1 Factorizability of a distribution function

A hypothetic velocity distribution of an ideal gas has the form

$$
G(v)=A e^{-k v}
$$

Does $G(v)$ satisfy the molecular chaos postulate? Find A from the normalization condition. Find the most probable speed, average speed, and the rms speed. Find the distribution function $g\left(v_{x}\right)$. Check if G factorizes as $G(v)=g\left(v_{x}\right) g\left(v_{y}\right) g\left(v_{z}\right)$.

Solution: $G(v)$ satisfies the molecular chaos postulate because it does not depend on the directions of the velocities. The normalization condition for the distribution function is

$$
1=\iiint_{-\infty}^{\infty} d v_{x} d v_{y} d v_{z} G(v)=4 \pi \int_{0}^{\infty} v^{2} d v G(v)=\int_{0}^{\infty} d v f(v)
$$

Substituting the explicit form of $G(v)$, one obtains

$$
1=4 \pi A \int_{0}^{\infty} v^{2} d v e^{-k v}=4 \pi A J_{2}(k)
$$

where

$$
J_{2}(k)=\int_{0}^{\infty} d v v^{2} e^{-k v}
$$

Using

$$
J_{0}(k)=\int_{0}^{\infty} d v e^{-k v}=\frac{1}{k}
$$

one obtains

$$
J_{2}(k)=\frac{d^{2}}{d k^{2}} J_{0}(k)=\frac{2}{k^{3}} .
$$

Thus

$$
A=\frac{1}{4 \pi J_{2}(k)}=\frac{k^{3}}{8 \pi}
$$

The most probable speed v_{m} is defined by the maximum of $f(v)$, that is,

$$
\max _{v}\left(v^{2} e^{-k v}\right)
$$

Taking the derivative over v, one obtains

$$
0=2 v e^{-k v}-k v^{2} e^{-k v}
$$

and thus

$$
v_{m}=\frac{2}{k}
$$

The average speed is given by

$$
\bar{v}=\int_{0}^{\infty} d v v f(v)=4 \pi A \int_{0}^{\infty} d v v^{3} e^{-k v}=\frac{k^{3}}{2} J_{3}(k)
$$

Using

$$
J_{3}(k)=-\frac{d}{d k} J_{2}(k)=\frac{6}{k^{4}}
$$

one finally obtains

$$
\bar{v}=\frac{3}{k}
$$

The average square speed is given by

$$
\overline{v^{2}}=\int_{0}^{\infty} d v v^{2} f(v)=4 \pi A \int_{0}^{\infty} d v v^{4} e^{-k v}=\frac{k^{3}}{2} J_{4}(k)
$$

Using

$$
J_{4}(k)=-\frac{d}{d k} J_{3}(k)=\frac{24}{k^{5}}
$$

one finally obtains

$$
\begin{equation*}
\overline{v^{2}}=\frac{12}{k^{2}} \tag{1}
\end{equation*}
$$

and thus

$$
v_{\mathrm{rms}}=\sqrt{\overline{v^{2}}}=\frac{2 \sqrt{3}}{k}
$$

The distribution function for a single velocity component can be obtained by integrating $G(v)$ over the remaining velocity components

$$
g\left(v_{x}\right)=\iint_{-\infty}^{\infty} d v_{y} d v_{z} G\left(\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}\right)=2 \pi A \int_{0}^{\infty} v_{\perp} d v_{\perp} e^{-k \sqrt{v_{x}^{2}+v_{\perp}^{2}}}
$$

where $v_{\perp}=\sqrt{v_{y}^{2}+v_{z}^{2}}$. Changing to the new variable $u=v_{\perp}^{2}$, one obtains

$$
g\left(v_{x}\right)=\pi A \int_{0}^{\infty} d u e^{-k \sqrt{v_{x}^{2}+u}}=\frac{2 \pi A}{k^{2}} e^{-k\left|v_{x}\right|}\left(1+k\left|v_{x}\right|\right)
$$

or, finally,

$$
g\left(v_{x}\right)=\frac{k}{4} e^{-k\left|v_{x}\right|}\left(1+k\left|v_{x}\right|\right) .
$$

Obviously

$$
G(v) \neq g\left(v_{x}\right) g\left(v_{y}\right) g\left(v_{z}\right),
$$

that is, our distribution function is not factorizable and thus it is not a good distribution function.
Still, let us investigate $g\left(v_{x}\right)$ obtained. Start with checking the normalization:

$$
\int_{-\infty}^{\infty} d v_{x} g\left(v_{x}\right)=2 \int_{0}^{\infty} d v_{x} g\left(v_{x}\right)=\frac{k}{2} \int_{0}^{\infty} d v_{x} e^{-k v_{x}}\left(1+k v_{x}\right)=\frac{k}{2}\left(J_{0}(k)+k J_{1}(k)\right)=\frac{k}{2}\left(\frac{1}{k}+k \frac{1}{k^{2}}\right)=1
$$

as it should be. The average square velocity is

$$
\overline{v_{x}^{2}}=\int_{-\infty}^{\infty} d v_{x} v_{x}^{2} g\left(v_{x}\right)=\frac{k}{2}\left(J_{2}(k)+k J_{3}(k)\right)=\frac{k}{2}\left(\frac{2}{k^{3}}+k \frac{6}{k^{4}}\right)=\frac{4}{k^{2}} .
$$

This is in accord with Eq. (1) since $\overline{v_{x}^{2}}+\overline{v_{y}^{2}}+\overline{v_{z}^{2}}=\overline{v^{2}}$.

