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Assignment 1, with solutions

1 Process P = AT b

A process on an ideal gas is de�ned by
P = AT b.

Express this process in terms of (P, V ) and (V, T ). Calculate compressibility and thermal expansivity in this process. What is the
limitation on b? For which values of b this process becomes a known process? Find adiabatic values of the two thermodynamic
coe�cients above.

Solution: Using the equation of state of the ideal gas

PV = νRT,

one obtains

P = A

(
PV

νR

)b
.

This can be represented in the simpli�ed form
P 1−1/bV = νR/A1/b.

Another form of this process reads
νRT

V
= AT b

that can be simpli�ed to
T b−1V = νR/A.

Compressibility is given by

κ = − 1

V

dV

dP
.

Using V ∝ P−(1−1/b) above, one obtains

κ =

(
1− 1

b

)
P−(1−1/b)−1

V
=

(
1− 1

b

)
1

P
.

Since mechanical stability requires κ > 0, the condition on b is b > 1 or b < 0.
Thermal expansion coe�cient is de�ned by

β =
1

V

dV

dT
.

Using V ∝ T−(b−1) above, one obtains
β =

1− b
T

.

Identi�cation with known processes. Isobaric process: b = 0; isochoric process: b = 1; isothermic process: b→∞; adiabatic
process: b = γ/(γ − 1) > 1. From the latter one obtains adiabatic thermodynamic coe�cients

κS =
1

γP
, βS = − 1

(γ − 1)T
,

that has to be compared with

κT =
1

P
, βP =

1

T
.

Note that βS < 0 because in the adiabatic process the volume decreases and the temperature increases.
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2 Work and heat in the P = AT 2 process

A process on an ideal gas is de�ned by
P = AT 2, A = const.

Calculate the received work and heat upon changing the temperature from T1 to T2. Assume CV = const.
Solution: Use the equation of state of the ideal gas

PV = νRT

to express P in terms of V as

P =
(νR)

2

AV 2

and integrate

W12 = −
2ˆ

1

PdV = −
2ˆ

1

(νR)
2

AV 2
dV =

(νR)
2

A

(
1

V2
− 1

V1

)
.

Then express V via T ,

V =
νRT

P
=
νRT

AT 2
=
νR

AT
,

and substitute it into the work,
W12 = νR (T2 − T1) .

To calculate the heat, use the �rst law of thermodynamics in the form

U2 − U1 = Q12 +W12.

Using
U = CV T + const

for a perfect gas and the result for the work, one obtains

Q12 = CV (T2 − T1)−W12 = (CV − νR) (T2 − T1) .

3 Heat capacity in the process P = AT b

Calculate the heat capacity in the process
P = AT b

of an ideal gas, expressing it as a function of T . Analyze di�erent cases of b.
Solution: Use the �rst law of thermodynamics

dU = δQ− PdV.

The in�nitesimal received heat is given by

δQ = dU + PdV =

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ P

]
dV.

One has (
∂U

∂T

)
V

= CV

while for the ideal gas
(
∂U
∂V

)
T
= 0. Thus the expression above simpli�es to

δQ = CV dT + PdV.

Now one has to expess dV through dT . From the equation of the process and the equation of state of the ideal gas one obtains

V =
νR

A
T 1−b.

From here follows

dV =
νR

A
(1− b)T−bdT.

With the help of the process equation this yields

δQ = CV dT + νR (1− b) dT
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Figure 1: Isotherms of the van der Waals gas.

and, �nally,

C =
δQ

dT
= CV + νR (1− b) .

From here for the isobaric process, b = 0, one obtains C = CP = CV + νR (Meyer's relation). For the isochoric process, b = 1,
one obtains C = CV . For the isothermic process, b→∞, one obtains C →∞. For the adiabatic process, b = γ/(γ − 1), where
γ = CP /CV , one obtains

C = CV −
νR

γ − 1
=
CV

(
CP

CV
− 1

)
− νR

γ − 1
=
CP − CV − νR

γ − 1
= 0,

taking into account Meyer's relation above.

4 Van der Waals gas

Van der Waals equation of state for a non-ideal gas describing its transition to liquid has the form(
P +

a

V 2

)
(V − b) = νRT,

where a describes attraction of the gas molecules and b describes the volume occupied by the molecules and thus excluded from
their motion.

1. Using a plotting program or by hand, plot isotherms of this gas for di�erent T , setting a = b = νR = 1. At high T
isotherms are close to those for an ideal gas but for lower T they become distorted. Finally at some T = Tc (critical
temperature) the isotherm becomes horizontal at some point called �critical point�, where its second derivative also turns
to zero.

2. Calculate the isothermal compressibility of the van der Waals gas in terms of (V, T ). Obtain its high-temperature limit.
What happens with it at the critical point?

3. Find the critical point parameters using the analysis in (1.) as a hint.

Solution: Represent the compressibility in the form

κT = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂P

∂V

)−1
T

and resolve the equation of state for P as

P =
νRT

V − b
− a

V 2
.

One can see that the b-term increases pressure whereas the a-term decreases pressure, as expected. Di�erentiating P one obtains(
∂P

∂V

)
T

= − νRT

(V − b)2
+

2a

V 3

that yields

κT = − 1

V

1

− νRT
(V−b)2 + 2a

V 3

=
(V − b)2 /V

νRT − 2a (V − b) /V 3
.
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At high temperatures V becomes large, so that one can neglect the terms with a and b and obtains κT = V/ (νRT ) = 1/P that
is the result for an ideal gas. With lowering T , the volume decreases and the negative term in the denominator causes κT to
diverge at the critical point.

To �nd the critical point, one can use
(
∂P
∂V

)
T
=

(
∂2P
∂V 2

)
T
= 0, that is,(

∂P

∂V

)
T

= − νRT

(V − b)2
+

2a

V 3
= 0(

∂2P

∂V 2

)
T

=
2νRT

(V − b)3
− 6a

V 4
= 0.

Getting rid of the denominators, one obtains the system of equations

νRTV 3 = 2a (V − b)2

νRTV 4 = 3a (V − b)3 .

Dividing the second equation by the �rst one yields

V = (3/2) (V − b) .

Solving this equation, one obtains the critical volume
Vc = 3b.

After that one obtains the critical temperature

νRTc =
2a

V 3
c

(Vc − b)2 =
8a

27b
.

Finally, the critical pressure can be obtained from the equation of state,

Pc =
νRTc
Vc − b

− a

V 2
c

=
8a

27b× 2b
− a

(3b)
2 =

a

27b2
.

5 Isochore-isotherm cycle

Find the e�ciency of a heat machine using a isochore-isotherm cycle of an ideal gas.
Solution: The cycle is is similar to the Carnot cycle with the adiabats replaced by isochores, and it is performed in the

clockwise direction. The heat is received by the system at the upward isochore, Q′2 = QDA and rightbound isotherm, Q′′2 = QAB .
The heat is given away on the downward isochore, Q′1 = −QBC and leftbound isotherm, Q′′1 = −QCD. The e�ciency is given by

η =
Q2 −Q1

Q2
, Q1 = Q′1 +Q′′1 , Q2 = Q′2 +Q′′2 .

The heat on isochores can be calculated via the change of the internal energy, because there is no work:

Q′2 = QDA = CV (T2 − T1) , Q′1 = −QBC = CV (T2 − T1) .

The heat on the isotherms can be calculated via the work done, because the internal energy does not change:

Q′′2 = QAB = −WAB = −νRT2 ln
VA
VB

= νRT2 ln
VB
VA

Q′′1 = −QCD =WCD = νRT1 ln
VC
VD

= νRT1 ln
VB
VA

.

Now one obtains

η =
νRT2 ln

VB

VA
+ CV (T2 − T1)− νRT1 ln VB

VA
− CV (T2 − T1)

νRT2 ln
VB

VA
+ CV (T2 − T1)

that simpli�es to

η =
T2 − T1

T2 + CV (T2 − T1) /
(
νR ln VB

VA

) .
one can see that because of the additional positive term on the denominator, the e�ciency is smaller than the e�ciency of the
Carnot cycle, η = (T2 − T1) /T2.
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