
Sound, semantically, is what we hear. As a physical phenomenon, sound is propagation of 

waves, acoustic or sound waves. As a whole, sound includes (i) the source (e.g., the speaker), 

(ii) propagating sound waves, and (iii) receptor (e.g., human ear). Source and receptor perform 

oscillations, between source and receptor are waves. This chapter is devoted to oscillations. 

(i) Source (box) 

- Oscillations 

(ii) Sound wave 
(iii) Receptor (ear) 

- Oscillations 
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Simple harmonic oscillations 

Oscillations in general are periodic motions, like the motion of the membrane of a speaker or 

that of the human ear. Displacement of the membrane returns to its initial value after the time T 

has elapsed. The same happens for any multiples of T  that is called the period of oscillations. 

Simple harmonic motion is a special kind of periodic motion that is described by sinusoidal 

functions of time t 
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1 – Oscillations 

Amplitude 

(strength of 

oscillations) 

Frequency 

(pitch) 

Phase 

(shift along  

time axis) 

Unit of frequency: 

s-1 or Hz.  

f shows the number 

of oscillations 

per second 

Relation between frequency and period: 

Sinusoidal functions above are periodic with period T, that is, their values remain the same if the 

time is increased by T. 

Any physical 

quantity that 

oscillates 

(Pressure, 

displacement) 
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Their period is 360° or 2 raduans 
Plot of sinusoidal functions: 

 

-1 

1 

 
S‘ 

C 
C‘ 

Initial state: , sin()=0, cos()=1 
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General state: the circle is rotated by  
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Geometrical definition of sin and cos 

R=1 

sin and cos only differ by a phase: 

sin(+)cos() with  
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Angles 

Angles  can be measured in  

• degrees (used in everyday life)  

• revolutions (360°) (used in engineering) 

• radians (used in physics) 

Radian is such an angle, for which the 

length of the arc is equal to the radius. In 

other words, the angle in radians is given by 

L/R and it is dimensionless. Revolution 

corresponds to LR, thus 360°= 

radians, thus 

R 

L=R 

1 radian = 360°/(2)=57.3° 
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Period T is the time between the two neighboring crests of the sinusoudal function. 

Graphical representation of oscillations 
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Physically periodic functions can be of many different kinds: Displacement of the membrane, 

pressure of the air, voltage and current in electric circuits etc. This defines what is the amplitude A 

and what is its unit. 

Harmonic oscillations require linear restoring 

force, that is a force that is opposite to the 

displacement out of an equilinrium state and 

depends linearly on it. Examples: Pendulum, 

mass on a spring 

Physical realizations of oscillations 

x (>0) 
x (<0) 

m 
Equilibrium position (x) 

Negative  

displacement 

Positive  

displacement 

F - restoring force 

Mass on a spring (no friction) 

Pendulum 
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Simple harmonic oscillations with slowly changing parameters 

If the parameters of the oscillation such as frequency and amplitude are slowly changing in 

time, in comparison to the frequency itself, the oscillation remains close to simple harmonic. 
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Amplitude decreases 

(damped oscillation) 

0

 

t

Frequency (pitch)  decreases,  

period increases 
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Anharmonic oscillations 

Every oscillation that is not sinusoidal (harmonic) is called anharmonic.  

 

Example: Clipping as a result of overload in (analog) amplifiers 

x

 Sinusoidal (harmonic)

 Clipped (anharmonic)

0

 t
In digital circuits clipping is even more severe, it creates regions where x(t) 
is completely flat. 
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Combinations of harmonic oscillations 

A sum (superposition) of several harmonic oscillations can look wild. Below is the plot of a 

function that is a sum of three sinusoidal functions with different frequencies and amplitudes: 

This is not a periodic function, thus one cannot speak of (a single) oscillation. We will see that 

simple anharmonic oscillations can be represented as sums of many harmonic oscillations in 

the particular case in which motion remains periodic. In particular, the anharmonic oscillation in 

the previous page is a sum of three harmonic functions. 

Two oscillations are said to be in-phase if they are both sin or both cos and their phases  are 

the same. Otherwise the oscillations are said to be out of phase. If the phases differ by 180°=, 

the oscillations are said to be anti-phase. The sum of two anti-phase oscillations with equal 

amplitudes A is zero, that is, these two oscillations cancel each other. 

Phase relations 
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Interference of oscillations 

Two oscillations in-phase, 

constructive interference 

Two oscillations anti-phase, 

destructive interference 

Sum of the two oscillations 
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Sum (combination, superposition) of two sinusoidal functions with close amplitudes A1 and A2 

and slightly different frequencies f1 and f2 shows the so-called beats with the difference 

frequency f beat= |f1-f2|. 
T

beat
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Beats 

The period of the beats is given by  

21beat

beat

11

fff
T

-


For instance, if f144 Hz and f244 Hz, then the beat frequency is f beat= 2 Hz and the 

beat period is T beat= 0.5 s.  

Beats can be also described by single sinusoidal functions with slowly changing amplitudes. 
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Beats as interference 
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In pianos, each tone is created by three strings tuned in unison. Since this unison is 

never perfect, the tone becomes richer because of very slow beats. Note that three 

strings are needed to prevent the intensity of sound from periodically turning to zero. 

If the piano is out of tune, the frequencies of the beats become fast enough to irritate 

the listener. Here is an example of beats between three sinusoidal oscillations with the 

same amplitudes and slightly different frequencies.  
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Phase relations, Ohm’s law, phase beats 

If the frequencies of two or more adding oscillations are multiples of each other, the 

resulting oscillation depends on the phase of the summands, that is, of their shift 

along the time axis. For instance, these two oscillations look very different:  
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However, human ear cannot distinguish between the sound produced by these two oscillations. 

This is the phychoacoustical Ohm’s law: The perceived sound depends on frequencies and 

amplitudes but not on the phases. On the other hand, if the frequencies of the two oscillations in the 

sum differ a little, the shape of the resulting sum will slowly change with time, similarly to the beats. 

Now human ear can detect the change of the sound on time due to these phase beats. 
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Damped oscillations and resonance 

In most of realistic situations there is a friction in the system that leads to damping of oscillations 

(see page 3). On the other hand, if a periodic force is applied to an oscillator, it oscillates with the 

frequency of the external force f with some amplitude A. This amplitude if proportional to the 

amplitude of the force and depends on f and on the frequency of the oscillator f0.  

A

f
0

 f

One can see that the response of the oscillator to the periodic external force is of a resonance 

character with a maximum at f = f0. There is no or very little response if the external frequency is 

far from the resonance. On the other hand, at resonance, f = f0, the response can be very large 

even for a weak external force. This was the reason for some bridge crashes, caused by the wind 

or marching soldiers.  
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Example of resonance: Tachoma Narrows Bridge breakdown 


