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1 Introduction

Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter
is the subject of statics that is important in engineering. General properties of motion of bodies regardless
of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused
by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics.

Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of
rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of
each of these areas of mechanics is the equation of motion, Newton’s second law. Mechanics of material
points is described by ordinary differential equations (ODE). One can distinguish between mechanics of
one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by
ordinary differential equations, including positions and velocities of their centers and the angles defining
their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli-
cated and described by partial differential equation. In many cases mechanics of continuum is coupled to
thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE,
including particles and rigid bodies.

There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than
the speed of light, v � c, otherwise it becomes relativistic mechanics. Second, the bodies should have a
sufficiently large mass and/or kinetic energy. For small particles such as electrons one has to use quantum
mechanics.

Regarding theoretical approaches, mechanics splits into three parts: Newtonian, Lagrangian, and Hamil-
tonian mechanics. Newtonian mechanics is most straightforward in its formulation and is based on Newton’s
second law. It is efficient in most cases, especially for consideration of particles under the influence of forces.
Lagrangian mechanics is more sophisticated and based of the least action principle. It is efficient for con-
sideration of more general mechanical systems having constraints, in particular, mechanisms. Hamiltonian
mechanics is even more sophisticated less practical in most cases. Its significance is in bridging classical
mechanics to quantum mechanics.

In this course we will consider Newtonian, Lagrangian, and Hamiltonian mechanics, as well as some
advanced additional topics.

Part I

Newtonian Mechanics

The basis of Newtonian mechanics are Newton’s laws, especially second Newton’s law being the equation of
motion of a particle of mass m subject to the influence of a force F

mr̈ = F. (1)
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Figure 1: Overview of mechanics
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Here r̈ ≡ d2r/dt2 ≡ ∂2
t r is the double time derivative of the position vector r of the particle, that is,

its acceleration a. This second-order differential equation can be written as the system of two first-order
differential equations

ṙ = v

v̇ = F/m (2)

where
v = ṙ (3)

is particle’s velocity. The force F can depend on particle’s position and velocity, as well as explicitly on
time: F = F(r,v, t).

In the absence of the force (free particle), the solution of the above equation of motion is

v = v0

r = r0 + v0t, (4)

where v0 and r0 are integration constants of the ODE above, being physically the initial conditions: velocity
and position at t = 0. This is first Newton’s law, now having only a historical meaning.

Newton’s second law is a differential equation for in general three-component vector variable r ≡ (x, y, z).
Correspondingly Eq. (1) can be written in components as a system of three equations

mẍ = Fx

mÿ = Fy

mz̈ = Fz. (5)

In general, these three equations are not independent and may be coupled via the force depending on all
three position and/or velocity components.

Systems ofN particles are described by in generally coupled system of ODE’s consisting of second Newton’s
laws for each particle

mir̈i = Fi, i = 1, . . . , N. (6)

Each force Fi can be represented as the sum of the external force Fext
i and inter-particle interaction forces

fij ,

Fi = Fext
i +

∑
j

fij . (7)

According to Newton’s third law, interaction forces are anti-symmetric,

fij = −fji. (8)

2 Mechanics of a single particle

Here we consider basic examples of solution of equations of motion for a single particle applying different
basic mathematical methods.

2.1 Motion with a constant force

For F = const in Eq. (1) one readily finds the solution

v = v0 + at

r = r0 + v0t+
1

2
at2, (9)

where a = F/m is constant acceleration. The validity of this solution can be checked, in particular, by
differentiation over time. The trajectory r(t) (a parabola) is confined to the plane, orientation of which is
specified by the two vectors v0 and a. Thus this motion is effectively two-dimensional. It is convenient to
choose the coordinate system such that the trajectory is in xy plane while z = 0.
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2.2 Motion with a viscous damping

If a body is moving in a viscous fluid or in the air at a small enough speed, it is experiencing a drag force.
For a symmetric particle’s shape, the drag force is opposite to its velocity,

Fv = −αv. (10)

Newton’s second law with a drag force, is usually written it explicitly as,

mr̈ + αṙ = F, (11)

where F means all other forces. This equation can be rewritten as

r̈ + Γṙ = F/m, (12)

where Γ ≡ α/m is a characteristic relaxation rate, measured in s−1. One can rewrite this equation via the
velocity,

v̇ + Γv = F/m. (13)

After solving this first-order ODE, one can find r(t) by simple integration, r(t) =
´
dtv(t).

Let us start with the uniform ODE with F = 0, i.e.,

v̇ + Γv = 0. (14)

In this case the motion is one-dimensional along a line in 3d space. It is convenient to choose the coordinates
so that the motion is along x axis, while y = z = 0. Using, for brevity, the notation vx = v, one obtains the
equation

v̇ + Γv = 0 (15)

that can be solved as follows:

dv

v
= −Γdtˆ

dv

v
= −Γ

ˆ
dt

ln v = −Γt+ const (16)

that finally yields
v = v0e

−Γt. (17)

Returning to the general vector form, one obtains

v = v0e
−Γt. (18)

Now, integrating this equation yields

r = r0 +
v0

Γ

(
1− e−Γt

)
. (19)

This method of solution works for a class of nonlinear first-order ODE.
For linear uniform ODE one can use a more powerful method based on searching the solution in the

exponential form such as

v ∝ eλt. (20)

Substitution into Eq. (14) yields the algebraic equation for λ

λ+ Γ = 0 (21)
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having the solution λ = −Γ. Thus the solution of the ODE has the form

v = Ce−Γt = v0e
−Γt (22)

that coincides with Eq. (18).
In the presence of a constant force, e.g., gravity, Eq. (13) can be solved by a small modification of the

method above. The problem has a non-trivial asymptotic solution that can be found by setting v̇ = 0. This
yields

v∞ = F/(mΓ), (23)

the stationary velocity at large times. Then one can rewrite Eq. (13) in terms of the new variable u ≡ v−v∞
as

u̇ + Γu = 0. (24)

This is mathematically the same equation as before and it can be solved in a similar way. Finally one obtains

v = v∞ + (v0 − v∞) e−Γt. (25)

Integration of this formula yields

r = r0 + v∞t+
v0 − v∞

Γ

(
1− e−Γt

)
. (26)

Finally, Eq. (13) can be solved in quadratures for any time-dependent force F(t) by the method of
variation of constants. This method allows to find the solution of a non-uniform ODE (or system of ODE),
including ODE with coefficients depending on time, if the solution of the corresponding uniform ODE is
known. Using this method, one searches for the solution of Eq. (13) in the form

v(t) = C(t)e−Γt. (27)

Substituting this into Eq. (13), one obtains the equation for the “variable constant” C(t)

Ċ(t)e−Γt = F(t)/m. (28)

Solving for Ċ(t) and integrating the result, one obtains

C(t) =

ˆ
dt′eΓt′F(t′)

m
. (29)

Substituting this into Eq. (27), one obtains

v(t) = e−Γt

ˆ
dt′eΓt′F(t′)

m
. (30)

In this expression the indefinite integral contains an integration constant. One can work it out rewriting
the result in terms of a definite integral as

v(t) = v0e
−Γt + e−Γt

tˆ

0

dt′eΓt′F(t′)

m
. (31)

To check this formula, one can differentiate it over t, obtaining Eq. (13).
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2.3 Harmonic oscillator

Harmonic oscillator in its basic form is a body of mass m attached to a spring with spring constant k. Also
including viscous damping and generalizing Eq. (11), one writes down the equation

mr̈ + αṙ + kr = F, (32)

where F is an external force, as before. In the following we will consider the case of the body performing a
linear motion along the x axis. Dividing by the mass, one obtains the equation

ẍ+ 2Γẋ+ ω2
0x = f, (33)

where

Γ ≡ α

2m
, ω0 ≡

√
k

m
, f ≡ F

m
. (34)

Here we have defined Γ in a way different from above for the sake of simplicity of the formulas. ω0 is the
frequency of oscillations in the absence of damping.

Solution of the uniform equation (f = 0), in accordance with the general method, can be searched in the
form

x(t) ∝ eiΩt. (35)

The imaginary i has been inserted in anticipation of an oscillating motion of the system. Substituting this
into Eq. (33), one obtains the quadratic equation

−Ω2 + 2iΓΩ + ω2
0 = 0 (36)

having the solution

Ω± = iΓ± ω̃0, ω̃0 ≡
√
ω2

0 − Γ2. (37)

Thus the solution of the ODE has the form

x(t) = C+e
iΩ+t + C−e

iΩ−t, (38)

where C± are integration constants. Using the relation

eiϕ ≡ cosϕ+ i sinϕ, (39)

one can rewrite the result in explicitly real form

x(t) = C1e
−Γt cos ω̃0t+ C2e

−Γt sin ω̃0t, (40)

where C1,2 is another set of integration constants. The latter can be found from the initial conditions

x(0) = x0, ẋ(0) = v0 (41)

that is,
x(0) = C1 = x0 (42)

and
ẋ(0) = −ΓC1 + ω̃0C2 = v0. (43)

One finds

C1 = x0, C2 =
v0 + Γx0

ω̃0
. (44)

Thus

x(t) = x0e
−Γt cos ω̃0t+

v0 + Γx0

ω̃0
e−Γt sin ω̃0t. (45)
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Let us look at the solution. According to Eq. (37), in the absence of damping, Γ = 0, the body is
oscillating with the frequency ω0. Damping reduces oscillation frequency that turns to zero at Γ = ω0. In
the strong-damping limit Γ > ω0 the motion of the body is aperiodic.

Let us now consider the motion of the harmonic oscillator under the influence of external force. Using the
method of variation of constants in Eq. (38), one searches for the solution in the form

x(t) = C+(t)eiΩ+t + C−(t)eiΩ−t. (46)

The “variable constants” satisfy the system of equations

Ċ+(t)x+(t) + Ċ−(t)x−(t) = 0

Ċ+(t)ẋ+(t) + Ċ−(t)ẋ−(t) = f(t). (47)

Its solution is

Ċ+(t) =

∣∣∣∣∣ 0 x−(t)
f(t) ẋ−(t)

∣∣∣∣∣∣∣∣∣∣ x+(t) x−(t)
ẋ+(t) ẋ−(t)

∣∣∣∣∣
=

−f(t)x−(t)

x+(t)ẋ−(t)− ẋ+(t)x−(t)
. (48)

Using
x+(t)ẋ−(t)− ẋ+(t)x−(t) = i (Ω− − Ω+) ei(Ω−+Ω+)t = −2iω̃0e

−2Γt (49)

one obtains

Ċ+(t) = − i
2

f(t)

ω̃0
eiΩ−t+2Γt = − i

2

f(t)

ω̃0
e−iΩ+t (50)

and, similarly,

Ċ−(t) =
i

2

f(t)

ω̃0
eiΩ+t+2Γt =

i

2

f(t)

ω̃0
e−iΩ−t. (51)

Integrating these two formulas and substituting the result in Eq. (46), one obtains

x(t) = xfree(t) + xforced(t), (52)

where xfree(t) is the solution of the uniform ODE describing the free oscillator and given by Eq. (45) and

xforced(t) = − i

2ω̃0
eiΩ+t

tˆ

0

dt′f(t′)e−iΩ+t′ +
i

2ω̃0
eiΩ−t

tˆ

0

dt′f(t′)e−iΩ−t
′

(53)

is the response to the external force. The latter can be simplified as

xforced(t) =
i

2ω̃0

tˆ

0

dt′f(t′)
[
−eiΩ+(t−t′) + eiΩ−(t−t′)

]

=
i

2ω̃0

tˆ

0

dt′f(t′)e−Γ(t−t′)
[
−eiω̃0(t−t′) + e−iω̃0(t−t′)

]

=
1

ω̃0

tˆ

0

dt′f(t′)e−Γ(t−t′) sin
[
ω̃0(t− t′)

]
. (54)

One can check that xforced(0) = ẋforced(0) = 0, that is, the forced solution is independent of the initial
conditions and does not change the form of xfree(t).
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Let us consider the important case of a sinusoidal force

f(t) = f0 sinωt, (55)

applied starting from t = 0. To compute xforced(t), it is convenient to convert everything into the exponential
form, after which integration simplifies:

xforced(t) =
f0

4ω̃0

tˆ

0

dt′
(
eiωt

′ − e−iωt′
)
e−Γ(t−t′)

[
−eiω̃0(t−t′) + e−iω̃0(t−t′)

]

=
f0

4ω̃0

tˆ

0

dt′e−Γ(t−t′)
[
−eiωt′eiω̃0(t−t′) + eiωt

′
e−iω̃0(t−t′) + c.c.

]
, (56)

where c.c. is complex conjugate. Further one proceeds as

xforced(t) =
f0

4ω̃0

tˆ

0

dt′
[
−e(−Γ+iω̃0)te(Γ−iω̃0+iω)t′ + e(−Γ−iω̃0)te(Γ+iω̃0+iω)t′

]
+ c.c.

=
f0

4ω̃0

[
−e(−Γ+iω̃0)t e

(Γ−iω̃0+iω)t − 1

Γ− iω̃0 + iω
+ e(−Γ−iω̃0)t e

(Γ+iω̃0+iω)t − 1

Γ + iω̃0 + iω

]
+ c.c.

=
f0

4ω̃0

[
−e

iωt − e(−Γ+iω̃0)t

Γ− iω̃0 + iω
+
eiωt − e(−Γ−iω̃0)t

Γ + iω̃0 + iω

]
+ c.c. (57)

The first term in this expression is the so-called resonant term in which the denominator becomes small for
ω close to ω0. The other term is non-resonant term that differs from the first one by replacement ω̃0 ⇒ −ω̃0.
It is sufficient to compute one of these terms, then the other one can be easily obtained from the first one.
Let us calculate the resonance term. Adding c.c. amounts to doubling the real part of the expression and
annihilating its imaginary part. Shortcutting the non-resonant term as . . . , one proceeds as

xforced(t) = − f0

4ω̃0

eiωt − e(−Γ+iω̃0)t

Γ− iω̃0 + iω
+ c.c.+ . . .

= − f0

4ω̃0

[
eiωt − e(−Γ+iω̃0)t

]
(Γ + iω̃0 − iω)

(ω − ω̃0)2 + Γ2
+ c.c.+ . . .

= − f0

4ω̃0

Γ
[
eiωt − e(−Γ+iω̃0)t + c.c.

]
+ i (ω̃0 − ω)

[
eiωt − e(−Γ+iω̃0)t − c.c.

]
(ω − ω̃0)2 + Γ2

+ . . .

= − f0

2ω̃0

Γ
[
cos (ωt)− cos (ω̃0t) e

−Γt
]
− (ω̃0 − ω)

[
sin (ωt)− sin (ω̃0t) e

−Γt
]

(ω − ω̃0)2 + Γ2
+ . . . (58)

At the times longer than the relaxation time of the oscillator

τ ≡ 1

Γ
(59)

the terms in the above formula that are oscillating at oscillator’s own frequency ω̃0 die out and only the
forced terms oscillating at the frequency ω remain,

xforced(t) =
f0

2ω̃0

[
−Γ cos (ωt) + (ω − ω̃0) sin (ωt)

(ω − ω̃0)2 + Γ2
+

Γ cos (ωt) + (ω + ω̃0) sin (ωt)

(ω + ω̃0)2 + Γ2

]
. (60)

Here the terms with cos (ωt) is shifted by quarter of the period with respect to the harmonic force. Exactly
at resonance, ω = ω̃0, only this term in the resonant part of the expression becomes dominant and reaches
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its maximum. Near the resonance, |ω − ω̃0| ∼ Γ � ω0, the resonant term is large, and the much smaller
non-resonant term can be neglected.

The power absorbed by the oscillator can be calculated via the work of the external force done on the
oscillator,

Pabs =
1

T

T̂

0

dt
dA

dt
=

1

T

T̂

0

dtF (t)ẋ(t), (61)

where T ≡ 2π/ω. In the stationary state near the resonance, x(t) is given by the first term of Eq. (60) and
F (t) = mf0 sinωt. One obtains

Pabs =
1

T

T̂

0

dt
mf2

0

2ω0

Γ

(ω − ω0)2 + Γ2
ω sin2 ωt ∼=

mf2
0

4

Γ

(ω − ω0)2 + Γ2
. (62)

Here approximation ω ∼= ω̃0
∼= ω0 was used that is mandatory since the whole approach ignoring the non-

resonant term is valid near the resonance only under that condition that the resonance is narrow, Γ� ω0.
The stationary (settled) state of the oscillator under the influence of a harmonic force can be obtained in

a much easier way by just searching the solution in the form

x(t) = A sinωt+B cosωt. (63)

Pre-calculating

ẋ(t) = Aω cosωt−Bω sinωt (64)

ẍ(t) = −ω2x(t) (65)

and inserting it into Eq. (33) using Eq. (55), one obtains

−Aω2 sinωt−Bω2 cosωt+ 2ΓAω cosωt− 2ΓBω sinωt+Aω2
0 sinωt+Bω2

0 cosωt = f0 sinωt. (66)

Equating the coefficients in front of sinωt and cosωt, one obtains the system of linear equations

−Aω2 − 2ΓBω +Aω2
0 = f0

−Bω2 + 2ΓAω +Bω2
0 = 0. (67)

From the second equation one obtains A = B
(
ω2 − ω2

0

)
/ (2Γω). Substituting it into the first equation yields

−B
(
ω2 − ω2

0

)2
2Γω

− 2ΓωB = f0 (68)

and

B = −f0
2Γω(

ω2 − ω2
0

)2
+ 4Γ2ω2

, A = −f0
ω2 − ω2

0(
ω2 − ω2

0

)2
+ 4Γ2ω2

, (69)

so that

x(t) = −f0
2Γω cosωt+

(
ω2 − ω2

0

)
sinωt(

ω2 − ω2
0

)2
+ 4Γ2ω2

. (70)

This solution contains both resonant and nonresonant terms. Near resonance one can write

ω2 − ω2
0 = (ω − ω0) (ω + ω0) ∼= 2ω0 (ω − ω0) (71)

and thus

x(t) ∼= −
f0

2ω0

Γ cosωt+ (ω − ω0) sinωt

(ω − ω0)2 + Γ2
. (72)

This coincides with the resonant term in Eq. (60). In general, one should be able to demonstrate that Eqs.
(60) and (70) that are both exact solutions of the problem, are identical.
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2.4 Charged particle in a magnetic field

Moving charged particle experiences the so-called Lorentz force from the magnetic field B,

FL = q [v ×B] . (73)

Since this force depends on the velocity, it is convenient to write the equation of motion in terms of the
velocity, as was done in the case of the viscous drag force,

mv̇ = q [v ×B] . (74)

In the basic case of uniform magnetic field that will be considered below, z axis will be chosen along B, so
that Bz = B and Bx = By = 0. The equation of motion in components has the form

v̇x = ωcvy (75)

v̇y = −ωcvx (76)

v̇z = 0, (77)

where

ωc ≡
qB

m
(78)

is the cyclotron frequency. Differentiating the first equation over time and substituting the second equation,
one obtains the second-order ODE for vx

v̈x + ω2
cvx = 0. (79)

This is the harmonic-oscillator equation considered in the pervious section. Thus vx will be oscillating in
time. The same equation can be obtained for vy, thus vy will be oscillating, too. On the other hand, motion
in the direction of the field is a free motion,

v̇z = 0, vz = const = vz0, z = z0 + vz0t. (80)

The solution of Eq. (79) can be obtained from Eq. (40):

vx(t) = Cx1 cosωct+ Cx2 sinωct. (81)

Integration constants obtained from the initial conditions have the form

Cx1 = vx(0) = vx0 (82)

Cx2 = v̇x(0)/ωc = vy(0) = vy0, (83)

thus the final solution has the form

vx(t) = vx0 cosωct+ vy0 sinωct. (84)

Similarly one obtains
vy(t) = vy0 cosωct− vx0 sinωct. (85)

Let us calculate

v2
x + v2

y = (vx0 cosωct+ vy0 sinωct)
2 + (vy0 cosωct− vx0 sinωct)

2

= v2
x0 cos2 ωct2 + 2vx0vy0 cosωct sinωct+ v2

y0 sin2 ωct

+ v2
x0 sin2 ωct2 − 2vx0vy0 sinωct cosωct+ v2

y0 cos2 ωct

= v2
x0 + v2

y0 = const. (86)
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Thus the vector (vx, vy) is rotating at the constant rate ωc while the kinetic energy Ek = mv2/2 is conserved.
Time dependence of x and y can be obtained by integration of the results for vx and vy. One obtains

x = x0 +
vx0

ωc
sinωct−

vy0

ωc
cosωct

y = y0 +
vy0

ωc
sinωct+

vx0

ωc
cosωct. (87)

This trajectory is circular with the center at an arbitrary (x0, y0). The radius of the circle R can be found
by the calculation similar to the above:

R2 = (x− x0)2 + (y − y0)2 =
v2
x0 + v2

y0

ω2
c

. (88)

Thus the cyclotron radius is given by

R =
v⊥
ωc

=
mv⊥
qB

, (89)

where v⊥ =
√
v2
x + v2

y .

3 Momentum and angular momentum

Momentum of a particle is defined as
p = mv. (90)

It can be used to write Newton’s second law in the form

ṗ = F. (91)

In the absence of forces momentum is conserved, as well as the velocity. The above is not essentially new.
Significance of momentum becomes apparent if one considers a system of interacting particles and defines

the total momentum as
P =

∑
i

pi. (92)

Differentiating it over time one obtains

Ṗ =
∑
i

ṗi =
∑
i

Fi. (93)

Separating the forces into external and internal, Eq. (7), and using Newton’s third law, Eq. (8), one can
see that only external forces change the momentum of the system,

Ṗ =
∑
i

Fext
i . (94)

In an isolated system there are only interaction forces between the particles that are changing momenta
of individual particles, whereas the total momentum is conserved. Conservation of the total momentum
is important, in particular, in collisions. During collisions usually systems can be considered as effectively
isolated because collisions occur during a very short time, so that external forces cannot change momenta
significantly during collisions. To the contrary, internal forces during collisions are large and important.

Angular momentum of a particle is defined by

l = [r× p] , (95)
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where r is the position vector of the particle defined with respect to a particular frame or coordinate system.
Thus angular momentum depends on the position of the origin of the frame. The time derivative of the
angular momentum is given by

l̇ = [ṙ× p] + [r× ṗ] = [r× F] ≡ τ . (96)

Here τ is the torque that also depends on the choice of the frame origin. If the force is central, i.e., directed
everywhere away from or towards a particular central point, one can choose a frame having the origin at
this point, then the torque is zero and angular momentum is conserved.

The total angular momentum of the system is defined by

L =
∑
i

[ri × pi] . (97)

Its time derivative reads

L̇ =
∑
i

[ri × Fi] =
∑
i

[
ri × Fext

i

]
+
∑
i

ri ×∑
j

fij

 . (98)

In the interaction term, renaming i and j and using Newton’s third law, one can write

L̇int =
∑
ij

[ri × fij ] =
∑
ij

[rj × fji] = −
∑
ij

[rj × fij ] . (99)

One can symmetrize L̇int as

L̇int =
1

2

∑
ij

[(ri − rj)× fij ] . (100)

In nature interaction forces between particles are directed along the line connecting the particles. Thus the
cross product in the formula above disappears. The change of the angular momentum of a system is entirely
due to external torques,

L̇ =
∑
i

[
ri × Fext

i

]
=
∑
i

τ ext
i = τ . (101)

Consider another frame with the origin shifted by the vector a, so that the positions of the particles in
the old frame are given by

ri = r′i + a. (102)

For the total angular momentum one obtains

L =
∑
i

[(
r′i + a

)
× pi

]
= L′ + [a×P] . (103)

Thus, if the total momentum P is zero, total angular momentum does not depend on the position of frame’s
origin. If the system is close to the origin of the primed frame but far from the origin of the original frame,
one can say that the term [a×P] is the angular momentum corresponding to the motion of the system as
the whole in the original frame.

Similarly for the torque one can write

τ =
∑
i

[(
r′i + a

)
× Fi

]
= τ ′ + a×

∑
i

Fi. (104)

If the net force acting on the system is zero, torque does not depend on the position of the frame’s origin,
τ = τ ′.
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4 Work, energy and potential forces

Infinitesimal work done by the force F on a particle undergoing displacement dr is defined by

δA = F · dr. (105)

In this formula δA is used instead of dA since work is not a function and the above is not its differential.
Power W is work done per unit of time,

W =
δA

dt
= F · dr

dt
= F · v. (106)

If F is acting on a free particle, the latter will accelerate or decelerate, and the work on the particle will
change its kinetic energy defined by

Ek =
mv2

2
. (107)

Indeed, the infinitesimal change of the energy can be related to the infinitesimal work as

dEk = mv · dv = m
dv

dt
· vdt = F · dr = δA. (108)

Potential forces are forces that can be expressed via gradients of position-dependent potential energy U ,

F = −∇U(r) = −∂U
∂r

. (109)

Work done by potential forces is independent of the trajectory and depends only on the initial and final
positions,

A12 =

r2ˆ
r1

F · dr = −
r2ˆ

r1

∂U

∂r
· dr = U(r1)− U(r2). (110)

The work on a closed path is zero for potential forces,

˛
F · dr = 0, (111)

because the change of U is zero. Eq. (110) can be rewritten as the definition of potential energy via the
force,

U(r) = U(r0)−
rˆ

r0

F · dr. (112)

Here U(r0) is the (arbitrary) value of potential energy at the reference point r0. Potential energy a secondary
or auxiliary physical quantity, not directly measurable and introduced via the force as a primary quantity,
and it is defined up to an arbitrary additive constant. Using Eq. (112), one has first to be sure that the
integral does not depend on the path. To check whether F is a potential force, one can use the Stokes’
theorem to express the closed-path line integral as the flux through the surface spanned by the closed path,

˛
F · dr =

ˆ

S

rotF·dS. (113)

If

rotF =

∣∣∣∣∣∣∣
ex ey ez
∂x ∂y ∂z
Fx Fy Fz

∣∣∣∣∣∣∣ = 0, (114)
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F is a potential force.
Not all forces are potential. For instance, friction forces are not. An example of potential forces is gravity

near the Earth’s surface,
U = mgr · ez + const, (115)

where ez is the unit vector directed up. The general gravitational force between two masses has the potential
energy

U = G
mM

|r|
. (116)

Here the origin of the coordinate system is put at the big mass M (e.g., the sun) and r points to the position
of the small mass m (e.g., the Earth). The gravitational force acting on m has the form

F = −∂U
∂r

= −GmM
r2

r

r
. (117)

A special kind force if Lorentz force, Eq. (73). As it is not doing any work, there is no potential energy
associated with it. For the same reason this force does not lead to dissipation of energy as friction forces.

The total energy of the particle

E =
mv2

2
+ U (r) (118)

can be shown to be dynamically conserved (i.e., to be an integral of motion), if there are no other forces
such as friction. Indeed,

Ė = mv̇ · v +
∂U

∂r
· ṙ = (mv̇ − F) · v = 0 (119)

via Newton’s second law. Because of conservation of the total energy, systems with potential forces are
called conservative. In the presence of the viscous friction force, Eq. (10), one obtains

Ė = mv̇ · v +
∂U

∂r
· ṙ =

(
−αv − ∂U

∂r
+
∂U

∂r

)
· v = −αv2, (120)

dissipation of energy.
Let us obtain the total energy E as the first integral of Newton’s second law. Dot-multiplying it by v and

manipulating the expressions, one obtains

0 =

(
mv̇ +

∂U

∂r

)
· v =

m

2

dv2

dt
+
∂U

∂r
· ṙ =

d

dt

(
mv2

2
+ U (r)

)
. (121)

Integrating this, one obtains Eq. (118) with E = const as an integral of motion.
The total energy of a system of interacting particles has the form

E =
∑
i

mivi
2

+ U ({ri}) , (122)

where the potential energy depends, in general, on the positions of all particles. In the absence of non-
conservative forces, conservation of this many-body energy follows from Newton’s second law, as above. In
most cases, potential energy includes one-particle and two-particle terms,

U ({ri}) =
∑
i

U0 (ri) +
1

2

∑
ij

V (|ri − rj |) . (123)

The factor 1/2 in the interaction term is inserted to compensate for double counting of interacting pairs ij
and ji, so that the interaction energy between each two particles is just V . Using

∂ |r|
∂r

=
r

|r|
, (124)
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one obtains the corresponding force,

Fi = −∂U
∂ri

= −∂U0

∂ri
+
∑
j

fij , (125)

where interaction forces are given by

fij = −V ′ (|ri − rj |)
ri − rj
|ri − rj |

. (126)

Here V ′ is the derivative of the function over its argument. As it was said in the comment to Eq. (100),
interaction forces are directed along the line connecting the two particles.

5 Center of mass, reduced mass

For any system of point masses one can define the center of mass (CM) or center of inertia as

R =
1

M

∑
i

miri, (127)

where M =
∑
imi is the total mass. For a solid body CM is defined by a corresponding integral. The

velocity of CM is related to the total momentum,

V =
1

M

∑
i

mivi =
P

M
. (128)

This formula evokes an image of a system considered as one body of mass M moving with the velocity V.
Dynamics of CM is due to the external forces,

MV̇ = Ṗ =
∑
i

Fext
i , (129)

where Eq. (94) was used. CM of an isolated system is moving with a constant velocity.
In many cases it is convenient to put the origin of the coordinate system at the center of mass since it

leads to simplifications. In particular, in the CM frame the system is at rest as the whole and there is only
internal motion. Let the primed frame in Eq. (102) be CM frame, so that

ri = r′i + R (130)

and
vi = v′i + V. (131)

Position of the center of mass in the CM frame is zero,

R′ =
1

M

∑
i

mir
′
i =

1

M

∑
i

mi (ri −R) = R−R = 0. (132)

Total momentum in the CM frame is zero, too,

P′ =
∑
i

miv
′
i =

∑
i

mi (vi −V) = P−P = 0. (133)

Angular momentum defined by Eq. (97) in the CM frame becomes

L′ =
∑
i

[
r′i × p′i

]
=
∑
i

[(ri −R)×mi (vi −V)]

= L + R×P−R×
∑
i

mivi −
∑

miri ×V

= L + R×P−R×P−R×P (134)
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that finally yields
L = L′ + R×P. (135)

This means that the total angular momentum L consists of the internal angular momentum L′ and the
angular momentum R×P corresponding to the motion of the system as the whole.

Kinetic energy of a system of particles can be transformed as

Ek =
1

2

∑
i

mi
(
v′i + V

)2
=

1

2

∑
i

miv
′2
i +

MV2

2
+ P′ ·V = E′k +

MV2

2
(136)

since P′ = 0. Thus also kinetic energy consists of the internal kinetic energy and the kinetic energy
corresponding to the motion of the system as the whole.

An isolated system of two interacting masses can be described as one so-called reduced mass moving
around the CM of the system. Choosing a coordinate system with the origin at the CM, one obtains the
constraint on the positions of the bodies

m1r1 +m2r2 = 0. (137)

As the single dynamical variable one can choose the position-difference vector

r ≡ r1 − r2. (138)

Using these two equations, one can express the individual positions as

r1 =
m2

m1 +m2
r, r2 = − m1

m1 +m2
r. (139)

The total energy of the system

E =
m1v

2
1

2
+
m2v

2
2

2
+ U (|r1 − r2|) (140)

becomes

E =
mv2

2
+ U (|r|) , (141)

where v = ṙ and
m ≡ m1m2

m1 +m2
(142)

is the reduced mass. The equation of motion of the system can be obtained from either of the two equations
for the individual bodies, e.g.,

m1r̈1 = mr̈ = −∂U
dr1

= −∂U
dr
. (143)

The resulting equation of motion for the reduced mass

mr̈ = −∂U
dr

(144)

can be obtained from the equation of motion for the second body as well.

6 One-dimensional conservative motion

For one-dimensional conservative systems conservation of the total energy can be used to reduce the second-
order differential equation to a first-order differential equation that can be straightforwardly integrated. The
basic form of a one-dimensional system, a particle, has the energy

E =
mv2

2
+ U(x). (145)
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In addition, there are systems that become one-dimensional because of a constrait. For instance, a mass
on a light rod (pendulum) making a motion along a circle in the xy plane can be described by a single
dynamical variable, the angle ϕ, that makes it effectively one-dimensional. Solving the above equation for
v = ẋ, one arrives at the first-order ODE

ẋ =

√
2 [E − U(x)]

m
. (146)

Here the integral of motion E plays the role of an integration constant. Further integration of Eq. (146) is
done as follows

t =

ˆ
dt =

√
m

2

ˆ
dx√

E − U(x)
. (147)

This defines x(t) implicitly. Another integration constant comes from the indefinite integral.
Motion of a mechanical system can take place only in the region E > U , where kinetic energy is positive.

Regions E < U are inaccessible for the system and are called barrier regions. The system hits barriers and
changes direction of its motion at turning points, where E = U and thus v = 0. Positions of turning points
depends on the energy. If the motion of the system is limited by left and right turning ponts x1 and x2

being the two roots of the equation E = U(x), the particle performs oscillations between these points with
the period

T (E) =
√

2m

x2ˆ
x1

dx√
E − U(x)

. (148)

In general, the period depends on the energy E. If E is close to the minimum of U(x) where the latter is
parabolic,

U(x) ∼= U0 +
k

2
(x− x0)2 , (149)

the system becomes a harmonic oscillator with the period independent of the energy. The motion of the
harmonic oscillator has been determined above by solving its equation of motion. Within the present
approach, setting U0 = x0 = 0, one finds x1,2 = ±xm, where xm =

√
2E/k. Then one can integrate Eq.

(147) as follows

t =

√
m

k

ˆ
dx√

x2
m − x2

=
1

ω0

(
arcsin

x

xm
+ ϕ0

)
, (150)

where ω0 ≡
√
k/m is the oscillator frequency and ϕ0 is an integration constant. Resolving this formula for

x, one finally obtains
x(t) = xm sin (ω0t− ϕ0) , (151)

a form of Eq. (40).
Square potential energy near the minimum is a borderline. If U(x) is subsquare (grows slower than x2),

the frequency of oscillations decreases with the amplitude. For a supersquare U(x) oscillation frequency
increases with the amplitude. For instance, for the potential energy U(x) = A |x|n turning points are

x1,2 = ±xm, where xm = (E/A)1/n. The period given by Eq. (148) becomes

T (E) = 2

√
2m

A

xmˆ

0

dx√
xnm − xn

. (152)

Changing integration variable to y ≡ x/xm, one obtains

T (E) = 2

√
2m

A
x1−n/2
m

1ˆ

0

dy√
1− yn

= 2

√
2m

A

(
E

A

)1/n−1/2
1ˆ

0

dy√
1− yn

, (153)
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where the integral is just a number. For the frequency one has

ω0(E) ∝ 1/T ∝ E(n−2)/(2n) (154)

that illustrates the above statement.
Consider a particle in a washboard potential

U(x) = U0 [1− cos (ax)] . (155)

Near the minima at ax = 2πn, n = 0,±1,±2, etc., one has U(x) ∼= kx2/2 with k = U0a
2 and behaves

similarly to the harmonic oscillator. The whole problem is mathematically equivalent to that of pendulum.
At ax = π + 2πn potential energy has maxima, Umax = 2U0. Let us calculate the period of oscillations,
considering the region around the minimum at x = 0. Eq. (148) becomes

T = 2

√
2m

U0

xmˆ

0

dx√
cos (ax)− cos (axm)

, (156)

where xm is the right turning point satisfying E = U0 [1− cos (axm)]. The integral can be transformed into
the form similar to those above,

T = 2

√
m

U0

xmˆ

0

dx√
sin2 (axm/2)− sin2 (ax/2)

. (157)

Next, one can employ the variable change

sin (ax/2) = sin (axm/2) sin ξ

(a/2) cos (ax/2) dx = sin (axm/2) cos ξdξ (158)

that yields

T =
4

a

√
m

U0

π/2ˆ

0

1

cos (ax/2)

cos ξdξ√
1− sin2 ξ

=
4

a

√
m

U0

π/2ˆ

0

dξ

cos (ax/2)
. (159)

Now, eliminating x in the integrand, one obtains

T =
4

a

√
m

U0
K
[
sin2 (axm/2)

]
,

where K(m) is the elliptic integral of the first kind,

K(m) =

π/2ˆ

0

dξ√
1−m sin2 ξ

. (160)

Let us consider limiting cases of this formula. In the case of small oscillations near the minimum axm � 1
and one can use

K(m) ∼=
π/2ˆ

0

dξ

(
1 +

1

2
m sin2 ξ

)
=
π

2

(
1 +

1

4
m

)
. (161)

Then the period becomes

T = T0

[
1 +

1

16
(axm)2 + . . .

]
, T0 =

2π

a

√
m

U0
. (162)
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If turning points approach the maxima of U(x), then m = sin2 (axm/2) → 1. At this point the elliptic
integral logarithmically diverges and so does the period. This is physically understandable because the
particle is spending a lot of time near turning points when the latter approach the maxima.

If the energy of the particle exceeds the maxima of potential energy, its motion becomes unbounded and
unidirectional, so that there is no period any longer. Different regimes can be conveniently represented
on the two-dimensional phase space of the particle (x, v). Small oscillations near minima make elliptic
trajectories in the phase space. Unbounded motion makes infinite curved trajectories. In the limit of a
very high energy trajectories become straight lines v =

√
2E/m = const. Special trajectories are those

corresponding to E = Umax and separate bound and unbound trajectories. They are called separatrices.

7 Systems with constraints and special coordinates

Some mechanical systems include constraints that are restricting motion of its parts. Simplest examples are
mass on the incline, two masses connected by a light rod and a mathematical pendulum (mass on light rod,
the other point of the rod fixed at the pivot point or fulcrum). Constaints that can be eliminated leading to
decreasing of the number of dynamical variables of the system (its degrees of freedom) are called holonomic.
More rare non-holonomic constrains cannot be eliminated and they have to be added to the equations of
motion via reaction forces. A cylinder rolling on a plane withoud slipping is a system with a holonomic
constraint, as the rotation angle of the cylinder can be expressed via displacement of its CM or vice versa.
However, a disk or a sphere rolling on a plane without slipping can make a more complicated motion than
back and forth, so that the constraint cannot be eliminated and is non-holonomic. Removing friction makes
the sphere on a plane a holonomic system while the disc remains non-holonomic. Finally, any rigid body
can be considered as a collection of point masses with lots of constraints, althought this point of view is not
practically significant. In some important cases constrants can be resolved by choosing a special coordinate
system.

7.1 Polar coordinate system; pendulum

Consider, as an example, a mathematical pendulum (simply pendulum), a mass m on a light rod of length
l, moving in xy plane. It is convenient to change to polar coordinates with the center at the fulcrum

x = r cosϕ, y = r sinϕ, (163)

where the constraint has the simple form r = l. For the position vector one obtains the expression

r = l (ex cosϕ+ ey sinϕ) , (164)

One can see that, under the constraint, the two-component vector r = (x, y) has been reduced to a single
variable ϕ.

The velocity of the pendulum has the form

v = ṙ = l (−ex sinϕ+ ey cosϕ) ϕ̇. (165)

One can check v · r = 0, that is, both vectors are perpendicular. This means that velocity is tangential with
respect to the circular trajectory the pendulum is making. Kinetic enegy reads

Ek =
mv2

2
=
ml2ω2

2
, (166)

where
ω ≡ ϕ̇ (167)

is the angular velocity.
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Acceleration is given by

v̇ = l (−ex sinϕ+ ey cosϕ) ϕ̈− l (ex cosϕ+ ey sinϕ) ϕ̇2. (168)

One can see that the first term in v̇ is tangential and collinear with velocity, while the second term is
collinear with r and directed toward the center (fulcrum). This is centripetal acceleration. Introducing
angular velocityone can write centripetal acceleration in the form

ac = −ω2r. (169)

It is convenient to project everything on the (local) direction of the circular trajectory and the perpen-
dicular (radial) direction. For this, one can introduce orthogonal unit vectors

er = r/r = ex cosϕ+ ey sinϕ

eϕ = −ex sinϕ+ ey cosϕ (170)

that satisfy
∂er
∂ϕ

= eϕ,
∂eϕ
∂ϕ

= −er. (171)

Note also the expression for the gradient in the polar coordinate system

∂

∂r
= er

∂

∂r
+ eϕ

1

r

∂

∂ϕ
. (172)

Eqs. (170) can be used to rewrite the above formulas as

r = ler

v = lωeϕ

v̇ = lω̇eϕ − lω2er, (173)

that is,

vr = 0, vϕ = lω

v̇r = −lω2, v̇ϕ = lω̇. (174)

Note that v̇r 6= ∂tvr = 0. From Eq. (170) one obtains
Constraint causes an additional reaction force

N = fNer (175)

that helps to keep the body on the trajectory. Let us project the equation of motion

mv̇ = F + N, (176)

where F is the external force, onto er and eϕ. One obtains

mv̇ · er = −mlω2 = (F + N) · er = Fr + fN

mv̇ · eϕ = mlω̇ = (F + N) · eϕ = Fϕ. (177)

Here the second equation yields the equation of motion for the pendulum,

ω̇ = Fϕ/ (ml) . (178)
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The first equation yields the reaction force,

fN = −mlω2 − Fr. (179)

The latter may be important in the problem of mechanical stability of a real-life rod but is irrelevant in the
idealized consideration of constraints. Thus one can just project the Newton’s second law onto the direction
of the trajectory enforced by the constraint, that leads to Eq. (178).

If F is a potential force,

Fϕ = F · eϕ = −∂U
∂r
· eϕ. (180)

Using Eq. (172), one obtains

Fϕ = −1

r

∂U

∂ϕ
= −1

l

∂U

∂ϕ
. (181)

For the gravity force acting on the pendulum,

F = mgex, U(r) = −mgr · ex, (182)

one obtains
Fϕ = F · eϕ = mgex · eϕ = −mg sinϕ. (183)

Potential energy expressed via ϕ has the form

U(ϕ) = −mgr · ex = −mgl (ex cosϕ+ ey sinϕ) · ex = −mgl cosϕ, (184)

so that the total kinetic energy becomes

E =
ml2ω2

2
−mgl cosϕ. (185)

From Eq. (181) one obtains

Fϕ = −1

l

∂U

∂ϕ
= −mg sinϕ, (186)

same as above. This, the equation of motion for the pendulum, Eq. (178), takes the final form

ϕ̈+ ω2
0 sinϕ = 0, ω0 =

√
g

l
. (187)

Here ω0 is the frequency of pendulum’s oscillations in the limit of small amplitude, where sinϕ ∼= ϕ. Note
that because of the constraint the problem has become non-linear.

7.2 Spherical coordinate system; Spherical pendulum

Consider a mass m on a light rod of length a, fixed at a fulcrum at the other side, the system now being
able to move on a sphere of radius a. To resolve the constraint, one can choose the spherical coordinate
system

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (188)

where θ is azimuthal angle and ϕ is polar angle. In this system the constraint has the simple form r = a.
One can introduce the local orthogonal frame defined by

er = r/r = ex sin θ cosϕ+ ey sin θ sinϕ+ ez cos θ

eθ = ex cos θ cosϕ+ ey cos θ sinϕ− ez sin θ

eϕ = −ex sinϕ+ ey cosϕ. (189)
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These vectors satisfy

∂er
∂θ

= eθ,
∂er
∂ϕ

= eϕ sin θ (190)

∂eθ
∂θ

= −er,
∂eθ
∂ϕ

= eϕ cos θ (191)

∂eϕ
∂θ

= 0,
∂eϕ
∂ϕ

= −ex cosϕ− ey sinϕ = −er sin θ − eθ cos θ, (192)

as well as
er × eθ = eϕ (193)

plus cyclic permutations. The gradient in the spherical system has the form

∂

∂r
= er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
. (194)

The velocity of the spherical pendulum can be obtained by differentiating the first line of Eq. (189) using
Eq. (190),

v = ṙ = a

(
∂er
∂θ

θ̇ +
∂er
∂ϕ

ϕ̇

)
= aeθθ̇ + aeϕ sin θϕ̇. (195)

As was done for the polar coordinate system above, to obtain the equation of motion in the spherical
system, it is sufficient to project components of Newton’s second law onto the local direction of the plane,
i.e., discarding centripetal terms. In vector form of this projected equation of motion reads

mv̇ − F− ((mv̇ − F) · er) er = 0 (196)

or
(mv̇ − F)× er = 0. (197)

In terms of the spherical components of the vectors this becomes

mv̇θ = Fθ, mv̇ϕ = Fϕ. (198)

For projected acceleration one obtains

v̇/a = eθθ̈ + eϕ sin θϕ̈+ eϕ cos θθ̇ϕ̇+ ėθθ̇ + ėϕ sin θϕ̇

= eθθ̈ + eϕ sin θϕ̈+ eϕ cos θθ̇ϕ̇+

(
∂eθ
∂θ

θ̇ +
∂eθ
∂ϕ

ϕ̇

)
θ̇ +

(
∂eϕ
∂θ

θ̇ +
∂eϕ
∂ϕ

ϕ̇

)
sin θϕ̇

= eθθ̈ + eϕ sin θϕ̈+ eϕ cos θθ̇ϕ̇+ eϕ cos θϕ̇θ̇ − eθ cos θϕ̇ sin θϕ̇

= eθθ̈ + eϕ sin θϕ̈+ eϕ2 cos θθ̇ϕ̇− eθ sin θ cos θϕ̇2 (199)

or, finally,

v̇/a = eθ
(
θ̈ − sin θ cos θϕ̇2

)
+ eϕ

(
sin θϕ̈+ 2 cos θθ̇ϕ̇

)
(200)

with centripetal terms dropped. Thus, the equation of motion of body confined to a sphere is Eqs. (198) in
the form

θ̈ − sin θ cos θϕ̇2 =
1

ma
Fθ (201)

sin θϕ̈+ 2 cos θθ̇ϕ̇ =
1

ma
Fϕ (202)

that is strongly nonlinear.
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To obtain components of the force, one has to express the potential energy via θ and ϕ and use Eq. (194).
This yields

Fθ = −1

r

∂U

∂θ
, Fϕ = − 1

r sin θ

∂U

∂ϕ
(203)

with r ⇒ l. If gravity force is applied,

U(r) = −mgr · ez = −mga cos θ, (204)

then
Fθ = −mg sin θ, Fϕ = 0. (205)

Consider angular momentum l = r ×mv of a body confined to a sphere. Expressing it in the spherical
coordinate system and using Eq. (193), one obtains

l = aer ×ma
(
eθθ̇ + eϕ sin θϕ̇

)
= ma2

(
eϕθ̇ − eθ sin θϕ̇

)
. (206)

The torque is defined by

τ = r× F = aer × (eθFθ + eϕFϕ) = aeϕFθ − aeθFϕ. (207)

In the case of gravity force directed along z axis, as defined above, the component of the torque τ = r× F
along z axis is zero: τz = τ · er = aeϕFθ · ez = 0. This means that z component of the angular momentum
is conserved. Using Eq. (189), one obtains

lz = l · ez = −ma2 sin θϕ̇eθ · ez = ma2 sin2 θϕ̇ = const. (208)

A similar result can be obtained from Eq. (202) in the case Fϕ = 0 by multiplying by the integrating factor
sin θ as follows: (

sin θϕ̈+ 2 cos θθ̇ϕ̇
)

sin θ = ∂t sin2 θϕ̇ = 0. (209)

Integrating this, one obtains Eq. (208). Now, eliminating ϕ̇in Eq. (201), one obtains an autonomous
equation of motion for θ,

θ̈ =
l2z

(ma2)2

cos θ

sin3 θ
+
Fθ
ma

. (210)

The total energy of a particle on a sphere can be obtained using Eq. (195),

E =
ma2

2

(
θ̇2 + sin2 θϕ̇2

)
+ U(θ, ϕ). (211)

In the axially-symmetric case U = U(θ) one has lz = const, and the energy can be expressed as

E =
ma2

2

(
θ̇2 +

l2z
(ma2)2

1

sin2 θ

)
+ U(θ). (212)

This is an effectively one-dimensional motion that can be integrated after resolving for θ̇. Eq. (212) itself
can be obtained as an integral of motion of Eq. (210) multiplying by the integrating factor θ̇, similarly to
what was done in the main text. Moreover, one can obtain Eq. (211) by integrating Eqs. (201) and (202).
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8 Motion in a central field

Consider motion of a body in a central field, U = U(r), so that F = −∇U = − (dU/dr) er is directed
radially. In this case the angular momentum is conserved, l = r × mv = const, see discussion after Eq.
(96). Since both r and v are perpendicular to l, the body is moving in the plane perpendicular to l. It is
convenient to use polar coordinate system to describe this motion. Using

r = err, v = eϕϕ̇r + erṙ (213)

(see Sec. 7.1), one obtains
l = mr2ϕ̇ = const. (214)

As r > 0, one can see that ϕ is changing monotonically and ϕ̇ is not changing the sign. This equation can
be rewritten in terms of the sectorial velocity Ṡ as

Ṡ ≡ 1

2
r2ϕ̇ =

l

2m
= const. (215)

This is Kepler’s second law.
Substituting Eq. (214) into the energy, one obtains

E =
mv2

2
+ U(r) =

m

2

(
ṙ2 + r2ϕ̇2

)
+ U(r) =

m

2

(
ṙ2 +

l2

m2r2

)
+ U(r) (216)

or

E =
mṙ2

2
+ Ueff(r), (217)

where

Ueff(r) = U(r) +
l2

2mr2
. (218)

The last term here is the so-called centrifugal energy. Then one can proceed as in the case of one-dimensional
motion. First, one resolves the formula above for ṙ,

ṙ =

√
2

m
[E − Ueff(r)]. (219)

Integrating this, one obtains the dependence r(t) implicitly,

t =

√
m

2

ˆ
dr√

E − Ueff(r)
. (220)

The trajectory of the body is defined in the polar system by the dependence r(ϕ). One can find the inverse
function ϕ(r) by writing ϕ̇ = ∂rϕṙ and using Eqs. (214) and (219). One obtains

dϕ

dr
=
ϕ̇

ṙ
=

√
m

2

l/(mr2)√
E − Ueff(r)

(221)

and, integrating this,

ϕ =

ˆ
dr

r2

l√
2m [E − Ueff(r)]

. (222)

Because of the centrifugal energy, the body cannot fall into the center for typical attractive forces (U ∝
1/r), because the positive centrifugal energy is growing faster. As in the case of one-dimensional motion,
the body is moving within the classically accessible region Ueff(r) < E. If the radial motion is between two
turning points, r1 < r < r2, this is a bound state and the body is orbiting around the center. The state
with only one turning point is a scattering state. The body is coming from infinity and then goes away after
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scattering on attracting or repelling center. If one chooses a turning point as the origin for ϕ, the traejectory
r(ϕ) will be symmetric with respect to this turning point, r(ϕ) = r(−ϕ).

The period of motion in bound states is defined as time needed for the body to go from one turning point
to the other and back

T =
√

2m

r2ˆ
r1

dr√
E − Ueff(r)

. (223)

The rotation angle corresponding to the period of motion is given by

∆ϕ = l

√
2

m

r2ˆ
r1

dr

r2

1√
E − Ueff(r)

. (224)

Closed orbits correspond to ∆ϕ = 2πm/n, where m and n are natural numbers. Closed orbit is a special
case, since for an arbitrary U(r) the rotating angle ∆ϕ is arbitrary. However, there are two important
particular cases, in which orbits are closed. First, this is gravitation, U ∝ 1/r. Second, this is harmonic
oscillator, U ∝ r2.

If two turning points are close to each other, r1
∼= r2

∼= R, then the orbit is nearly circular. In this case, in
the integral for ∆ϕ one can approximate 1/r2 ⇒ 1/R2. After that the imtegral becomes the same as for the
period and one obtains the relation T = mR2∆ϕ/l. With ∆ϕ = 2π and l = mrv one obtains T = 2πR/v,
as it should be. This is the case of rotation of the Earth around the Sun.

8.1 Kepler’s problem

Consider the important case U ∝ 1/r that corresponds to gravitational interaction between stars and planets,
as well as to the Coulomb interaction of charged particles. The effective energy of Eq. (218) has the form

Ueff(r) = −α
r

+
l2

2mr2
, α ≡ GMm, (225)

where G is gravitational constant, M and m are masses of the two gravitating bodies. If M � m (The Sun
and the Earth), one can consider the light body m rotating around the heavy body M put in the center.
This will be our main case. If the masses are comparable, they will be both moving but the problem can be
reduced to a one-body problem using the reduced mass (see Sec. 5). This effective energy has the minimum
Ueff(r0) = Emin with

r0 =
l2

αm
, Emin = −α

2m

2l2
. (226)

For Emin < E < 0 there are two turning points and the motion is bounded (orbiting). For E > 0 there is
only one turning point and the motion is unbounded (scattering). The trajectory can be found from Eq.
(222). With the new variable u = 1/r, du = −dr/r2 one obtains

ϕ = −l
ˆ

du√
2m

(
E + αu− l2

2mu
2
) = −

ˆ
ds√

2mE
l2

+ 2mα
l2
u− u2

= −
ˆ

du√
2mE
l2

+ m2α2

l4
−
(
u− mα

l2

)2
= − arccos

u− mα
l2√

2mE
l2

+ m2α2

l4

. (227)

This can be rewritten as
r0

r
= 1 + ε cosϕ, (228)

where

ε ≡
√

1 +
E

|Emin|
. (229)
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For E < 0 this trajectory is an ellipse (Kepler’s first law) with excentricity ε and axes

a =
r0

1− ε2
=

α

2|E|
, b =

r0√
1− ε2

=
l√

2m|E|
. (230)

In the case E = Emin one has ε = 0 and the ellipse degenerates into a circle r = r0 = l2

mα = m2r2v2

mα . From
this one obtains r = α/(mv2).

The area of the ellipse is

S = πab =
παl√

(2|E|)3m
. (231)

This area is being covered during the period of motion. With the help of Eq. (215) one obtains S = ṠT and

T =
S

Ṡ
=

παl√
(2|E|)3m

2m

l
= πα

√
m

2|E|3
, (232)

depending only on the energy and diverging for E → 0. One can express the period via the linear size of
the orbit a using Eq. (230). The result is

T = 2π

√
m

α
a3/2. (233)

The relation T 2 ∝ a3 is Kepler’s third law.
Time dependence of the motion can be conveniently represented in parametric form. For this, one can

rewrite Eq. (220) as

t =

√
m

2|E|

ˆ
rdr√

−r2 + α
|E|r −

l2

2m|E|

=

√
ma

α

ˆ
rdr√

− (r − a)2 + a2ε2
. (234)

With the substitution
r = a (1− ε cos ξ) (235)

the integral can be calculated as

t =

√
ma

α

ˆ
a (1− ε cos ξ) aε sin ξdξ√

a2ε2 (1− cos2 ξ)
=

√
ma3

α

ˆ
(1− ε cos ξ) dξ =

√
m

α
a3/2 (ξ − ε sin ξ) . (236)

These two formulas provide the dependence r(t) parametrically. Period of motion corresponds to changing
of ξ by 2π: r returns to the same value while t increases by T given by Eq. (233).

The time dependence of the angle ϕ is now defined by Eq. (228). Moreover, one can express Descartes
coordinates (x, y) parametrically, too. First, one finds

x = r cosϕ =
r0 − r
ε

=
a
(
1− ε2

)
− a (1− ε cos ξ)

ε
= a (cos ξ − ε) . (237)

Then one finds
y =

√
r2 − x2 = a

√
1− ε2 sin ξ. (238)

Cases of unbound motion, E > 0, and repelling potential U(r) = α/r (unbound motion for any energy)
can be considered in a similar way.
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8.2 Scattering by a central field

Consider an unbound motion of a body or a particle in a central field. The particle is coming from infinity,
experiences the action of the central force, and then goes to infinity again, however, having changed its
direction of motion. Change of direction of a body as the result of interaction with other bodies is called
scattering. As was mentioned above, the traejectory is symmetric, r(ϕ) = r(−ϕ), if one chooses the turning
point r1 as the origin of ϕ. Thus the change of direction (deflection angle) χ as the result of scattering can
be obtained from Eq. (222) as

χ = π − 2ϕ0, (239)

where

ϕ0 =

∞̂

r1

dr

r2

l√
2m [E − Ueff(r)]

(240)

is half of the angle between the initial and final parts of the trajectory. In the following it is convenient,
instead of integrals of motion E and l, use the speed at infinity v∞ and the target distance ρ. The latter is
the minimal distance from the center, corresponding to the straight trajectory in the absence of the central
force. Using

E =
mv2
∞

2
, l = ρmv∞, (241)

one can rewrite Eq. (240) in the form

χ = π − 2

∞̂

r1

dr

r2

ρ√
1− 2Ueff(r)

mv2
∞

,
2Ueff(r)

mv2
∞

=
ρ2

r2
+

2U(r)

mv2
∞
. (242)

In experiments there is usually a beam of particles with different ρ that are being scattered. It is convenient
to introduce the differential scattering cross-section dσ defined by

dσ (χ) = dN/n, (243)

where dN is the number of particles scattered during a unit of time within the angular interval dχ around
χ and n is the number of particles crossing a unit of area of the beam during a unit of time. It is assumed
that n is uniform. One can see that dσ has the unit of area. Since χ = χ(ρ), particles scattered within
dχ are those within target distance interval dρ = |dρ/dχ| dχ that corresponds to dχ. The number of such
particles scattered during a unit of time is dN = 2πρdρn. Thus finally one obtains

dσ (χ) = 2πρ (χ)

∣∣∣∣ dρdχ
∣∣∣∣ dχ, (244)

where ρ (χ) and dρ/dχ can be found from Eq. (242).
If the particle is being scattered on another particle that is at rest before the collision, one can change

into in the center-of-mass frame and consider scattering of a particle with the reduced mass on the force
center located at the CM, using the formulas above. After that one has to change back into the laboratory
frame that results in redefinition of angles and transformation of the results that requires some algebra.

Consider scattering of a charged particle by the Coulomb field, U(r) = α/r, as in celestial mechanics.
Calculating the integral in Eq. (242) as was done in Eq. (227), one arrives at

χ = π − 2 arccos
1√

1 + ρ2/ρ2
0

, (245)

where
ρ0 ≡

α

mv2
∞

(246)

27



is the characteristic distance. Resolving for ρ, one obtains

ρ2 = ρ2
0 tan2

(
π − χ

2

)
= ρ2

0 cot2 χ

2
.

Now Eq. (244) yields

dσ = πρ2
0

cos (χ/2)

sin3 (χ/2)
dχ. (247)

Instead of scattering within dχ, one can consider scattering within the infinitesimal body angle

dΩ = 2π sinχdχ. (248)

This yields Rutherford formula

dσ =

(
α

2mv2
∞

)2 dΩ

sin4 (χ/2)
. (249)

In some cases one can define total scattering cross-section

σ =

ˆ
dσ =

ˆ
dχ
dσ

dχ
. (250)

With the help of Eq. (244) it can be written as

σ = 2π

ˆ
ρdρ. (251)

The image behind this formula is a scattering center in form of a circle of some finite radius a and the area
σ = πa2. If the target distance ρ satisfies ρ < a, the particle will hit the target and be scattered. Otherwise
it will not be scattered at all. For all interactions that decrease gradually at infinity, particles with all ρ
will be scattered. Correspondingly, the integral in Eq. (250) diverges at small χ. Only if the interaction
has a cut-off, the total scattering cross-section is finite. The simplest example is elastic scattering on a rigid
sphere of radius a. Here one immediately finds

ρ = a sinϕ0 = a sin
π − χ

2
= a cos

χ

2
. (252)

Substitution into Eq. (250) yields the differential cross-section

dσ =
πa2

2
sinχdχ. (253)

Integrating over χ yields

σ =

ˆ
dσ =

πa2

2

π̂

0

sinχdχ = πa2, (254)

as it should be.
One can also define total scattering cross-section for specific events, for instance, for falling onto the

attracting center U = −α/r2. In this case the effective potential energy of Eq. (218) reads

Ueff(r) = − α
r2

+
l2

2mr2
=

(
−α+

l2

2m

)
1

r2
. (255)

Absorbed will be all particles for which the coefficient in Ueff(r) is negative,

l2

2m
=

(ρmv∞)2

2m
< α, (256)
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otherwise particles will escape to infinity. In terms of the target distance this condition has the form

ρ2 < ρ2
0 ≡

2α

mv2
∞
. (257)

Total scattering scoss-section then becomes

σ = πρ2
0 =

2πα

mv2
∞
. (258)

Although in this case one can find σ easily, finding the differential cross-section requires a more serious
calculation.

8.3 Small-angle scattering

If target distance ρ or particle’s speed are large, the trajectory is nearly a straight line, say, along x axis.
Passing the force center, the particle acquires a perpendicular momentum py as the result. Now the small
scattering angle χ can be found as

χ ∼=
py
mv∞

� 1. (259)

The momentum py can be found as

py =

∞̂

−∞

dtFy = −
∞̂

−∞

dt
∂U

∂y
= −

∞̂

−∞

dt
dU

dr

∂r

∂y
= −

∞̂

−∞

dt
dU

dr

y

r
. (260)

Considering, at the lowest order in the perturbation, the motion along x as undisturbed, one can use
dt = dx/v∞ and also y = ρ. This yields

py = − ρ

v∞

∞̂

−∞

dx

r

dU

dr
. (261)

Changing to integration over r with the use of

x =
√
r2 − ρ2, dx =

rdr√
r2 − ρ2

, (262)

one obtains

py = − 2ρ

v∞

∞̂

ρ

dU

dr

dr√
r2 − ρ2

(263)

and, finally, the deflection angle

χ = − 2ρ

mv2
∞

∞̂

ρ

dU

dr

dr√
r2 − ρ2

. (264)

Finding differential cross-section dσ requires inverting the above formula that requires knowing the explicit
form of U(r).

The method used above is beautiful and instructive. However, the final integral formula is hardly simpler
than Eqs. (239) and (246). The really new result is that for the arbitrary potential energy U(x, y) (we set
z = 0), obtained similarly,

χ = − 1

mv2
∞

∞̂

−∞

dx
∂U(x, y)

∂y

∣∣∣∣
y=ρ

. (265)
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