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Consider a harmonic oscillator with time-dependent frequency

ẍ+ ω2
0(t)x = 0. (1)

Let the latter be

ω0(t) = ω0[1 + α cos(ωt)], α� 1. (2)

As we shall see, if ω is close to 2ω0, the amplitude of oscillations will exponentially increase with time. This phenomenon
is called parametric resonance since a parameter of the problem, in this case oscillator’s frequency, is changing. It is
convenient to set

ω = 2ω0 + ε (3)

with a small resonance detuning ε. Since α�1, we can simplify the equation of motion to

ẍ+ ω2
0 {1 + 2α cos [(2ω0 + ε) t]}x = 0, (4)

dropping the term ∼ α2. The solution of this equation can be searched for in the form

x(t) = a(t) cos
[(
ω0 +

ε

2

)
t
]

+ b(t) sin
[(
ω0 +

ε

2

)
t
]
. (5)

The functions a(t) and b(t) can be expected to change slowly with time, for small α and ε, thus their second derivatives
can be dropped. The derivatives of x are given by

ẋ = ȧ cos
[(
ω0 +

ε

2

)
t
]

+ ḃ sin
[(
ω0 +

ε

2

)
t
]

−a
(
ω0 +

ε

2

)
sin
[(
ω0 +

ε

2

)
t
]

+ b
(
ω0 +

ε

2

)
cos
[(
ω0 +

ε

2

)
t
]

(6)

and

ẍ ∼= −2ȧ
(
ω0 +

ε

2

)
sin
[(
ω0 +

ε

2

)
t
]

+ 2ḃ
(
ω0 +

ε

2

)
cos
[(
ω0 +

ε

2

)
t
]

−a
(
ω0 +

ε

2

)
2 cos

[(
ω0 +

ε

2

)
t
]
− b

(
ω0 +

ε

2

)
2 sin

[(
ω0 +

ε

2

)
t
]

(7)

or, dropping small terms again,

ẍ ∼= −ω0
2x− aω0ε cos

[(
ω0 +

ε

2

)
t
]
− bω0ε sin

[(
ω0 +

ε

2

)
t
]

−2ȧω0 sin
[(
ω0 +

ε

2

)
t
]

+ 2ḃω0 cos
[(
ω0 +

ε

2

)
t
]
. (8)

Products of trigonometric functions in Eq. (4) should be reduced to single trigonometric functions with combined
arguments:

cos [(2ω0 + ε) t] cos
[(
ω0 +

ε

2

)
t
]

=
1

2

(
cos
[(
ω0 +

ε

2

)
t
]

+ cos
[
3
(
ω0 +

ε

2

)
t
])

cos [(2ω0 + ε) t] sin
[(
ω0 +

ε

2

)
t
]

=
1

2

(
− sin

[(
ω0 +

ε

2

)
t
]

+ sin
[
3
(
ω0 +

ε

2

)
t
])
. (9)
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Here functions with triple arguments should be dropped as it can be shown that these terms cancel if the expression
for x(t) containing terms of this kind is used. After this Eq. (4) takes the form[

−aε+ 2ḃ+ αω0a
]
ω0 cos

[(
ω0 +

ε

2

)
t
]

+ [−bε− 2ȧ− αω0b]ω0 sin
[(
ω0 +

ε

2

)
t
]

= 0. (10)

This equation is fulfilled if and only if the coefficients in front of the sin and cos functions are zero:

2ȧ+ (αω0 + ε) b = 0

(αω0 − ε) a+ 2ḃ = 0. (11)

The solution of this system of equations can be searched for in the form

a(t) = a0e
µt, b(t) = b0e

µt. (12)

The increment of the parametric resonance µ satisfies the characteristic equation∣∣∣∣ 2µ αω0 + ε
αω0 − ε 2µ

∣∣∣∣ = (2µ)2 − (αω0) 2 + ε2 = 0. (13)

Thus

µ = ±1

2

√
(αω0) 2 − ε2. (14)

In the frequency range near the resonance

−αω0 < ε < αω0, (15)

see Eq. (3), µ takes positive and negative real values. The root µ >0 corresponds to the parametric instability that
manifests itself in the exponential increase of the amplitude of oscillations. Note that inside the window of parametric
instability the oscillator locks into the frequency ω/2 that differs from its own frequency ω0. Outside the instability
window, µ is imaginary,

µ = iΩ, Ω =
1

2

√
ε2 − (αω0) 2. (16)

In this case the solution x(t) contains the terms such as

sin
[(
ω0 +

ε

2
− Ω

)
t
]

and cos
[(
ω0 +

ε

2
− Ω

)
t
]
, (17)

that is, the oscillation frequency is neither ω0 nor ω/2. One can see that in the limit α→ 0 the oscillator oscillates at
its own frequency ω0.

If the oscillator is damped with damping constant γ, then straightforward generalization of the consideration above
leads to

a(t) = a0e
(µ−γ)t, b(t) = b0e

(µ−γ)t, (18)

where µ is the same as above. Then the condition of the parametric instability has the form

µ∗ ≡ µ+ − γ =
1

2

√
(αω0) 2 − ε2 − γ > 0. (19)

The parametric-resonance window becomes now

ε2 < (αω0) 2 − (2γ)
2

(20)

that is narrower than the undamped result of Eq. (15). This window disappears at

αω0 = 2γ (21)

that defines the threshold of the parametric resonance on the amplitude of the perturbation α. This condition provides
a method of measuring the damping constant γ.
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A physical example of parametric resonance is a pendulum with its length l oscillating in time. A person sitting
on a swing and shifting his/her center of mass up and down with the double frequency is doing exactly this. Near
the vertical position (ϕ = 0) l is being decreased by ∆l, while near turning points (ϕ = ±ϕmax) l is being increased
by ∆l. Working against gravity, the person is injecting the energy ∆E = 2mg∆l (1− cosϕmax) during the period of
motion. The greater is the amplitude ϕmax, the higher is the energy input. This is why the amplitude is increasing
exponentially.

In spite of the exponential increase of the amplitude, overall parametric resonance is a weaker phenomenon than a
regular resonance caused by an applied sinusoidal force. With comparable forcings, it takes a longer time to develop
a given amplitude in conditions of parametric resonance than regular resonance.
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