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Assignment 5, with solutions

1 Statistical thermodynamics of free classical particles

Partition function of classical particles in 3d is de�ned as

Zclass =

�
d3p

�
d3r exp [−βE(p, r)] , (1)

where E(p, r) is particle's energy. Note that this expression has the unit of (momentum × distance)3, unlike the quantum
partition function that is dimensionless. De�ne the density of states of a free classical particle in a box of volume V . By
comparing it with the density of states for a quantum particle in a rigid box, �nd the missing factor in Eq. (1) that would make
the classical partition function match the quantum one. This will de�ne a quantum-mechanical �cell� in the phase space of a
classical particle. Show that this quantum-mechanical aspect does not contribute into the internal energy and heat capacity of
the classical particles.

Solution: The energy of the particle consists of the kinetic and potential energy,

E(p, r) =
p2

2m
+ U(r), (2)

so that the classical partition function factorizes

Zclass =

�
d3pe−βp

2/(2m)

�
d3re−βU(r). (3)

For free particles there is no potential energy, and Zclass for particles in a rigid box of volume V becomes

Zclass = V

�
d3pe−βp

2/(2m). (4)

In the spherical coordinate system this becomes

Zclass = 4πV

�
p2dpe−βp

2/(2m). (5)

Choosing the kinetic energy ε = p2/(2m) as the integration variable and using

p2 = 2mε, dp =
dp

dε
dε =

1

2

√
2m

ε
dε, (6)

one can rewrite this in the form

Zclass =

∞�

0

dερclass(ε)e
−βε, ρclass(ε) = 2πV (2m)3/2

√
ε.

Quantum-mechanical partition function for this problem has the same form with

ρ(ε) =
V

(2π)
2

(
2m

~2

)3/2√
ε. (7)

The two densities of states are related as

ρ(ε) =
ρclass(ε)

(2π~)
3

that de�nes the missing factor in the above de�nition of the classical partition function. Correcting Zclass as

Zclass =

�
d3pd3r

(2π~)
3 exp [−βE(p, r)] , (8)

one obtains the dimensionless quantity that coincides with the classical limit of the quantum partition function Z. This formula
can be used in the presence of the potential energy as well.
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The interpretation of the above is the following. The (x, px) projection of the phase space of the particle is discretized into
cells ∆x∆px = 2π~ = h, and the similar for other direction y and z. The cells have quantum origin and are related to the
Heisenberg's uncertainty principle, stating that the product of uncertainties of measuring x and px of a quantum particle is of
order h. The number of quantum cells in a limited region of x and pxis limited and it de�nes the number of di�erent states in
this region. It is impossible to have more di�erent states because there is no way to distinguish states that are too close both in
x and in pxby measurement.

Similarly quantum cells can be introduced in many-particle problems and in problems with rotational degrees of freedom.
Quantum cells is an external element in classical statistical physics. Statistical averages of most physical quantities (except for
the entropy and related functions) are insensitive to the quantization of the phase space of the system because the correction
factor introduced above cancels.

2 Classical particles with gravity

Using the distribution function

f(p, r) =
1

Zclass
exp [−βE(p, r)]

for classical particles with gravity, �nd the dependence of particle's concentration n and pressure P as the function of the height.
Set the minimal height (the earth level) to zero. Calculate the heat capacity of this system and compare it with the one for free
particles.

Solution: The energy of the particle has the form

E =
p2

2m
+mgz.

The classical partition function of the particle factorizes:

Zclass =

�
d3p

�
d3r exp [−βE(p, r)] = ZkineticZpotential,

where

Zkinetic =

�
d3pe−βp

2/(2m), Zpotential =

�
d3re−βmgz.

Here we do not use the phase-space quantization factor from the preceding problem because it will cancel out in the �nal
results.The kinetic part of Z can be calculated as

Zkinetic =

 ∞�

−∞

dpxe
−βp2x/(2m)

3

= (2πmkBT )
3/2

.

Assuming that the particles are contained to a vertical cylinder of the cross-section S (that is non-essential), for the potential
partition function one obtains

Zpotential = S

∞�

0

dze−βmgz =
SkBT

mg
.

Thus

Zclass =
S

g
(2π)

3/2
m1/2 (kBT )

5/2
.

Suppose there are N particles in the system. Then the number of particles in the element of the phase space is

dN = Nfdpxdpydpzdxdydz,

where f is the distribution function introduced above. The concentration of particles is de�ned as

n =

�
d3p

dN

dxdydz
= N

�
d3pf.

Since f and Zclass factorize, the integrals over momentum cancel out and one obtains

n =
N

Zpotential
e−βmgz.

One can check that integrating this over the volume yields the identity N = N . Using the result for Zpotential, one gets the �nal
result

n =
mgN

SkBT
e−βmgz
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that exponentially decreases with the height. For the pressure one does not have anything better than the ideal-gas formula

P = nkBT =
mgN

S
e−βmgz.

The average internal energy is given by

U = −N ∂ lnZclass

∂β
= −N ∂ lnβ−5/2

∂β
=

5

2

N

β
=

5

2
NkBT.

The heat capacity is

C =
∂U

∂T
=

5

2
NkB .

This result might be unexpected. There is the heat capacity (3/2)NkB from three translational degrees of freedom. Additionally,
there is a potential energy for the motion in the vertical direction. Its contribution is NkB instead of the expected (1/2)NkB , as
were the case for a vibrational degree of freedom. The reason for a di�erent result is that the theorem of the equidistribution of
the energy over degrees of freedom is valid in the cases when the energy is a quadratic function in momenta and deviations from
the equilibrium positions (see the next problem). In our case, the potential energy is a linear rather than a quadratic function
of z.

3 Classical harmonic oscillators in 3D

Consider classical particles with the potential energy

V (r) =
kr2

2

in 3d. Calculate the partition function, internal energy and heat capacity.
Solution: We start, as usual, with calculating the classical partition function

Zclass =

�
d3pe−βp

2/(2m)

�
d3re−βkr

2/2 = ZkineticZpotential. (9)

One obtains

Zkinetic =

 ∞�

−∞

dpxe
−βp2x/(2m)

3

= (2πmkBT )
3/2

.

Similarly,

Zpotential =

 ∞�

−∞

dxe−βkx
2/2

3

= (2πkBT/k)
3/2

.

Thus
Zclass ∝ T 3 ∝ β−3.

The internal energy and heat capacity are given by

U = −N ∂ lnZclass

∂β
=

3N

β
= 3NkBT

and

C =
∂U

∂T
= 3NkB .

The factor 3 here is due to the three translational degrees of freedom of our system. Per each degree of freedom, there is NkB/2
due to the kinetic energy and the same amount due to the potential energy. This problem illustrates the equidistribution of
energy over degrees of freedom in classical statistical physics.

4 Phonons in 1d and 2d

Calculate the internal energy and heat capacity of the system of harmonic phonons in one and two dimensions at low temperatures.
Solution: Instead of calculating the partition function, it is more convenient to use the direct formula for the internal energy

U = U0 +

� ∞
0

dωρ (ω)
~ω

exp (β~ω)− 1
, (10)
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where the upper limit of the ontegration has been set to in�nity at low temperatures. In 2d the phonon density of states is

ρ(ω) =
Sω

2πv2
,

where S is the system's area. Discarding the zero-point energy U0, one obtains

U =
S~

2πv2

� ∞
0

dω
ω2

exp (β~ω)− 1
=

S~
2πv2

(
kBT

~

)3 � ∞
0

dx
x2

ex − 1
=
ζ(3)S (kBT )

3

πv2~2
.

The heat capacity becomes

C =
∂U

∂T
= 3kB

ζ(3)S (kBT )
2

πv2~2
.

5 Quantum correction to the heat capacity of the harmonic oscillator at high

temperatures

Calculate the �rst quantum correction to the heat capacity of the harmonic oscillator at high temperatures.
Solution. The formula for the heat capacity of the ensemble of harmonic oscillators reads

C = NkB

(
β~ω0

sinh [β~ω0]

)2

. (11)

At high temperatures (small β) one can expand this expression using the formula

sinhx ∼= x+
x3

6
, x� 1.

One writes ( x

sinhx

)2 ∼= ( 1

1 + x2/6

)2

∼=
(
1− x2/6

)2 ∼= 1− x2/3.

Thus, in the high-temperature range

C ∼= NkB

[
1− (β~ω0)

2

3

]
= NkB

[
1− 1

3

(
~ω0

kBT

)2
]
.

The quantum correction contains ~ and vanishes in the classical limit ~→ 0.

6 Magnetic susceptibility below TC in the mean-�eld approximation

Calculate the zero-�eld magnetic susceptibility per spin below TC in the mean-�eld approximation. Work out its form close to
TC

Solution. The spin polarization
〈
Ŝz

〉
in the MFA satis�es the Curie-Weiss equation

〈
Ŝz

〉
= bS

gµBB + Jz
〈
Ŝz

〉
kBT

 . (12)

The the magnetic susceptibility per spin is de�ned as

χ =
∂ 〈µz〉
∂B

= gµB
∂
〈
Ŝz

〉
∂B

. (13)

Using Eq. (12), one can write

∂
〈
Ŝz

〉
∂B

= b′S

gµBB + Jz
〈
Ŝz

〉
kBT

 gµB
kBT

+
Jz

kBT

∂
〈
Ŝz

〉
∂B

 . (14)

This is an equation for the derivative that has the solution

∂
〈
Ŝz

〉
∂B

=
gµB
kBT

b′S
1− b′S

Jz
kBT

, (15)
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where the argument of b′S is suppressed for brevity. It is convenient to express Jz via TC using

TC =
S(S + 1)

3

Jz

kB
. (16)

This yields

∂
〈
Ŝz

〉
∂B

=
gµB
kBT

b′S

1− 3b′S
S(S+1

TC

T

. (17)

This is the solution of the problem at all temperatures. One has to solve the Curie-Weiss equation numerically to �nd
〈
Ŝz

〉
,

and substitute it into the argument of b′S .

The most important the zero-�eld susceptibility, B = 0. In this case, above TC ,one has
〈
Ŝz

〉
= 0, so that b′S has zero

argument, b′S(0) = S(S + 1)/3 and one obtains

χ =
∂ 〈µz〉
∂B

= gµB
∂
〈
Ŝz

〉
∂B

=
S(S + 1)

3

(gµB)
2

kBT

1

1− TC

T

=
S(S + 1)

3

(gµB)
2

kB (T − TC)
. (18)

Below TC , there is a nonzero spin polarization, and one has to do some work to �nd
〈
Ŝz

〉
just below TC and substitute is into

b′S . The spin polarization for S = 1/2 has been found in the lecture for S = 1/2. Here we need to do it in general using the
expansion

bS(y) =
1

3
S(S + 1)y − 1

90
S(S + 1)(2S2 + 2S + 1)y3 + . . . (19)

Then near TC the Curie-Weiss equation with B = 0 becomes

〈
Ŝz

〉
=

1

3
S(S + 1)

Jz
〈
Ŝz

〉
kBT

− 1

90
S(S + 1)(2S2 + 2S + 1)

Jz
〈
Ŝz

〉
kBT

3

. (20)

Canceling
〈
Ŝz

〉
and expressing Jz via TC , one simpli�es this equation to

1 =
TC
T
− 3(2S2 + 2S + 1)

10 [S(S + 1)]
2

(
TC
T

)3 〈
Ŝz

〉2
(21)

that de�nes
〈
Ŝz

〉
below TC . It is convenient to write the solution as
〈
Ŝz

〉
S

2

=

(
T

TC

)3
10(S + 1)2

3(2S2 + 2S + 1)

(
TC
T
− 1

)
=

(
T

TC

)2
10(S + 1)2

3(2S2 + 2S + 1)

(
1− T

TC

)
, (22)

to embrace the case S →∞. For the derivative b′S(y) we use the expansion

b′S(y) =
1

3
S(S + 1)− 1

30
S(S + 1)(2S2 + 2S + 1)y2 + . . . (23)

that follows from that for bS(y). In Eq. (17) one obtains

3b′S
S(S + 1)

= 1− 2S2 + 2S + 1)

10

Jz
〈
Ŝz

〉
kBT

2

= 1− 2S2 + 2S + 1)

10

(
3

S(S + 1)

)2(
TC
T

)2 〈
Ŝz

〉2
(24)

and, �nally,

3b′S
S(S + 1)

= 1− 9(2S2 + 2S + 1)

10(S + 1)2

(
TC
T

)2

〈
Ŝz

〉
S

2

. (25)

Substituting here the solution for the spin polarization, Eq. (22), one obtains

3b′S
S(S + 1)

= 1− 9(2S2 + 2S + 1)

10(S + 1)2

(
TC
T

)2(
T

TC

)2
10(S + 1)2

3(2S2 + 2S + 1)

(
1− T

TC

)
= 1− 3

(
1− T

TC

)
, (26)
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a big simpli�cation! Now, substituting this into Eq. (17), one obtains

χ =
∂ 〈µz〉
∂B

= gµB
∂
〈
Ŝz

〉
∂B

=
S(S + 1)

3

(gµB)
2

kBT

1

1−
[
1− 3

(
1− T

TC

)]
TC

T

(27)

and, simplifying the denominator,

χ =
S(S + 1)

3

(gµB)
2

kBT

1

1− TC

T + 3
(
TC

T − 1
) =

S(S + 1)

3

(gµB)
2

kBT

1

2
(
TC

T − 1
) . (28)

Finally, below TC the zero-�eld susceptibility is

χ =
S(S + 1)

6

(gµB)
2

kB

1

TC − T
. (29)

The coe�cient here is two times smaller than that in the susceptibility above TC . The general result near TC can be written as

χ =
S(S + 1)

3

(gµB)
2

kB

1

|TC − T |

{
1, T > TC

1/2, T < TC .
(30)

7 Two interacting Ising spins

Consider the model of two coupled spins with the Hamiltonian

Ĥ = −gµBB (S1,z + S2,z)− JS1,zS2,z.

Here B is the external magnetic �eld and J is the so-called exchange interaction, ferromagnetic for J > 0 and antiferromagnetic
for J < 0. The model above in which only z components of the spins are coupled is called Ising model. The energy levels of this
system are given by

εm1m2
= −gµBB (m1 +m2)− Jm1m2,

where the quantum numbers take the values −S ≤ m1,m2 ≤ S. Write down the expression for the partition function of the
system. Can it be calculated analytically for a general S? If not, perform the calculation for S = 1/2 only. Calculate the
internal energy, heat capacity, magnetization induced by the magnetic �eld, and the magnetic susceptibility. Analyze ferro- and
antiferromagnetic cases.

Solution: The partition function of the system is given by

Z =

S∑
m1,m2=−S

e−βεm1m2 .

For a general spin S one can perform analytically only one summation. One can use the results for a single spin in a magnetic
�eld and with h ≡ gµBB write

ZS =

S∑
m1=−S

eβhm1

S∑
m2=−S

eβ(h+Jm1)m2 =

S∑
m=−S

eβhm
sinh [(S + 1/2)β (h+ Jm)]

sinh [β (h+ Jm) /2]
.

The remaining sum most probably cannot be calculated analytically.
For S = 1/2 the expression above simpli�es to

Z1/2 =

1/2∑
m=−1/2

eβhm2 cosh

[
β (h+ Jm)

2

]

that is,

Z1/2 = 2

{
eβh/2 cosh

[
β (h+ J/2)

2

]
+ e−βh/2 cosh

[
β (h− J/2)

2

]}
.

This expression can be simpli�ed to

Z1/2 = 2
[
eβJ/4 cosh (βh) + e−βJ/4

]
. (31)

Finally, in zero �eld the result simpli�es to
Z1/2 = 4 cosh (βJ/4) .
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Let us calculate the internal energy and heat capacity in zero �eld. One obtains

U = −N ∂ lnZ
∂β

= −NJ
4

tanh

(
βJ

4

)
,

where N is the number of two-spin systems. In the limit of low temperatures the hyperbolic tangent tends to 1 and one obtains
the anticipated result U = −NJ/4 (the two coupled spins are parallel for J > 0). In the case of antiferromagnetic coupling,
J < 0, one has tanh (βJ/4) → −1 for T → 0, so that for both ferro- and antiferromagnetic coupling one obtains U = −N |J |/4
at zero temperature.

The average spin value per two-spin system is given by

〈Sz〉 = 〈m1 +m2〉 =
1

Z

∂Z
∂ (βh)

. (32)

Using Eq. (31), one obtains

〈Sz〉 =
eβJ/4 sinh (βh)

eβJ/4 cosh (βh) + e−βJ/4
=

sinh (βh)

cosh (βh) + e−βJ/2
.

The susceptibility can be obtained by di�erentiating this expression with respect to the magnetic �eld. In particular, at zero
�eld

χ ∝ 1

1 + e−βJ/2
.

In the ferromagnetic case J > 0 the exponential is very small at low temperatures, βJ � 1, so that the susceptibility has a
regular value, comparable with that of an isolated spin. To the contrary, in the antiferromagnetic case J < 0 the exponential
is large and thus the susceptibility is very small. Try to explain this in physical terms and draw the dependence 〈Sz〉 on the
magnetic �eld for the antiferromagnetic coupling at low temperatures.
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