Prof. D. Garanin

Assignment 3

1. Check the identities

$$
\begin{aligned}
\nabla \cdot(\phi \mathbf{A}) & =\phi \nabla \cdot \mathbf{A}+\nabla \phi \cdot \mathbf{A} \\
\nabla \times(\phi \mathbf{A}) & =\phi \nabla \times \mathbf{A}+\nabla \phi \times \mathbf{A}
\end{aligned}
$$

using Mathematica.
2. Magnetic field produced by a long wire carrying current I in the positive z direction is given by

$$
\mathbf{B}=\left\{-\frac{y a}{x^{2}+y^{2}}, \frac{x a}{x^{2}+y^{2}}, 0\right\}, \quad a=\frac{\mu_{0} I}{2 \pi}
$$

Let us regularize this expression by introducing ε^{2} in the denominator,

$$
\mathbf{B}=\left\{-\frac{y a}{x^{2}+y^{2}+\varepsilon^{2}}, \frac{x a}{x^{2}+y^{2}+\varepsilon^{2}}, 0\right\} .
$$

Calculate curl of this vector. Plot \mathbf{B}, B, and curl \mathbf{B}. What happens as $\varepsilon \rightarrow 0$? What is the meaning of curl \mathbf{B} ?
3. Electric potential of a point charge Q has the form

$$
V=\frac{a}{r}, \quad a=\frac{Q}{4 \pi \varepsilon_{0}}
$$

Let us regularize this formula by introducing $\varepsilon>0$ in the denominator,

$$
V=\frac{a}{r+\varepsilon} .
$$

Calculate the electric field $\mathbf{E}=-\nabla V$ and plot its dependence on r. At which r it has a maximum? Calculate the Laplacian of V and plot its dependence on r. What is the meaning of ΔV ? What happens as $\varepsilon \rightarrow 0$?

