Prof. D. Garanin

Assignment 4

1. Calculate the power series

$$
\sum_{n=1}^{\infty} \frac{n!}{(2 n)!} x^{n}
$$

using Mathematica and plot the result ($x<0$ also included). Expand the resulting function in Taylor series at $x=0$ and $x= \pm \infty$. What is the behavior of this function at large positive and negative x ?
2. Quantum rotational energy levels of a symmetric molecule are given by

$$
E_{l}=\frac{\hbar^{2} l(l+1)}{2 I}, \quad l=0,1,2, \ldots
$$

where I is the moment of inertia of the molecule. The degeneracy of these states is $(2 l+1)^{2}$. Calculate the partition function of these molecules at temperature T

$$
Z=\sum_{l=0}^{\infty}(2 l+1)^{2} \exp \left(-\frac{E_{l}}{k_{B} T}\right)
$$

Is there an analytical result for Z ? Calculate the internal energy of the gas

$$
U=\frac{1}{Z} \sum_{l=0}^{\infty}(2 l+1)^{2} E_{l} \exp \left(-\frac{E_{l}}{k_{B} T}\right)
$$

and the heat capacity

$$
C=\frac{d U}{d T}
$$

Plot Z, U, and C vs T. For numerical calculations and plotting, set $I=1 / 2$ and $\hbar=k_{B}=1$.
3. Calculate the Madelung constant of a three-dimensional ionic lattice with alternating charges (generalize the consideration in the lecture notes for $3 d$). Provide both the straightforward solution and the intelligent solution assigning coefficients <1 in the sum to the atoms at the borders of the summation range (faces, edges, corners). These coefficients can be found in the German Wikipedia: http://de.wikipedia.org/wiki/Madelung-Konstante.

