Prof. D. Garanin

Assignment 6

1. Simpson integration rule obtained by approximating the integrand by parabolas over small intervals has the form

$$
\int_{a}^{b} f(x) d x=\left(\frac{1}{3} f\left(x_{0}\right)+\frac{4}{3} f\left(x_{1}\right)+\frac{2}{3} f\left(x_{2}\right)+\frac{4}{3} f\left(x_{3}\right)+\ldots+\frac{4}{3} f\left(x_{N-1}\right)+\frac{1}{3} f\left(x_{N}\right)\right) \Delta x
$$

where N is even. Implement this formula in Mathematica. Demonstrate numerically that the Simpson rule yields exact results for third-order polynomials. Investigate convergence of the Simpson rule for the integral

$$
\int_{0}^{\pi / 2} \cos (x) d x=1
$$

as it was done in the lecture notes and compare it with the convergence of the rectangular, trapezoidal, and Durand rules (including the log-log plot). Do the same comparison for the integral

$$
\frac{3}{\pi} \int_{0}^{\sqrt{3}} \frac{d x}{1+x^{2}}=1
$$

Is there a difference in the accuracy of the Simpson rule for the two integrals?
2. Calculate analytically the integral

$$
P(G)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{d x d y}{1-G \lambda(x, y)}
$$

where

$$
\lambda(x, y)=\frac{1}{2}(\cos x+\cos y)
$$

and $0 \leq G<1$. Do the calculation in two ways. First, calculate the integral in one step as a double integral. Second, integrate in two steps, first over y and then over x. Are results the same? How $P(G)$ behaves at small G and at G close to 1 ?
3. Assuming that $a>0$ and $m \geq 0$, evaluate

$$
\int_{0}^{\infty} \frac{\cos ^{2}(m x)}{a^{2}+x^{2}} d x
$$

Check the result in the limit of large m.

