
Overview of Mechanics and general comments

• Classical Mechanics (v<<c, macroscopic objects)
• Relativistic Mechanics (v~c, macroscopic objects)
• Quantum Mechanics (microscopic objects)

Classical Mechanics

Statics
Forces balance each other
Engineering applications

Kinematics
Pure motion without considering forces
Restriction on the motion: Constraints

Dynamics
motion under the action of forces

Main part of Mechanics

Constraints:
• Holonomic

(can be eliminated to reduce the number of variables)

• Non-holonomic
(cannot be eliminated and remain as additional equations)

Theory of Elasticity
Mainly statics but also
dynamics of reversibly

deformable bodies

Hydrodynamics
Mechanics of fluids

Rheology
Mechanics of the soil and

all more complicated media with
elements of elasticity and fluidity
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Theoretical formalisms in Classical Mechanics

1. Newtonian mechanics
(Basic)

2. Lagrangian mechanics
(Efficient for more complicated systems with holonomic constraints, mechanisms)

3. Hamiltonian mechanics
(Inefficient for mechanisms, good for some special problems. 
Fundamental importance in providing a connection to Quantum Mechanics)

All three formalisms lead to the same resuts for physical quantities. For the
basic system of point masses with interaction and no constraints all three
formalisms lead to explicitly the same equations.
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Newtonian Mechanics

Nimm iiiii ...1, ==≡ Frv &&&

Newton‘s second law for a system of N point masses (particles):

With the initial conditions ri(0) and vi(0) specified, the system of equations above fully
specifies the motion of the system.

Newtonian mechanics is most flexible since forces and constraints of different kinds can
be easily added. In the Lagrangian mechanics the latter is not the case.
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Conservative and non-conservative systems

If in a mechanical system all forces are potential forces,

i

i
i

U

r
r

F
∂

∂−= })({

with the potential energy U independent of time, the sum of kinetic and potential 
energies is conserved,

If there are forces of other kinds than above (such as friction forces), the mechanical
energy is dissipated. Such systems are called non-conservative. 

In fact, any microscopically formulated mechanical problem is conservative. Non-conservation
arises as the result of reduced description (coarse graning) of large systems.  For instance, 
motion of a body on a surface with friction can be described by the (non-conservative) friction
force. This is a reduced description of the problem, the energy of the moving body is converted
into the non-mechanical thermal energy. The full description would include the motion of 
individual atoms of both the moving body and the large body forming the surface. As the kinetic
energy of the moving body decreases, the energy of the motion of individual atoms increases. In 
this picture, the system is conservative.

constUTE =+=
A special case is the Lorentz force acting on charged particles moving in a magnetic
field that is non-potential but, nevertheless, conserves the energy.
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Least-action principle and Lagrangian formalism

Whereas the Newtonian mechanics is formulated in terms of N vector equations of motion, the
Lagrangian formalism is based on a single generating function, the Lagrange function or
Lagrangian, from which the equations of motion can be obtained. In addition, the form of these
equations follows from a principle that can be chosen as the basis of mechanics, the Hamilton 
principle or the least action principle
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Action Lagrangian Generalized coordinates and velocities

1 2

True trajectory q(t)

- The true trajectory between the fixed boundary points q(t1)= q1 and q(t2)= q2 minimizes S.

Varying S with respect to an arbitrary small deviation δq(t) from the true trajectory, one obtains
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To make the Lagrangian formalism usable, one has to find the Lagrangian L. Practically the best 
way (implicitly used by Landau and Lifschitz) is to postulate the form of L. For systems with
holonomic constraints and potential forces the Lagrangian has the form
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The justification of this choice for the basic system of particles with interactions in a Descarte frame

Adding a full time derivative
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to L does not change physics since this term makes a zero contribution into δS. Thus the Lagrange
equations remain the same that can also be checked directly.
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is that the resulting Lagrange equations coinside with the Newton‘s equations. In the case of 
holonomic constraints and non-Descarte generalized coordinates one obtains, again, correct
Lagrange equations that can be derived from Newton‘s equations by changing to the generalized
coordinates and resolving constraints. The latter can be done with the help of the d‘Alembert
principle (e.g., Goldstein) or Lagrange multipliers (e.g., David Tong). 

For systems with holonomic constraints, the Lagrangian formalism is more efficient than the
Newtonian description since it directly leads to eqiations of motions with constraints already
eliminated. To the contrast, within the Newton formalism one has to work on elimination of the
reaction forces and resolving constraints.  
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Example: The point-mass pendulum
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The Lagrange equation is

0sin0 2 =+�=
∂
∂−

∂
∂ ϕϕ

ϕϕ
mglml

dt

d ��

�

LL

mg

T

In the Newton formalism setting up the equation of motion for the pendulum is more cumbersome
as it requires elimination of the reaction (tension) force T by projecting on the direction
perpendicular to the rod.
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For systems with non-holonomic constraints the Lagrange formalism loses its elegance as these
constrants cannot be eliminated. The general form of a non-holonomic constraint for velocities and 
thus for the trajectory variations is

Example: Sphere rolling on a plane
Non-holonomic constraints

•
R

vConstraint - The velocity of the contact point is zero -
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cannot be integrated and eliminated. 

To the contrast, for a cylinder the constraint
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is holonomic as the time derivatives can be integrated out and then one of the variables x or ϕ can
be eliminated.
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The least-action principle with constraint reads
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The full system of the Lagrange and constraint equations has the form

0)(,0 ==−
∂
∂−

∂
∂ ∑∑ i

i
ii

ii

qqcc
dt

d �

� αα
α

αλ
q

L

q

L

Contact point



9

Using the Lagrangian formalism with non-holonomic constraints only makes sense is there are
both holonomic and non-holonomic constraints. In the case of one non-holonomic constraint it is
better to use the Newtonian formalism, where the physical meaning of the reaction forces (the
same as the constraint terms in the Lagrange equations!) is transparent.
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Important special case: Charged particle in an electromagnetic field

The Newtonian equation of motion has the form
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where the electric and magnetic fields can be expressed via the scalar and vector potentials
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Indeed, the Lagrange equation has the form
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and definitions in Eq.(2), one obtains Eq.(1). This model is not potential but still conservative.


