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1 Hamiltonian formalism for the double pendulum

(10 points) Consider a double pendulum that consists of two massless rods of length l1 and l2 with masses
m1 and m2 attached to their ends. The first pendulum is attached to a fixed point and can freely swing
about it. The second pendulum is attached to the end of the first one and can freely swing, too. The motion
of both pendulums is confined to a plane, so that it can be described in terms of their angles with respect
to the vertical, ϕ1 and ϕ2.

a) Write down the Lagrange function for this system.
b) Introduce generalized momenta p1 and p2 and change to the Hamiltonian description. Find the

transformation matrix that yields the velocities ϕ̇1 and ϕ̇2 in terms of the momenta p1 and p2. Write down
the Hamilton function H(ϕ1, p1, ϕ2, p2) using the transformation matrix.

c) Obtain the Hamilton equations.
Solution: a) Both kinetic and potential energy of the system are the sums of the contributions of the first

and second masses:
L = T − U, T = T1 + T2, U = U1 + U2. (1)

For the coordinates of the masses 1 and 2 one has

x1 = l1 sinϕ1, y1 = l1 cosϕ1 (2)

and
x2 = l1 sinϕ1 + l2 sinϕ2, y2 = l1 cosϕ1 + l2 cosϕ2, (3)

with the y-axis directed downwards. For the potential energies one has

U1 = −m1gy1 = −m1gl1 cosϕ1, U2 = −m2gy2 = −m2g (l1 cosϕ1 + l2 cosϕ2) . (4)

Kinetic energies are given by
T1 =

m1

2
l21ϕ̇

2
1 (5)

and
T2 =

m2

2

(
ẋ2

2 + ẏ2
2

)
=

m2

2

[
l21ϕ̇

2
1 + l22ϕ̇

2
2 + 2l1l2 cos (ϕ1 − ϕ2) ϕ̇1ϕ̇2

]
. (6)

All together yields

L =
m1 + m2

2
l21ϕ̇

2
1 +

m2

2
l22ϕ̇

2
2 + m2l1l2 cos (ϕ1 − ϕ2) ϕ̇1ϕ̇2

+(m1 + m2) gl1 cosϕ1 + m2gl2 cosϕ2. (7)

b) The generalized momenta are given by

p1 =
∂L
∂ϕ̇1

= (m1 + m2) l21ϕ̇1 + m2l1l2 cos (ϕ1 − ϕ2) ϕ̇2

p2 =
∂L
∂ϕ̇2

= m2l
2
2ϕ̇2 + m2l1l2 cos (ϕ1 − ϕ2) ϕ̇1. (8)

This can be written in the matrix form as
(

p1

p2

)
= K

(
ϕ̇1

ϕ̇2

)
, K =

(
(m1 + m2) l21 m2l1l2 cos (ϕ1 − ϕ2)

m2l1l2 cos (ϕ1 − ϕ2) m2l
2
2

)
. (9)

Note that the kinetic energy in Eq. (7) can be written as

T =
1
2

(
ϕ̇1 ϕ̇2

)
K

(
ϕ̇1

ϕ̇2

)
=

1
2

(
ϕ̇1 ϕ̇2

) (
p1

p2

)
=

1
2

(ϕ̇1p1 + ϕ̇2p2) (10)



and that KT = K. The inverse transformation reads
(

ϕ̇1

ϕ̇2

)
= K−1

(
p1

p2

)
, (11)

where

K−1 =
1

m2l21l
2
2 [m1 + m2 −m2 cos2 (ϕ1 − ϕ2)]

(
m2l

2
2 −m2l1l2 cos (ϕ1 − ϕ2)

−m2l1l2 cos (ϕ1 − ϕ2) (m1 + m2) l21

)
, (12)

again
(
K−1

)T = K−1. Using the transposed relation

(
ϕ̇1 ϕ̇2

)
=

(
p1 p2

) (
K−1

)T
=

(
p1 p2

)
K−1, (13)

one can write the kinetic energy, Eq. (10), in the form

T =
1
2

(
p1 p2

)
K−1

(
p1

p2

)
. (14)

Now the Hamilton function becomes,

H = T + U =
1
2

(
p1 p2

)
K−1

(
p1

p2

)
− (m1 + m2) gl1 cosϕ1 −m2gl2 cosϕ2. (15)

In the standard form this reads

H =
m2l

2
2p

2
1 + (m1 + m2) l21p

2
2 − 2m2l1l2 cos (ϕ1 − ϕ2) p1p2

2m2l21l
2
2 [m1 + m2 −m2 cos2 (ϕ1 − ϕ2)]

− (m1 + m2) gl1 cosϕ1 −m2gl2 cosϕ2. (16)

c) The Hamilton equations read

ϕ̇1 =
∂H
∂p1

, ṗ1 = − ∂H
∂ϕ1

ϕ̇2 =
∂H
∂p2

, ṗ2 = − ∂H
∂ϕ2

. (17)

The task to work out these equations is left to the reader. The equations for ṗ1 and ṗ2 are pretty cumbersome
since one has to differentiate the denominator. It is best to do with a mathematical software. The whole
system of Hamiltonian equations for the double pendulum is much more cumbersome than the system
of Lagrange equations. The only purpose to consider the Hamilton equations here is to show that the
Hamiltonian formalism is not well suited for engineering-type problems with constraints.

2 Canonical transformations

(10 points)
a) The canonical transformations between two sets of variables are

Q = ln (1 +
√

q cos p) , P = 2 (1 +
√

q cos p)
√

q sin p. (18)

Show directly that this transformation is canonical. Show that

FpQ(p,Q) = −
(
eQ − 1

)2
tan p

is the generating function of this transformation.
b) For what values of α and β do the equations

Q = qα cos (βp) , P = qα sin (βp)

represent a canonical transformation? What is the form of the generating function FpQ(p,Q) in this case?



Solution: a) To check whether a transformation is canonical, one can show that the fundamental Poisson
brackets are invariant:

{Q,P}q,p = {Q,P}Q,P = 1. (19)

Explicit calculation is below:

{Q,P}q,p =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

=
1

1 +
√

q cos p

1
2
√

q
cos p× 2 [−√q sin p

√
q sin p + (1 +

√
q cos p)

√
q cos p]

+
1

1 +
√

q cos p

√
q sin p×

[
1√
q

sin p + 2 cos p sin p

]

=
1

1 +
√

q cos p

[
−√q cos p sin2 p + cos2 p +

√
q cos3 p + sin2 p + 2

√
q cos p sin2 p

]

=
1

1 +
√

q cos p

[
1 +

√
q cos p sin2 p +

√
q cos3 p

]

=
1

1 +
√

q cos p

[
1 +

√
q cos p

(
sin2 p + cos2 p

)]
= 1. (20)

Now check that
FpQ(p,Q) = −

(
eQ − 1

)2
tan p

is the generating function of this transformation. that is, one has to check the relations

q = −∂FpQ

∂p
, P = −∂FpQ

∂Q
. (21)

One obtains
−∂FpQ

∂p
=

(
eQ − 1

)2 1
cos2 p

. (22)

On the other hand, from Eq. (18) follows

eQ − 1 =
√

q cos p, (23)

so that indeed
−∂FpQ

∂p
= q. (24)

Further with the help of Eq. (23) one obtains

−∂FpQ

∂Q
= 2

(
eQ − 1

)
eQ tan p = (2

√
q cos p) (1 + 2

√
q cos p) tan p

= 2 (1 + 2
√

q cos p)
√

q sin p = P, (25)

as it should be.
b) Let us calculate the Poisson brackets

{Q,P}q,p =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

= αqα−1 cos (βp)× qαβ cos (βp) + qαβ sin (βp)αqα−1 sin (βp)

= αβq2α−1
[
cos2 (βp) + sin2 (βp)

]
= αβq2α−1. (26)

For the transformation to be canonical, this Poisson bracket should be identically equal to 1 that requires

α = 1/2, β = 2, (27)

i.e.,
Q = q1/2 cos (2p) , P = q1/2 sin (2p) . (28)



The generating function FpQ(p, Q) should satisfy Eq. (21). To use Eq. (21) to find FpQ(p,Q), one should
first express q and P via the arguments p,Q. From Eq. (28) one obtains

q = −∂FpQ

∂p
, P = −∂FpQ

∂Q
. (29)

q =
Q2

cos2 (2p)
, P = Q tan (2p) .

Now integrating the equation

P = Q tan (2p) = −∂FpQ

∂Q
(30)

on Q one obtains

FpQ = −Q2

2
tan (2p) + f(p). (31)

Here the integration Q-constant f(p) can be obtained from another relation

q =
Q2

cos2 (2p)
= −∂FpQ

∂p
=

Q2

cos2(2p)
+

df(p)
dp

. (32)

This yields
df(p)
dp

= 0 ⇒ f(p) = const, (33)

an irrelevant constant that can be dropped. Thus FpQ is given by Eq. (31) with f(p) = 0.

3 Vortex dynamics

(10 points) Consider the equations of motions describing vortices of strength γi with positions ri = (xi, yi)
in the plane

ẋi = −
∑

j 6=i

γj

yi − yj

|ri − rj |2 , ẏi = +
∑

j 6=i

γj

xi − xj

|ri − rj |2 . (34)

Consider the Hamiltonian H and the following Poisson brackets:

H = −1
2

∑

j 6=i

γiγj ln |ri − rj |, {f, g} =
n∑

i

1
γi

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
. (35)

(a) Check that Hamilton equations

ẋi = {xi,H}, ẏi = {yi,H} (36)

reproduce the equations of motions. (Check that the standard Hamilton equations can be written in this
form, too)

(b) Show that the following quantities are conserved:

Px =
∑

i

γiyi, Py = −
∑

γixi. (37)

(c) Find the Poisson brackets {Px,H}, {Py,H}, and {Px, Py}, as defined above.
(d) Find the solution of the equations of motion for a system of two vortices.

Solution: a) The Poisson brackets yield the Hamiltonian equations

ẋk = {xk,H} =
∑

j

1
γj

(
∂xk

∂xj

∂H
∂yj

− ∂xk

∂yj

∂H
∂xj

)
=

1
γk

∂H
∂yk

ẏk = {yk,H} =
∑

j

1
γj

(
∂yk

∂xj

∂H
∂yj

− ∂yk

∂yj

∂H
∂xj

)
= − 1

γk

∂H
∂xk

. (38)



Using Eq. (35) one obtains

ẋk =
1
γk

∂H
∂yk

= −1
2

∑

j 6=i

γiγj

γk

∂ ln |ri − rj |
∂yk

= −1
2

∑

j 6=i

γiγj

γk

1
|ri − rj |

∂|ri − rj |
∂yk

(39)

and
ẏk = − 1

γk

∂H
∂xk

=
1
2

∑

j 6=i

γiγj

γk

∂ ln |ri − rj |
∂xk

=
1
2

∑

j 6=i

γiγj

γk

1
|ri − rj |

∂|ri − rj |
∂xk

(40)

In these expressions

∂|ri − rj |
∂yk

=
∂
√

(xi − xj)
2 + (yi − yj)

2

∂yk
=

yi − yj√
(xi − xj)

2 + (yi − yj)
2

∂ (yi − yj)
∂yk

=
yi − yj

|ri − rj | (δik − δjk) (41)

and
∂|ri − rj |

∂xk
=

xi − xj

|ri − rj | (δik − δjk) . (42)

Substituting these results in the equations above one obtains

ẋk = −1
2

∑

j 6=i

γiγj

γk

yi − yj

|ri − rj |2 (δik − δjk) = −1
2

∑

j 6=k

γj

yk − yj

|rk − rj |2 +
1
2

∑

k 6=i

γi

yi − yk

|ri − rk|2 (43)

that is,

ẋk = −
∑

i6=k

γi

yk − yi

|rk − ri|2 (44)

and, similarly,

ẏk =
∑

i6=k

γi

xk − xi

|rk − ri|2 . (45)

These equations indeed coincide with those given in the formulation of the problem. Note that γi is the
strenght or vorticity of the ith vortex.
b) One has

Ṗx = {Px,H}, Ṗy = {Py,H}, (46)

so that calculating Poisson brackets with H amounts to calculating time derivatives. This can be proven
using Eq. (38). It is more direct to calculate these derivatives using the equations of motion:

Ṗx =
∑

k

γkẏk =
∑

i6=k

γiγk

xk − xi

|rk − ri|2 = 0. (47)

It is easy to see that the result is zero since the summand is antisymmetric in i and k. Similarly one can
prove that Ṗy = 0, too. Thus Px and Py are integrals of motion.
c) As argued above, {Px,H} = {Py,H} = 0. It remains thus to calculate

{Px, Py} =
∑

k

1
γk

(
∂Px

∂xk

∂Py

∂yk
− ∂Px

∂yk

∂Py

∂xk

)
=

∑

ijk

γiγj

γk

(
− ∂yi

∂xk

∂xj

∂yk
+

∂yi

∂yk

∂xj

∂xk

)

=
∑

ijk

γiγj

γk

δikδjk =
∑

k

γk. (48)

From the Jacoby identity for the Poisson brackets follows that if Px and Py are integrals of motion, then
{Px, Py} is also an integral of motion. In our case, however, this new integral of motion is trivial.
d) For the system of two vortices the equations of motion read

ẋ1 = −γ2

y1 − y2

|r1 − r2|2 , ẋ2 = −γ1

y2 − y1

|r2 − r1|2

ẏ1 = γ2

x1 − x2

|r1 − r2|2 , ẏ2 = γ1

x2 − x1

|r2 − r1|2 . (49)

The integrals of motion of Eq. (37) for two vortices take the form

Px = γ1y1 + γ2y2, Py = −γ1x1 − γ2x2. (50)



They can be interpreted as coordinates of the center of mass of the two vortices. The relative motion of the
vortices is described by the variables

X ≡ x1 − x2, Y ≡ y1 − y2. (51)

For X and Y one obtains the equations of motion

Ẋ = − (γ1 + γ2)
Y

R2
, Ẏ = (γ1 + γ2)

X

R2
(52)

with
R2 = X2 + Y 2. (53)

Note that the distance between the vortices R is a constant of motion:

dR2

dt
= 2XẊ + 2Y Ẏ = −2 (γ1 + γ2)

XY

R2
+ 2 (γ1 + γ2)

Y X

R2
= 0. (54)

Thus Eq. (52) can be written in the form

Ẋ = −ω0Y, Ẏ = ω0X, (55)

where
ω0 =

γ1 + γ2

R2
(56)

is an angular velocity. This is the angular velocity with which the two vortices are rotating around each
other. Indeed, the solution of Eq. (55) can be represented in the form

X = ReZ, Y = Im Z, (57)

where
Z = X + iY (58)

satisfies the equation
Ż = iω0Z (59)

and has the form
Z = Reiω0t+ϕ0 . (60)

It would be interesting to investigate the behavior of systems of more than two vortices.


