the number of particles is still too

low.

Plot@8EkxAvr@tD, EkyAvr@tD, EkAvr@tD<, 8t, 0, tMax<,
PlotRange → All, PlotStyle → 88Blue, Thick<, 8Red, Thick<, 8Black, Thick<<D
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Plot@∆Ek@tD, 8t, 0, tMax<, PlotRange → All, PlotStyle → 8Black, Thick<, PlotPoints → 300D

200 400 600 800

0.05

0.10

0.15

0.20

0.25

0.30

ü With interaction

Direction of motion of one particle changes because of collision with the container walls and the energies of motion along x

and y are converted into each other.
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ii = 1;

Plot@8Ekx@iiD@tD, Eky@iiD@tD<, 8t, 0, tMax<, PlotRange → All,

PlotStyle → 88Blue, Thick<, 8Red, Thick<<, PlotPoints → 300D
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The total kinetic energy of a particle is not conserved because of collisions between the particles

ii = 1;

Plot@Ek@iiD@tD, 8t, 0, tMax<, PlotRange → All, PlotStyle → 8Black, Thick<D
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After averaging over N  particles one can see the chaotization.
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Plot@8EkxAvr@tD, EkyAvr@tD, EkAvr@tD<, 8t, 0, tMax<,
PlotRange → All, PlotStyle → 88Blue, Thick<, 8Red, Thick<, 8Black, Thick<<D
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Energy dispersion increases and approaches the asymptotic value kB T = 1 in our case. This is relaxation due to collisions

between particles.

Plot@∆Ek@tD, 8t, 0, tMax<, PlotRange → All, PlotStyle → 8Black, Thick<, PlotPoints → 300D
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