
Eigenvalue problems

Main idea and formulation in the linear algebra

The word "eigenvalue" stems from the German word "Eigenwert" that can be translated into English as "Its own value" or

"Inherent value". This is a value of a parameter in the equation or system of equations for which this equation has a nontriv-

ial (nonzero) solution. Mathematically, the simplest formulation of the eigenvalue problem is in the linear algebra. For a

given square matrix A one has to find such values of l, for which the equation (actually the system of linear equations)

(1)A.X � λX

has a nontrivial solution for a vector (column) X . Moving the right part to the left, one obtains the equation

HA − λIL.X � 0,

where I  is the identity matrix having all diagonal elements one and nondiagonal elements zero. This matrix equation has

nontrivial solutions only if its determinant is zero,

Det@A − λID � 0.

This is equivalent to a N th order algebraic equation for l, where N  is the rank of the mathrix A. Thus there are N  different

eigenvalues ln (that can be complex), for which one can find the corresponding eigenvectors Xn. Eigenvectors are defined up

to an arbitrary numerical factor, so that usually they are normalized by requiring

Xn
T∗.Xn � 1,

where X T* is the row transposed and complex conjugate to the column X . 

It can be proven that eigenvectors that belong to different eigenvalues are orthogonal, so that, more generally than above, one

has

Xm
T∗.Xn � δmn.

Here dmn is the Kronecker symbol, 

δmn = µ 1, m � n

0, m ≠ n.

An important class of square matrices are Hermitean matrices that satisfy

AT∗ � A.

Eigenvalues of Hermitean matrices are real. A real Hermitean matrix is just a symmetric matrix, AT ã A. For such matrices

eigenvectors can be chosen real. 

ü Matrix eigenvalue problem in Mathematica

Mathematica  offers a solver for the matrix eivenvalue problem. If one is interested in eigenvalues only, one can use the

command Eigenvalues[...].  Eigenvectors  are  computed by Eigenvectors[...],  while both eigenvalues and eigenvectors  are

computed by the command Eigensystem[...]. Let us illustrate how it works for a real symmetric matrix 

A = K a b

b −a
O;

Its eigenvalues are given by



Eigenvalues@AD
:− a2 + b2 , a2 + b2 >

Its eigenvectors are given by

Eigenvectors@AD

::− −a + a2 + b2

b
, 1>, :− −a − a2 + b2

b
, 1>>

that is, 

Xi_ := Eigenvectors@AD@@iDD
These two eigenvectors are orthogonal to each other 

X1.X2 êê Simplify

0

However, they are not normalized

X1.X1 êê Expand êê Factor

−

2 −a2 − b2 + a a2 + b2

b2

To see which eigenvector corresponds to each eigenvalue, one has to use the command Eigensystem 

ESys = Eigensystem@AD

::− a2 + b2 , a2 + b2 >, ::− −a + a2 + b2

b
, 1>, :− −a − a2 + b2

b
, 1>>>

The first part of this List are eigenvalues and the second part are eigenvectors. One can better see the correspondence in the

form

TableForm@Transpose@ESysDD

− a2 + b2 −
−a+ a2+b2

b

1

a2 + b2 −
−a− a2+b2

b

1

Mathematica also solves matrix eigenvalue problems numerically, that is the only way to go for big matrices. For instance,

ESys = Eigensystem@A ê. 8a → 1., b → 2.<D
88−2.23607, 2.23607<, 880.525731, −0.850651<, 8−0.850651, −0.525731<<<

The numerical eigenvectors

Xi_ := ESys@@2DD@@iDD
are orthonormal

2   Mathematical_physics-14-Eigenvalue problems.nb



X1.X1

X1.X2

1.

0.

For a complex Hermitean matrix eigenvalues are indeed real, although eigenvectors are complex

TableFormBTransposeBEigensystemBK 2 �

� −2
OFFF

− 3
� J−2 + 3 N
1

3
−� J2 + 3 N
1

Eigenvalue problem for systems of linear ODEs on time

The importance of the eigenvalue problem in physics (as well as in engineering and other areas) is that it arises on the way of

solution of systems of linear ordinary differential equations with constant coefficients. We have already obtained the solution

for the harmonic oscillator on this way in the chapter on differential equations.

Every linear ODE or a system of ODEs can be represented in the basic matrix form with a constant matrix A

X'@tD + A.X@tD � 0,

X  being a vector. (We drop the inhomogeneous term.) Searching for the solution in the form 

X@tD = X0 	
−λt,

one arrives at the eigenvalue problem Eq. (1) with X fl X0. After finding eigenvalues ln and normalized eivenvectors X0 n by

linear algebra, one can write down the general solution of the equation as a linear superposition of all these solutions,

X@tD = ‚
n=1

N

Cn X0 n 	
−λn t,

where Cn are integration constants that can be found from the initial conditions.

Eigenvalue problems for PDE

In physical problems described by partial differential equations, eigenvalue problems usually arise due to boundary condi-

tions. 

ü Standing waves in a pipe

Consider, as an example, the wave equation for the pressure change (see Waves) in the 1d region 0 § x § L,

∂t
2δP − c2 ∂x

2δP.

If we consider a pipe with both ends open to the atmosphere, the boundary conditions are 

dP@0, tDã 0 , dP@L, tDã 0

because the pressure at the open end (practically) merges with the constant atmospheric pressure. Searching for dP in the

form

δP@x, tD = ψ@xD Cos@ωt + φ0D
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one obtains the stationary wave equation 

∂x
2ψ + k2 ψ � 0, k = ω ê c,

k being the wave vector. This is an eigenvalue problem because this equation has nontrivial solutions that satisfy the bound-

ary conditions only for some values of k and thus of w. The general solution of the ODE above is 

ψ@xD = C1 Sin@kxD + C2 Cos@kxD.
Since Cos@kxD does not satisfy the BC at x = 0, the solution simplifies to

ψ@xD = C Sin@kxD
that describes a standing wave. Next, the BC at x = L requires Sin@kLD = 0 from which one obtains the eigenvalues of the

wave vector

 Sin@kLD = 0

k = kn =
πn

L
, n = 1, 2, 3, —

In terms of the wave length of the standing wave l = 2 p êk one has

λn =
2 L

n
, n = 1, 2, 3, —

Standing wave with n = 1 is called fundamental wave, whereas those with n = 2, 3,— are called overtones or harmonics. For

the frequencies of these waves f = w ê H2 pL = c êl one has

fn =
cn

2 L
, n = 1, 2, 3, —

The general solution of the wave equation for a pipe with both ends open is a linear superposition of all these solutions,

(2)δP@x, tD = ‚
n=1

∞

Cn Sin@kn xD Cos@ωn t + φnD, kn =
ωn

c
=
πn

L
, n = 1, 2, 3, —

The coefficients Cn  and phases fn  in this solution are arbitrary. Similar results can be obtained for a pipe with both ends

closed (such as flute).  If  one end is closed and one is open (clarinet),  the solution is  somewhat different and only odd

overtones exist. (Excersize). While the phases fn are irrelevant for our ears (Ohm's phychoacoustical law), the amplitudes Cn

define the quality of the sound via the relative weight of the overtones. This depends on how the music instrument is con-

structed and how it is played.

Eigenfunctions corresponding to different eigenvalues are orthogonal,

‡
0

L

Sin@km xD Sin@kn xD �x =
L

2
δmn.

One can define the normalized eigenfunctions

ψn@xD =
2

L
Sin@kn xD

that satisfy

‡
0

L

ψm@xD ψn@xD �x = δmn.

Several lowest eigenfunctions are plotted below.
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L = 1; ψnx@n_, x_D =
2

L
SinB π n

L
xF;

Plot@Table@ψnx@n, xD, 8n, 1, 4<D, 8x, 0, L<D

0.2 0.4 0.6 0.8 1.0

-1.0
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0.5

1.0

ü General formulation of the eigenvalue problem for PDE

In general, the eigenvalue problem for PDE can be formulated in the form

L
ˆ
ψ@rD � λψ@rD,

where L
`
 is a differential operator. The best example is the stationary Schrödinger equation for a quantum particle

(3)H
`
y ã Ey, H

`
= -

Ñ2 D

2 m
+ U @rD,

where H
`

 is the Hamilton operator. For a particle bound to a potential well, this equation has solutions satisfying boundary

conditions only for select discrete values of the energy, E = En,  n = 0, 1, 2, — These energy eigenvalues are labeled by the

index n in the increasing order, and n = 0 corresponds to the minimal energy, the so-called ground-state energy. 

When a quantum particle undergoes a transition from the energy level (energy eigenstate) m to a lower energy level n, it

emits a quantum of electromagnetic radiation (a photon), to conserve the total energy. The energy of the photon ¶ is related

to its frequency w as ¶ = Ñw (Max Planck), and from the energy conservation follows Ñw = Em - En. Spectroscopic investiga-

tions of the light emitted (and absorbed) by simple quantum systems such as hydrogen atoms have shown that only particular

discrete frequencies obeying certain simple laws are present in the spectrum. This was at a  contradiction with classical

mechanics and electrodynamics that predicted a continuous energy spectrum. Physicists started to look for a mathematical

tool that describes discreteness and made use of the eigenvalue problem. Werner Heisenberg proposed his matrix quantum

mechanics  operating with eigenvalues of  matrices  describing quantum systems.  Erwin Schrödinger  obtained his  famous

Schrödinger equation in which discrete energy levels of a quantum system arise as eigenvalues of a differential operator. The

approaches of Heisenberg and Schrödinger are equivalent.

Solving the eigenvalue problem for a general differential operator, especially in 2d and 3d, is not an easy task, and there is no

Mathematica  solver for this problem at the moment.  If the differential operator and boundary conditions possess special

properties such as symmetry (e.g.,  spherical or cylindrical symmetry), the solution can be searched for in the form of a

product of functions of different variables, so that the solution simplifies. This case is called "separation of variables".  

Similarly to eigenvectors of matrices, eigenfunctions of differential operators can be complex. It can be shown that eigenfunc-

tions corresponding to different eigenvalues are orthogonal. Also eigenfunctions corresponding to discrete eigenvalues can

be normalized. Allowing for complex eigenfunctions, the orthonormality conditions takes the form

(4)‡ ψm∗@rD ψn@rD �V = δmn,
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where integration is carried out over the volume. An important mathematical theorem states that the whole set of eigenfunc-

tions  yn@rD  of  a  differential  operator  satisfying boundary conditions  forms  a  complete  basis,  so that  any function  f @rD
satisfying these BC can be expanded over the eigenfunctions as  

(5)f @rD =‚
n=1

¶

cn yn@rD.

The expansion coefficients can be found using the orthonormality condition that yields

(6)‡ ym
* @rD f @rD „V = ‡ ‚

n=1

¶

cn ym
* @rD yn@rD „V =‚

n=1

¶

cn dmn = cm.

ü Quantum particle in a one-dimensional potential box

The stationary Schrödinger equation (6) for a quantum particle in a one-dimensional potential box 0 § x § L has the form

∂x
2ψ + k2 ψ � 0, k = 2 mE ë —.

Everywhere in the box U = 0 while outside the box U =¶, so that the wave function outside the box is zero and by continu-

ity it has to be zero at the box walls,

y@0, tDã 0 , y@L, tDã 0.

Mathematically this eigenvalue problem is equivalent to the problem of standing waves in a pipe considered above, except

for another definition of the wave vector k. It has the same solution for the normalized eigenfunctions 

ψn@xD =
2

L
Sin@kn xD, kn =

πn

L
, n = 1, 2, 3, —

The corresponding energy eigenvalues are given by

En =
—2 kn

2

2 m
=
π2 —2 n2

2 mL2
.

These energy levels are discrete, and a transition m z n should be accompanied by emission of a photon of frequency

ωmn =
Em − En

—
=

π2 —

2 mL2
Im2 − n2M.

Measuring all these frequencies, one can figure out the energy levels. 

ü Quantum particle in a three-dimensional potential box and density of states

ü Energy levels

Let us consider now a quantum particle in 3d potential box 0 § x § Lx, 0 § y § Ly, 0 § z § Lz. One can easily check that the

solution with separated variables

ψ@x, y, zD ∝ Sin@kx xD SinAky yE Sin@kz zD
satisfies the stationary Schrödinger equation

∆ψ + k2 ψ � 0

since kx
2 + ky

2 + kz
2 = k2. Also this solution satisfies the BC at x, y, z = 0, where y vanishes. Taking into account three BC at

the other sides of the box finally yields 
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ψnx ny nz@x, y, zD =
23ê2

Lx Ly Lz

Sin@kxnx xD SinAkyny yE Sin@kznz zD,

where the quantized wave vectors are given by 

kαnα =
π

Lα

nα, nα = 1, 2, 3, —, α = x, y, z.

The discrete energy eigenvalues are parametrized by three integers,

(7)Enx ny nz =
π2 —2

2 m

nx
2

Lx
2
+
ny
2

Ly
2
+
nz
2

Lz
2

.

Another important case of separation of variables is the hydrogen atom which possesses a spherical symmetry. Rewriting

Schrödinger equation in spherical coordinates allows to separate variables r, q, and f and find analytical solutions for the

energy levels and corresponding wave functions. 

ü Density of states

For potential boxes of sufficiently large sizes the quantum energy levels are very close to each other, so that one can consider

the density of states r@ED as the number of energy levels „NE in the energy interval „E, 

�NE = ρ@ED �E.
For the 3 d  box the density of states is given by

ρ@ED =
V

H2 πL2
2 m

—2

3ê2
E , V = Lx Ly Lz.

It is instructive to plot a hystogram of the discrete energy levels given by Eq. (7) and to compare it with the formula above. 
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Lx = 91; Ly = 100; Lz = 110;

V = Lx Ly Lz;

nxMax = Lx; nyMax = Ly; nzMax = Lz;

nLevels = nxMax nyMax nzMax

— = 1; M = 1.;

ρ@EE_D =
V

H2 πL2
2 M

—2

3ê2
EE ;

Enxnynz@nx_, ny_, nz_D =
π2 —2

2 M

nx2

Lx2
+
ny2

Ly2
+
nz2

Lz2
;

EMin = 0;

EMax =
1

3
Enxnynz@nxMax, nyMax, nzMaxD;

NE = 100; H∗ Number of energy bins 
E ∗L
dE = HEMax − EMinL ê NE; H∗ Width of energy bin 
E ∗L
EList =

Flatten@Table@Enxnynz@nx, ny, nzD, 8nx, 0, nxMax<, 8ny, 0, nyMax<, 8nz, 0, nzMax<DD;
H∗ List of energy eigenvalues ∗L
EBinCounts =

1

dE
BinCounts@EList, 8EMin, EMax, dE<D;

H∗ Number of eigenvalues in energy bins 
E divided by 
E ∗L
DOSList = Table@8nE dE, EBinCounts@@nEDD<, 8nE, 0, NE<D;
H∗ Same with the energy values for the energy bins ∗L
Show@
ListPlot@DOSList, PlotStyle → 8Orange, PointSize@0.02D<, AxesLabel → 8"E", "ρ@ED"<D,
Plot@ρ@EED, 8EE, EMin, EMax<, PlotStyle → 8Black, Thick<, AxesLabel → 8"E", "ρ@ED"<D

D
1 001000

1 2 3 4 5
E

50 000

100 000

150 000

r@ED

ü Quantum harmonic oscillator

Consider a one-dimensional quantum harmonic oscillator that is described by the Hamilton function

(8)H =
p2

2 m
+ U@xD, U@xD =

mω0
2 x2

2

where w0 is the oscillator's frequency. The stationary Schrödinger equation Eyã H
`
y for the oscillator reads

—2

2 m

�2

�x2
+E − U@xD ψ � 0.
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This is  a  second-order  linear ODE with a  variable coefficient.  Boundary conditions require that  y  decreases  to zero at

x =±¶. Solution of such differential equations is a more complicated task than for those with constant coefficients, and the

analytical solution is usually expressed via special functions, if they are known. In this case an involved analytical solution

yields the energy levels

En = —ω0 Hn + 1 ê 2L
and normalized eigenfunctions 

(9)ψn@xD =
1

2n n!

mω0

π—

1ê4
ExpB− mω0 x

2

2 —
F Hn mω0

—
x ,

where Hn@xD are Hermite polynomials defined by 

Hn@xD = H−1Ln 	x2 �n

�xn
	−x

2

.

In Mathematica one can calculate Hermite polynomials straightforwardly and fast enough as

f@x_D = �−x2;

MyHermiteH@n_, x_D := H−1Ln �x
2

Derivative@nD@fD@xD êê Simplify

MyHermiteH@0, xD
MyHermiteH@1, xD
MyHermiteH@2, xD
MyHermiteH@3, xD
1

2 x

−2 + 4 x2

4 x I−3 + 2 x2M
etc., although there is a built-in function HermiteH[n, x]

HermiteH@0, xD
HermiteH@1, xD
HermiteH@2, xD
HermiteH@3, xD
1

2 x

−2 + 4 x2

−12 x + 8 x3

One can see that eigenfunctions of the quantum harmonic oscillator are, in fact, elementary functions. Still, Hermite and

many other  polynomials are  put into the class of  special functions by tradition.  Let us  plot the  energy eigenvalues and

eighefunctions together with the potential. 
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Parameters = 8m → 1, — → 1, ω0 → 1<;
U@x_D =

m ω0
2 x2

2
ê. Parameters

En@n_D = — ω0 Hn + 1 ê 2L ê. Parameters

ψnx@n_, x_D =
1

2n n!

m ω0

π —

1ê4
ExpB− m ω0 x

2

2 —
F HermiteHBn, m ω0

—
xF ê. Parameters

x2

2

1

2
+ n

	
−
x2

2 HermiteH@n, xD
π1ê4 2n n!

xMax = 6; nMax = 16;

Show@
Plot@U@xD, 8x, −xMax, xMax<, PlotStyle → 8Black, Thick<D, H∗ Potential energy ∗L
Plot@Table@En@nD, 8n, 0, nMax<D, 8x, −xMax, xMax<, PlotStyle → DashedD,
H∗ Energy eigenvalues ∗L
Plot@Evaluate@Table@0.7 ψnx@n, xD + En@nD, 8n, 0, nMax<DD, 8x, −xMax, xMax<,
PlotStyle → BlackD H∗ Eigenfunctions at the height of their eigenvalues ∗L

D

-6 -4 -2 2 4 6

5

10

15

It is convenient to put eigenfunctions at the height of their eigenvalues for better assosiation and separation. The numeric

factor at eigenfunctions has been introduced to avoid overlap. Command Evaluate makes plotting faster by first evaluating

eigenfunctions and then plotting them. Otherwise they are evaluated a every plot point.

One can see that  even and odd eigenfunctions alternate.  Similarly to plane quantum waves discussed in the chapter  on

Schrödinger equation, wave functions oscillate in the classically allowed region E - U@xD > 0 and exponentially decrease in

the classically prohibited region E - U@xD  0.

As we know, a general solution of a second-order differential equation is a superposition of two independent functions. As in

the case of a plane wave, in the classically prohibited region one of these functions is exponentially increasing while the

other is exponentially decreasing. In this and similar problems, eigenfunctions decrease on both sides of the potential well.

Other functions increase in the prohibited region and have to be rejected. It turns out that the solutions of the stationary

Schrödiger equation that decrease on both sides exist only if E = En.  For other energy values,  both solutions of the DE

increase at least on one side of the well and thus violate the boundary conditions. 

10   Mathematical_physics-14-Eigenvalue problems.nb



This fact can be used to numerically find eigenvalues and eigenfunctions by the shooting method. One can start at some xleft

left from the well setting any boundary conditions, say y@xleftD = 1 and  y '@xleftD = 0 and solve the DE for any E to the right

until some xright. If yAxrightE is exponentially small, E is one of the energy eigenvalues, and if yAxrightE is exponentially large, E

is not an eigenvalue.

Parameters = 8m → 1, — → 1, ω0 → 1<;
U@x_D =

m ω0
2 x2

2
ê. Parameters ;

En@n_D = — ω0 Hn + 1 ê 2L ê. Parameters

xRight = 10; xLeft = −xRight;

IConds = 8ψ@xLeftD � 1, ψ'@xLeftD � 0<;

Sol@EE_D := NDSolveB

JoinB: —2

2 m
ψ''@xD + HEE − U@xDL ψ@xD � 0 ê. Parameters >, ICondsF, ψ, 8x, xLeft, xRight<F;

ψx@EE_?NumericQ, x_D := ψ@xD ê. Sol@EED@@1DD
H∗ Without ?NumericQ FindMinimum below crashes ∗L

1

2
+ n

Plotting shows that for our parameter choice the energy eigenvalues indeed are 0.5, 1.5, 2.5, etc., that is, En = n + 1 ê2.

Plot@Log@Abs@ψx@EE, xRightDDD, 8EE, 0, 4<D

1 2 3 4

80

85

90

95

100

Now one can plot eigenfunctions for the found eigenvalues

Mathematical_physics-14-Eigenvalue problems.nb   11



xMax = 5; xMin = −xMax;

Plot@Evaluate@ψx@0.5, xDD, 8x, xMin, xMax<, PlotRange → AllD
Plot@Evaluate@ψx@1.5, xDD, 8x, xMin, xMax<, PlotRange → AllD
Plot@Evaluate@ψx@2.5, xDD, 8x, xMin, xMax<, PlotRange → AllD

-4 -2 2 4

5.0µ1020

1.0µ1021

1.5µ1021

2.0µ1021

2.5µ1021

-4 -2 2 4

-1.5µ1020

-1.0µ1020

-5.0µ1019

5.0µ1019

1.0µ1020

1.5µ1020

-4 -2 2 4

-1.0µ1019

-5.0µ1018

5.0µ1018

1.0µ1019

1.5µ1019

These are essentially the same eigenfunctions as the analytical result considered above, only they are not normalized. 

One could find the exact eigenvalues by minimizing Log[Abs[yx[EE, xRight]]] starting from different values of EE. 

FindMinimum@Log@Abs@ψx@EE, xRightDDD, 8EE, 0<D
FindMinimum::sdprec:

Line search unable to find a sufficient decrease in the function value with MachinePrecision digit precision. à

876.1993, 8EE → 0.5<<
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Finding exact eigenvalues by numerical minimization is important because this shooting method can be applied to potentials

that do not allow for an analytical solution. For instance, if one replaces x2 fl x4 in U@xD, one obtains, for the same parame-

ters, 

Plot@Log@Abs@ψx@EE, xRightDDD, 8EE, 0, 5<D

1 2 3 4 5

660

665

These nonequidistant energy eigenvalues are not described by any analytical formula, so that finding them numerically is

important. Note that power potentials U@xD ∂ J x

x0

Nn  approach the potential box -x0  x  x0 in the limit n Ø¶,  where the

analytical results have been found above.

ü Tunneling of a quantum particle

Let us now consider the potential U@xD = -ax2 + bx4 with a, b > 0 that has two symmetric minima at x = ≤ x0 = ≤ a ê H2 bL .

It is convenient to represent this potential in the form

(10)U@xD =
m ω0

2

8

Ix2 − x02M2
x0
2

.

Its second derivative at the minima is given by

U@x_D =
m ω0

2

8

Ix2 − x02M2
x0

2
;

∂x,xU@xD ê. x → x0

m ω0
2

that is the same as for a harmonic oscillator with frequency w0.  A classical particle of mass m would perform harmonic

oscillations with this frequency near the minima of this potential.

Now the solution
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Parameters = 8m → 1, — → 1, ω0 → 1, x0 → 3.5<;

U@x_D =
m ω0

2

8

Ix2 − x02M2
x0
2

ê. Parameters ;

xRight = 7; xLeft = −xRight;

IConds = 8ψ@xLeftD � 1, ψ'@xLeftD � 0<;

Sol@EE_D := NDSolveB

JoinB: —2

2 m
ψ''@xD + HEE − U@xDL ψ@xD � 0 ê. Parameters >, ICondsF, ψ, 8x, xLeft, xRight<F;

ψx@EE_?NumericQ, x_D := ψ@xD ê. Sol@EED@@1DD;
H∗ Without ?NumericQ FindMinimum below crashes ∗L
xMax = 6; xMin = −xMax; EMax = 2;

Plot@U@xD, 8x, xMin, xMax<D;
Plot@Log@Abs@ψx@EE, xRightDDD, 8EE, 0, EMax<, PlotRange → AllD

0.5 1.0 1.5 2.0

10

15

20

25

reveals that low-lying energy eigenvalues form doublets. To see the lowest doublet better one can zoom in:

Plot@Log@Abs@ψx@EE, xRightDDD, 8EE, 0.475, 0.479<, PlotRange → AllD

0.476 0.477 0.478 0.479

2

4

6

8

10

One can find both eigenvalues
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E0 = EE ê. FindMinimum@Log@Abs@ψx@EE, xRightDDD, 8EE, 0<D@@2DD
E1 = EE ê. FindMinimum@Log@Abs@ψx@EE, xRightDDD, 8EE, 0.5<D@@2DD
FindMinimum::sdprec:

Line search unable to find a sufficient decrease in the function value with MachinePrecision digit precision. à

0.476188

FindMinimum::sdprec:

Line search unable to find a sufficient decrease in the function value with MachinePrecision digit precision. à

0.478131

And their spitting

∆ = E1 − E0

0.00194363

To normalize the eigenfunctions, one at first has to calculate the norms of both eigenfunctions

N0 = NB‡
xLeft

xRight

ψx@E0, xD2 
xF; N1 = NB‡
xLeft

xRight

ψx@E1, xD2 
xF;

ψx0@x_D =
1

N0

ψx@E0, xD; ψx1@x_D =
1

N1

ψx@E1, xD;

Below the two normalized eigenfunctions are plotted together with the scaled potential energy and a energy levels.

xMax = 7; xMin = −xMax;

Show@
Plot@Evaluate@8ψx0@xD, ψx1@xD<D,
8x, xMin, xMax<, PlotRange → All, PlotStyle → 8Blue, Red<D,

Plot@0.1 U@xD, 8x, −xMax, xMax<, PlotStyle → 8Black, Thick<, PlotRange → 80, 1<D,
H∗ Potential energy ∗L
Plot@0.1 E0, 8x, −xMax, xMax<, PlotStyle → 8Black, Dashed<D,
Plot@0.1 E1, 8x, −xMax, xMax<, PlotStyle → 8Black, Dashed<D

D
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One can see that  the eigenfunctions of the ground-state  doublet are even and odd. According to a quantum-mechanical

theorem, the eigenfunction of the ground state y0@xD does not change its sign on x. They are localized in the wells with little

probalility to be under the barrier, x~0. These two eigenfunctions can be interpreted as even and odd linear combinations of

the states in the left and right wells that are hybridized via tunneling, an essentially quantum phenomenon. With increasing

the  width  or/and the  height  of  the  barrier,  the  separation  between  energy eigenvalues  in  tunneling doublets  (tunneling

splitting) decreases very fast, and it becomes difficult to calculate the splitting numerically. Fortunately, in this case tunnel-

ing splittting can be calculated analytically with the help of the quasiclassical approximation. 

ü Matrix quantum mechanics

Eigenfunctions cn@rD of a Hamiltonian satisfying boundary conditions form a complete basis that can be used to expand the

solution  of  Schrödinger  equation.  The  Hamiltonian  to  which  the  eigenfunctions  belong can  be  the  Hamiltonian  of  the

problem or any other Hamiltonian. Let us call it H
`

0. The eigenvalue expansion has the form 

(11)Ψ@r, tD = ‚
n=0

∞

an@tD χn@rD,

similarly to the pressure expansion for the standing waves in a pipe, Eq. (2). This expansion transforms the time-dependent

Schrödinger equation to a system of ODEs for the coefficients an@tD. Substituting Eq. (11) into the Schrödinger equation, one

obtains

(12)‚
n=0

∞

�— a
�
n@tD χn@rD � ‚

n=0

∞

an@tD Hˆ χn@rD,

Multiplicating this equation χm
∗@rDand integrating it over the space taking into account orthonormality of the eigenfunctions,

one obtains

(13)�— a
�
m@tD � ‚

n=0

∞

Hmn an@tD, Hmn ≡ ‡ χm∗@rD Hˆ χn@rD �V.

This is a system of a (generally) infinite number of linear homogeneous ODEs that are coupled to each other via the matrix

elements Hmn. If H
`
= H

`
0, one has Hmn = em dmn, where em  are eigenvalues corresponding to the eigenfunctions cm. In this

case equations decouple, ÂÑ a
°
m @tD ã em am@tD, and the solution is am@tD =am@0D ExpB- Âem

Ñ
tF.  However, this is a trivial case,

and usually the Hamiltonian of the system H
`

 is more complicated than H
`

0, so that the matrix Hmn is non-diagonal. 

Eq. (13) can be written in the matrix form

(14)�— A
�@tD � H.A@tD ,

where A@tD is the vector composed of am@tD. If matrix H  is time-independent, its solution is the matrix exponential

A@tD = ExpB− �H
—

tF.A@0D
describing time evolution of the initial state A@0D. This formula can be used to obtain the solution with the help of Mathemat-

ica. It should be noted that Heisenberg proposed his matrix quantum mechanics independently of Schrödinger equation.   

Stationary states are described by the time dependence

A@tD = ExpB− �E
—

tF C.

Substituting this into Eq. (14), one arrives at the matrix eigenvalue problem

(15)EC � H.C
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or, explicitly,

(16)Ecm � ‚
n=0

∞

Hmn cn

for the energy eigenvalues E that is equivalent to Eq. (1). If matrix H  is infinite, there is an infinite number of eigenvalues.

Practically, the functional basis used to build matrices is cut, so that only N  lowest basis eigenfunctions of H
`

0  are used and

the matrices are of rank N + 1. Some quantum-mechanical problems such that spin problems are described by finite matrices

from the very beginning. An advantage of the matrix formalism is that it allows to obtain all eigenvalues and eigenfunctions

as a result of a single computation.

ü Particle in a double - well potential

Let us apply the matrix formalism to the problem of the quartic double-well potential, Eq. (10), and choose the basic formed

by the eigenstates of the Hamiltonian H
`

0 of the harmonic oscillator, Eq. (8). The Hamiltonian of the problem can be written

as

H
ˆ
= H
ˆ
0 + V

ˆ
, V

ˆ
=
m ω0

2

2

Ix2 − x02M2
4 x0

2
− x2 .

Such a separation of the Hamiltonian into two parts is typical, and in the case V
`

 is small, there are perturbative analytical

methods based on expansion in powers of V
`
.  However, in our case V

`
 is not small and the problem will be solved numeri-

cally. With the help of H
`

0 mn = em dmn Eq. (16) becomes

(17)HE − εmL cm � ‚
n=0

∞

Vmn cn,

where em = Ñw0Hm + 1 ê2L are the energy eigenvalues of the harmonic oscillator and 

Vmn ≡ ‡
−∞

∞

χm@xD Vˆ χn@xD �x,

where cn@xD are given by Eq. (9). There is an analytical expression for these matrix elements for general m and n, however,

Mathematica 7 cannot find it. Still, Mathematica can analytically calculate Vmn for any particular values of m and n that we

need to build the Hamiltonian matrix. We will be labeling the eigenvalues of the problem with the index n, so that En  are

energy eigenvalues, cnn are the basis expansion coefficients, and 

ψν@xD ≡ ‚
n=0

∞

cνn χn@xD

are eigenfunctions of the  problem. Below is  Mathematica  code  that solves the  matrix eigenvalue  problem for  a quartic

potential using the harmonic oscillator basis. 
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H∗ Definitions ∗L
NBasis = 20; H∗ Number of the lowest oscillator eigenfunctions in the basis ∗L
M = 1; H∗ Mass of the particle ∗L
— = 1; H∗ Planck's constant ∗L
ω0 = 1; H∗ Frequency of oscillation near the minima of U@xD ∗L
x0 = 3.5; H∗ Positions of the minima of U@xD ∗L

U@x_D =
M ω0

2

8

Ix2 − x02M2
x0
2

; H∗ Potential energy of the particle ∗L

U0@x_D =
M ω0

2 x2

2
; H∗ Potential energy of the harmonic oscillator ∗L

εn@n_D = — ω0 Hn + 1 ê 2L; H∗ Energy levels of the harmonic oscillator ∗L

χnx@n_, x_D =
1

2n n!

M ω0

π —

1ê4
ExpB− M ω0 x

2

2 —
F HermiteHBn, M ω0

—
xF;

H∗ Eigenfunctions of the harmonic oscilator ∗L
V@xD = U@xD − U0@xD; H∗ Perturbation Hamiltonian ∗L
Vmn@m_, n_D :=

IfBAbs@m − nD � 0 »» Abs@m − nD � 2 »» Abs@m − nD � 4, ‡
−∞

∞

χnx@m, xD V@xD χnx@n, xD 
x, 0F;
H∗ Most of matrix elements of V@xD are zero, so do not calculate them ∗L
Hmn@m_, n_D := εn@nD KroneckerDelta@m, nD + Vmn@m, nD;
H∗ Elements of Hamiltonian matrix ∗L
H∗ Creating Hamiltonian matrix and solving matrix eigenvalue problem ∗L
Timing@ HMatrix = Table@Hmn@m, nD, 8m, 0, NBasis<, 8n, 0, NBasis<D; D
TableForm@Take@HMatrix, 9, 9DD H∗ Show part of the Hamiltonian matrix ∗L
Timing@ ES = Eigensystem@HMatrixD; D
ES = Transpose@Sort@Transpose@ESDDD; H∗ Eigensystem sorted in accending order ∗L
EVal = First@ESD H∗ Eigenvalues ∗L
EVecT = Last@ESD; H∗ This is a matrix of eigenvectors lying horizontally ∗L
EVec = Transpose@EVecTD; H∗ This is a matrix of eigenvectors standing vertically ∗L
TableForm@Chop@Take@EVecT.EVec, 9, 9DDD H∗ Check that eigenvectors are orthonormal ∗L
H∗ Finalizing the solution ∗L
Eν@ν_D := EVal@@ν + 1DD; H∗ Energy eigenvalues of the problem ∗L
∆ = Eν@1D − Eν@0D; H∗ Ground−state splitting ∗L
c@ν_, n_D := EVecT@@ν + 1, n + 1DD H∗ Expansion coefficients of the

eigenfunctions of the problem over the harmonic oscillator basis ∗L
ψνx@ν_, x_D := ‚

n=0

NBasis

c@ν, nD χnx@n, xD H∗ Eigenfunctions of the problem ∗L

823.922, Null<
1.6639 0 −0.508684 0 0.0124974 0 0 0 0

0 1.94452 0 −0.856072 0 0.027945 0 0 0

−0.508684 0 2.25574 0 −1.17532 0 0.0484022 0 0

0 −0.856072 0 2.59758 0 −1.4717 0 0.0739356 0

0.0124974 0 −1.17532 0 2.97003 0 −1.74656 0 0.104561

0 0.027945 0 −1.4717 0 3.37309 0 −2.00043 0

0 0 0.0484022 0 −1.74656 0 3.80676 0 −2.23354

0 0 0 0.0739356 0 −2.00043 0 4.27105 0

0 0 0 0 0.104561 0 −2.23354 0 4.76594

80., Null<
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80.476188, 0.478132, 1.2695, 1.35141, 1.8394, 2.21869,

2.71446, 3.255, 3.84311, 4.47189, 5.13829, 5.84678, 6.57393, 7.45094,

8.21213, 9.51985, 10.3086, 12.3669, 13.2037, 16.5672, 17.4787<
1. 0 0 0 0 0 0 0 0

0 1. 0 0 0 0 0 0 0

0 0 1. 0 0 0 0 0 0

0 0 0 1. 0 0 0 0 0

0 0 0 0 1. 0 0 0 0

0 0 0 0 0 1. 0 0 0

0 0 0 0 0 0 1. 0 0

0 0 0 0 0 0 0 1. 0

0 0 0 0 0 0 0 0 1.

The splitting of the ground-state doublet

∆ = Eν@1D − Eν@0D
0.00194448

is in an excellent accordance with the value obtained above by the shooting method. The eigenfunctions of the ground-state

doublet, plotted together with the scaled potential energy and a group of low-lying energy levels

xMax = 7; xMin = −xMax;

Show@
Plot@Evaluate@8ψνx@0, xD, ψνx@1, xD<D,
8x, xMin, xMax<, PlotRange → All, PlotStyle → 8Blue, Red<D,

Plot@0.1 U@xD, 8x, −xMax, xMax<, PlotStyle → 8Black, Thick<, PlotRange → 80, 1<D,
H∗ Potential energy ∗L
Plot@Table@0.1 Eν@νD, 8ν, 0, 12<D, 8x, −xMax, xMax<, PlotStyle → 8Black, Dashed<D

D

-6 -4 -2 2 4 6

-0.5

0.5

1.0

are the same as above, except for the irrelevant signs. The splitting of the ground-state doublet is not seen in this plot,

whereas the spliting of the second doublet is seen. The states above the barrier are not grouped into doublets, and their

separation increases with energy.
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ü Sparce matrices

We have seen above that the main time of the calculation goes to fill the Hamiltonian matrix with elements, whereas finding

its eigensystem is very fast. Filling a matrix of rank N  requires N2  operations, even if many its elements are zero. In our

Hamiltonian matrix, only the elements with m - n = 0,2,4 are nonzero. Such matrices in which most of the elements are

zero are called sparce matrices. In Mathematica a special fast method of filling sparce matrices is employed. First, a matrix

with all elements equal to zero is created by one step. Then nonzero elements are inserted at their places. Actually, it is only

nonzero elements and the matrix dimensions that are stored in the memory. Thus, both memory usage and speed are dramati-

cally improved. In the case of nearly-diagonal matrices, there are ~N  nonzero elements, so that the time to fill such a sparce

matrix if proportional to N  rather than to N2.

Mathematica command to create a sparce matrix object is SparceArray. Let us create a 5×5 matrix with diagonal elements

equal to 1 and subdiagonal elements equal to 2 . 

MySparceMatrix =

SparseArrayB:8i_, j_< ê; Abs@i − jD � 0 → 1, 8i_, j_< ê; Abs@i − jD � 1 → 2 >, 85, 5<F
SparseArray@<13>, 85, 5<D

Here /; means "under the condition". The output object is named but its content is hidden because it is not a standard list. It

can be visualized with the command MatrixForm:

MatrixForm@MySparceMatrixD
1 2 0 0 0

2 1 2 0 0

0 2 1 2 0

0 0 2 1 2

0 0 0 2 1

One can apply all standard commands such as Eigensystem to spare matrix objects. Let us now compare the time needed to

create the Hamiltonian matrix above as a standard (dense) matrix and sparse matrix. (The preceding code must be run before

so that Mathematica knows definitions.) For NBasis = 100 one obtains 

NBasis = 40;

Timing@ HMatrix = Table@Hmn@m, nD, 8m, 0, NBasis<, 8n, 0, NBasis<D; D
MatrixForm@Take@HMatrix, 5, 5DD
Timing@ HMatrix = SparseArray@

88m_, n_< ê; Abs@m − nD � 0 »» Abs@m − nD � 2 »» Abs@m − nD � 4 → Hmn@m − 1, n − 1D<,
8NBasis + 1, NBasis + 1<D; D

MatrixForm@Take@HMatrix, 5, 5DD
897.156, Null<

1.6639 0 −0.508684 0 0.0124974

0 1.94452 0 −0.856072 0

−0.508684 0 2.25574 0 −1.17532

0 −0.856072 0 2.59758 0

0.0124974 0 −1.17532 0 2.97003

8118.86, Null<
1.6639 0 −0.508684 0 0.0124974

0 1.94452 0 −0.856072 0

−0.508684 0 2.25574 0 −1.17532

0 −0.856072 0 2.59758 0

0.0124974 0 −1.17532 0 2.97003
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For higher  NBasis the gain in using sparce matrices will  theoretically increase.  This example is  not the  best,  however,

because the difference in speed between the two methods is marginal. The reason is that the standard method also uses the

optimized definition of the matrix elements, in which their lengthy calculation via the integral is done only in the case they

are nonzero, otherwise zeros are being put into the Hamiltonian matrix. A real gain in using sparce matrix objects can be

achieved only for really big matrices in which calculation of nonzero elements is fast.

ü Quantum rotator and pendulum

Let us apply matrix quantum mechanics to the  problem of a quantum pendulum that is described by the Hamiltonian

H
ˆ
=

—2 l
ˆ2

2 I
+ U@φD, l

ˆ
≡ −�

∂

∂φ
, U@φD = Mga H1 − Cos@φDL,

where Ñ l
`
 is the quantum-mechanical angular momentum operator for a rotation around a fixed axis by the angle f, I  is the

moment of inertia, M  is the mass, and a is the distance between the center of mass and the pivot point. Classical pendulum

performs oscillations for E  2 Mga and rotations in positive or negative direction for E > 2 Mga. The frequency of small

oscillations near the minimum of the potential energy is

w0 =
Mga

I
.

In the case U@fD = 0 pendulum simplifies to rotator. 

Since adding 2 pn to the angle does not change the physical position of the pendulum, the wave function satisfies the periodic-

ity condition 

Y@f, tD = Y@f + 2 pn, tD, n = ≤1, ≤2, —
Thus we consider the wave functions in the interval -p § f § f and require Y@-p, tD = Y@p, tD. A suitable complete set of

basis functions satisfying this boundary conditions consists of the eigenfunctions of the angular momentum 

l
`
cm = mc

m

that are given by

cm =
1

2 p
‰Âmf, m = 0, ≤1, ≤2, —

One  can  check  that  these  functions  are  orthonormal.  They  are  eigenfunctions  of  the  stationary  Schrödinger  equation

Eψ � H
ˆ
ψ for the rotator with the rotational energies

Em =
Ñ2 m2

2 I
.

For the pendulum, these functions are not eigenfunctions but can be used as a basis to formulate the matrix Schrödinger

equation (16). The matrix elements of the Hamiltonian are given by

Hmn = ‡
-p

p

cm
* @fD H

`
cn@fD „f =

‡
-p

p

‰-imf -
Ñ2

2 I

∑2

∑f2
+MgaH1 - Cos@fDL ‰inf „f =

Ñ2 m2

2 I
+ Mga dmn -

Mga

2 p
‡
-p

p

‰-imf Cos@fD ‰inf „f.

Using Cos@fD = I‰Âf + ‰-ÂfMë2, for the last term one obtains MgaIdm,n+1 + dm,n-1Më2, so that the matrix element becomes
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Hmn =
Ñ2 m2

2 I
+ Mga dmn -

Mga

2
Idm,n+1 + dm,n-1M.

Below is a Mathematica code for solving the eigenvalue problem for the quantum pendulum. Among the parameters, at least

one number has to be real (such as M=1.), so that Mathematica does not try to find eigenvalues analytically.

H∗ Definitions ∗L
NBasis = 300; H∗ Number of the lowest rotator eigenfunctions in the basis ∗L
M = 1.; H∗ Mass of the pendulum ∗L
II = 300; H∗ Moment of inertia of the pendulum ∗L
— = 1; H∗ Planck's constant ∗L
g = 1; H∗ Gravity acceleration ∗L
a = 1; H∗ Lever arm of the gravity force ∗L

ω0 =
M g a

II
; H∗ Frequency of small oscillations ∗L

χmφ@m_, φ_D =
1

2 π

�� m φ; H∗ Eigenfunctions of the rotator ∗L

εn@m_D =
—2 m2

2 II
+ M g a ;

Vmn@m_, n_D = −
M g a

2
HKroneckerDelta@m, n + 1D + KroneckerDelta@m, n − 1DL;

Hmn@m_, n_D := εn@mD KroneckerDelta@m, nD + Vmn@m, nD;
H∗ Elements of Hamiltonian matrix ∗L
H∗ Creating Hamiltonian matrix and solving matrix eigenvalue problem ∗L
Timing@
HMatrix = Table@Hmn@m, nD, 8m, −NBasis ê 2, NBasis ê 2<, 8n, −NBasis ê 2, NBasis ê 2<D; D

Print@"Part of the Hamiltonian matrix:"D
TableForm@Take@HMatrix, 9, 9DD H∗ Show part of the Hamiltonian matrix ∗L
Timing@ ES = Eigensystem@HMatrixD; D
ES = Transpose@Sort@Transpose@ESDDD; H∗ Eigensystem sorted in accending order ∗L
EVal = First@ESD ; H∗ Eigenvalues ∗L
EVecT = Last@ESD; H∗ This is a matrix of eigenvectors lying horizontally ∗L
EVec = Transpose@EVecTD; H∗ This is a matrix of eigenvectors standing vertically ∗L
TableForm@Chop@Take@EVecT.EVec, 9, 9DDD ;
H∗ Check that eigenvectors are orthonormal ∗L
H∗ Finalizing the solution ∗L
Eµ@µ_D := EVal@@µ + 1DD; H∗ Energy eigenvalues of the problem ∗L
c@µ_, m_D := EVecT@@µ + 1, m + 1 + NBasis ê 2DD H∗ Expansion coefficients

of the eigenfunctions of the problem over the rotator basis ∗L
ψµφ@µ_, φ_D := ‚

m=−NBasisê2

NBasisê2
c@µ, mD χmφ@m, φD H∗ Eigenfunctions of the problem ∗L

Print@"Energy levels:"D
LevelsToShow = 70; LevelsToShow = Min@ LevelsToShow, NBasisD;
Take@EVal, LevelsToShowD
Show@
ListPlot@Take@EVal, LevelsToShowD, AxesLabel → 8"µ", "Eµ"<D,
Plot@2 M g a, 8x, 0, LevelsToShow<D

D
80.765, Null<
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Part of the Hamiltonian matrix:

38.5 −0.5 0 0 0 0 0 0 0

−0.5 38.0017 −0.5 0 0 0 0 0 0

0 −0.5 37.5067 −0.5 0 0 0 0 0

0 0 −0.5 37.015 −0.5 0 0 0 0

0 0 0 −0.5 36.5267 −0.5 0 0 0

0 0 0 0 −0.5 36.0417 −0.5 0 0

0 0 0 0 0 −0.5 35.56 −0.5 0

0 0 0 0 0 0 −0.5 35.0817 −0.5

0 0 0 0 0 0 0 −0.5 34.6067

80.063, Null<
Energy levels:

80.028763, 0.0860783, 0.14297, 0.199433, 0.255463, 0.311053, 0.3662, 0.420896,

0.475137, 0.528915, 0.582225, 0.635059, 0.68741, 0.739272, 0.790635, 0.841492,

0.891834, 0.941652, 0.990935, 1.03967, 1.08786, 1.13547, 1.1825, 1.22894, 1.27477,

1.31998, 1.36454, 1.40844, 1.45166, 1.49417, 1.53595, 1.57696, 1.61719, 1.65658,

1.6951, 1.7327, 1.76931, 1.80486, 1.83926, 1.8724, 1.90401, 1.93429, 1.96081,

1.99032, 2.0026, 2.04529, 2.04672, 2.10579, 2.10586, 2.17306, 2.17306, 2.24618,

2.24618, 2.32446, 2.32446, 2.40747, 2.40747, 2.49492, 2.49492, 2.5866, 2.5866,

2.68235, 2.68235, 2.78207, 2.78207, 2.88565, 2.88565, 2.99302, 2.99302, 3.10412<

10 20 30 40 50 60 70
m

0.5

1.0

1.5

2.0

2.5

3.0

Em

One can see that the low-lying energy levels are equidistant, as the levels of the harmonic oscillator. Levels with Em  2 Mga

are oscillatory. Levels above this energy correspond to rotations over the barrier. These levels form doublets because of the

two posisble directions of the rotation. However, these doublets are split  because of the essentially quantum-mechanical

effect, the overbarrier reflection. For instance,

Eµ@50D − Eµ@49D
Eµ@52D − Eµ@51D
Eµ@54D − Eµ@53D
2.0047 × 10−6

4.45956 × 10−8

7.72255 × 10−10

Splitting of level doublets, as the overbarrier reflection, decreases very fast with the energy. At high energies one approxi-

mately has 

Em =
Ñ2Hm ê2L2

2 I
,
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the energy levels of the rotator. The eigenfunctions of the problem are similar to those of the harmonic oscillator at low

energies. However, at high energies the probability density °ym•2  is oscillating because eigenfunctions describe superposi-

tions of rotations in different directions.

PlotAEvaluateA9Abs@ψµφ@0, π xDD2, Abs@ψµφ@20, π xDD2, Abs@ψµφ@60, π xDD2=E,
8x, −1, 1<, PlotRange → All, PlotPoints → 30,

PlotStyle → 88Black, Thick<, 8Black, Thin<, 8Red, Thin<<, AxesLabel → 9"φêπ", "†ψµ@φD§2"=E

-1.0 -0.5 0.5 1.0
fêp

0.5

1.0

1.5

2.0

°ym@fD•2

To better see mixing of rotations in different directions, one can plot the coefficients cmm for one the doublets
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Eµ@54D
Eµ@53D
Eµ@54D − Eµ@53D
Plot@8c@53, Round@mDD, c@54, Round@mDD<, 8m, −LevelsToShow, LevelsToShow<,
PlotRange → All, PlotStyle → 88Blue, Dashed<, 8Black<<, AxesLabel → 8"m", "cµm"<D

2.32446

2.32446

7.72255 × 10−10

-60 -40 -20 20 40 60
m

-0.2

-0.1

0.1

0.2

cmm

One can see that for one of the eigenfunctions the coefficients cmm are even in m (solid line) while for the other they are odd

in m (dashed line), that is, both of them are mixtures of rotations in different directions.  
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