Renato G. Bettiol

Of course, I have no clue ...

Of course, I have no clue ...

... but try deforming trivial solutions until they become very unstable

Of course, I have no clue ...

... but try deforming trivial solutions until they become *very unstable* and that might give you new solutions!

Image credit: Paul Rumbach (University of Notre Dame) https://www3.nd.edu/~prumbach/AME20217/B4/index.html

Image credit: Paul Rumbach (University of Notre Dame) https://www3.nd.edu/~prumbach/AME20217/B4/index.html

$$x \in [0, L]$$

х

$$x \in [0, L]$$

 $w(x) =$ lateral deflection at x

х

$$x \in [0, L]$$

 $w(x) =$ lateral deflection at x

х

- $x \in [0, L]$ w(x) =lateral deflection at x
 - E = elasticity constant

- $x \in [0, L]$
- w(x) = lateral deflection at x
- E = elasticity constant

 $P = \mathsf{load}$

x

х

- $x \in [0, L]$
- w(x) = lateral deflection at x
- E = elasticity constant

 $P = \mathsf{load}$

$$\boxed{E\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + Pw = 0}$$

- $x \in [0, L]$
- w(x) = lateral deflection at x
- E = elasticity constant

 $P = \mathsf{load}$

$$\boxed{E\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + P w = 0}$$

 $w(x) = A\sin(\lambda x) + B\cos(\lambda x), \quad \lambda = \sqrt{\frac{P}{E}}$

x

$$w(x) = A\sin(\lambda x) + B\cos(\lambda x), \quad \lambda = \sqrt{\frac{P}{E}}$$

$$w(x) = A\sin(\lambda x) + B\cos(\lambda x), \quad \lambda = \sqrt{\frac{P}{E}}$$

$$w(x) = A\sin(\lambda x) + B\cos(\lambda x), \quad \lambda = \sqrt{\frac{P}{E}}$$

Boundary conditions (pinned ends):

• Base: w(0) = 0

$$w(x) = A\sin(\lambda x) + B\cos(\lambda x), \quad \lambda = \sqrt{\frac{P}{E}}$$

▶ Base:
$$w(0) = 0 \implies B = 0$$

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

▶ Base:
$$w(0) = 0 \implies B = 0$$

• Top:
$$w(L) = 0$$

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

• Base:
$$w(0) = 0 \implies B = 0$$

• Top:
$$w(L) = 0 \implies A\sin(\lambda L) = 0$$

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

• Base:
$$w(0) = 0 \implies B = 0$$

► Top:
$$w(L) = 0 \implies A\sin(\lambda L) = 0 \implies \lambda = \frac{n\pi}{l}, n \in \mathbb{N}$$

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

Boundary conditions (pinned ends):

▶ Base: w(0) = 0 ⇒ B = 0
▶ Top: w(L) = 0 ⇒ Asin(λL) = 0 ⇒ λ = nπ/L, n ∈ ℕ
Upshot:

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

Boundary conditions (pinned ends):

▶ Base: w(0) = 0 ⇒ B = 0
▶ Top: w(L) = 0 ⇒ A sin(λL) = 0 ⇒ λ = nπ/L, n ∈ ℕ
Upshot:

$$\blacktriangleright P < \frac{\pi^2 E}{L^2}$$

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

$$\blacktriangleright P < \frac{\pi^2 E}{L^2} \implies \lambda = \sqrt{\frac{P}{E}} < \frac{\pi}{L}$$

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

Boundary conditions (pinned ends):

$$\blacktriangleright P < \frac{\pi^2 E}{L^2} \implies \lambda = \sqrt{\frac{P}{E}} < \frac{\pi}{L} \implies w(x) \equiv 0$$

Only trivial solution exists; no buckling!

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

Boundary conditions (pinned ends):

$$\blacktriangleright P < \frac{\pi^2 E}{L^2} \implies \lambda = \sqrt{\frac{P}{E}} < \frac{\pi}{L} \implies w(x) \equiv 0$$

Only trivial solution exists; no buckling!

$$\blacktriangleright P \ge \frac{n^2 \pi^2 E}{L^2}$$

$$w(x) = A\sin(\lambda x)$$
 $\lambda = \sqrt{\frac{P}{E}}$

Boundary conditions (pinned ends):

► Base:
$$w(0) = 0 \implies B = 0$$

► Top: $w(L) = 0 \implies A\sin(\lambda L) = 0 \implies \lambda = \frac{n\pi}{L}, n \in \mathbb{N}$
Inshet:

Upshot:

$$\blacktriangleright P < \frac{\pi^2 E}{L^2} \implies \lambda = \sqrt{\frac{P}{E}} < \frac{\pi}{L} \implies w(x) \equiv 0$$

Only trivial solution exists; no buckling!

$$\blacktriangleright P \geq \frac{n^2 \pi^2 E}{L^2} \Longrightarrow w_j(x) = A \sin(\lambda_j x), \ \lambda_j = \frac{j\pi}{L}, 0 \leq j \leq n$$

Nontrivial solutions appear; at least n buckling modes!

Solutions to
$$E \frac{d^2 w}{dx^2} + Pw = 0$$
 with $0 \le P < \frac{\pi^2 E}{L^2}$

Solutions to
$$E \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + Pw = 0$$
 with $\frac{\pi^2 E}{L^2} \le P < \frac{2^2 \pi^2 E}{L^2}$

Solutions to
$$E \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + Pw = 0$$
 with $\frac{2^2 \pi^2 E}{L^2} \le P < \frac{3^2 \pi^2 E}{L^2}$

Solutions to
$$E \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + Pw = 0$$
 with $\frac{3^2 \pi^2 E}{L^2} \le P < \frac{4^2 \pi^2 E}{L^2}$

 w_0, w_1, w_2, w_3

Solutions to
$$E \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + Pw = 0$$
 with $\frac{4^2 \pi^2 E}{L^2} \le P < \frac{5^2 \pi^2 E}{L^2}$

 $\textit{W}_0,\textit{W}_1,\textit{W}_2,\textit{W}_3,\textit{W}_4$

Increasing the load P

Solutions to
$$E \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + Pw = 0$$
 with $\frac{5^2 \pi^2 E}{L^2} \le P < \frac{6^2 \pi^2 E}{L^2}$

 $w_0, w_1, w_2, w_3, w_4, w_5$

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

"Topological change in the structure of a dynamical system when a parameter crosses a bifurcation value"

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

"Topological change in the structure of a dynamical system when a parameter crosses a bifurcation value"

Parameter: P (load)

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

"Topological change in the structure of a dynamical system when a parameter crosses a bifurcation value"

Parameter: P (load)

270

H. Poincaré.

Il pourra d'ailleurs arriver qu'une même forme d'équilibre appartienne à la fois à deux ou plusieurs séries linéaires. Nous dirons alors que c'est une *forme de bifurcation*. On peut en effet, pour une valeur de y infiniment voisine de celle qui correspond à cette forme, trouver *deux* formes d'équilibre qui diffèrent infiniment peu de la forme de bifurcation.

Il neut arriver écalement que deux séries linéaires de formes d'équi-

In Physics, Engineering, Finance, and other Applied Sciences:

Buckling under compressive stress;

Euler beam equation

$$E\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} + \mathbf{P}w = 0$$

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;

Kirchhoff voltage law $\frac{\mathrm{d}^{2}I}{\mathrm{d}t^{2}} + \frac{R}{L}\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{1}{LC}I = 0$

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor–Couette vortices and turbulence in fluid dynamics;

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor–Couette vortices and turbulence in fluid dynamics;
- Cahn–Hillard equation for phase separation in fluids;

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor–Couette vortices and turbulence in fluid dynamics;
- Cahn–Hillard equation for phase separation in fluids;
- Ginzburg–Landau equation for superconductors;

$$\alpha \psi + \beta |\psi|^2 \psi$$

+ $\frac{1}{2m} (-i\hbar \nabla - 2eA)^2 \psi = 0$
$$j = \frac{2e}{m} \operatorname{Re}(\psi^* (-i\hbar \nabla - 2eA)\psi)$$

 $\nabla \times B = \mu_0 j$

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor–Couette vortices and turbulence in fluid dynamics;
- Cahn–Hillard equation for phase separation in fluids;
- Ginzburg–Landau equation for superconductors;
- Competitive equilibria in iterative auctions

Walras Law $\sum_{j} p_{j}(D_{j} - S_{j}) = 0$

In Mathematics:

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

• $X = \{$ "states" $\}$, or $\{$ "configurations" $\}$

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

X = {"states"}, or {"configurations"}
f_t: X → ℝ, 1-parameter family of functionals

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

Euler-Lagrange equation $\mathrm{d}f_t(x) = 0$

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

Euler-Lagrange equation $\mathrm{d}f_t(x) = 0$

• x_t trivial branch of solutions, $df_t(x_t) = 0$

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

Euler-Lagrange equation $\mathrm{d}f_t(x) = 0$

 x_t trivial branch of solutions, df_t(x_t) = 0
 x_t = "ground state", typically minimizes f_t(x) Principle of Least Action: x_t is state observed in nature

 \mathbf{x}_t trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

 \mathbf{x}_t trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = \mathbf{0}$

Definition Bifurcation occurs at x_{t_*} if:

 \mathbf{x}_t trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

$$\blacktriangleright \exists t_n, t_n \to t_*$$

 \mathbf{x}_t trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

$$\exists t_n, t_n \to t_* \exists x_n \to x_{t_*}, df_{t_n}(x_n) = 0, x_n \neq x_{t_n}$$

 \mathbf{x}_t trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

Equivalently, the Implicit Function Theorem fails at x_{t_*} !

 $x_{t} \text{ trivial branch} \\ df_{t}(x_{t}) = 0$ Definition
Bifurcation occurs at $x_{t_{*}}$ if: $\exists t_{n}, t_{n} \rightarrow t_{*}$ $\exists x_{n} \rightarrow x_{t_{*}}, df_{t_{n}}(x_{n}) = 0,$ $x_{n} \neq x_{t_{n}}$ $t_{*} \quad t_{n} \quad t$

Equivalently, the Implicit Function Theorem fails at x_{t_*} ! Thus, ker $d^2 f_{t_*}(x_{t_*}) \neq \{0\}$ is a necessary condition

 $x_{t} \text{ trivial branch} \\ df_{t}(x_{t}) = 0$ Definition
Bifurcation occurs at $x_{t_{*}}$ if: $\exists t_{n}, t_{n} \rightarrow t_{*}$ $\exists x_{n} \rightarrow x_{t_{*}}, df_{t_{n}}(x_{n}) = 0,$ $x_{n} \neq x_{t_{n}}$ $t_{*} \quad t_{n} \quad t$

Equivalently, the Implicit Function Theorem fails at x_{t_*} ! Thus, ker $d^2 f_{t_*}(x_{t_*}) \neq \{0\}$ is a necessary condition but it is not sufficient...

Sufficient condition for bifurcation

Definition (Morse index) $i_{Morse}(x) = \# \operatorname{Spec} (d^2 f_t(x)) \cap (-\infty, 0),$ where $\operatorname{Spec}(A) = \{ \text{Eigenvalues of } A \}.$

M. Morse (1965)

Sufficient condition for bifurcation

M. A. Krasnosel'skij (1979)

 $\begin{array}{l} \text{Definition (Morse index)}\\ i_{\text{Morse}}(x) = \# \operatorname{Spec}\left(\mathrm{d}^2 f_t(x)\right) \cap (-\infty,0),\\ \text{where } \operatorname{Spec}(A) = \{\text{Eigenvalues of } A\}. \end{array}$

Theorem (Krasnosel'skij) If $\exists a < b \text{ such that}$

$$i_{\mathrm{Morse}}(x_{a}) \neq i_{\mathrm{Morse}}(x_{b})$$

then $\exists t_* \in (a, b)$ a bifurcation instant.

Sufficient condition for bifurcation

M. A. Krasnosel'skij (1979)

 $\begin{array}{l} \text{Definition (Morse index)} \\ i_{\text{Morse}}(x) = \# \operatorname{Spec} \left(\mathrm{d}^2 f_t(x) \right) \cap (-\infty, 0), \\ \text{where } \operatorname{Spec}(A) = \{ \text{Eigenvalues of } A \}. \end{array}$

Theorem (Krasnosel'skij) If $\exists a < b \text{ such that}$

$$i_{\mathrm{Morse}}(x_a) \neq i_{\mathrm{Morse}}(x_b)$$

then $\exists t_* \in (a, b)$ a bifurcation instant.

 \triangle Technical warnings (for experts):

- $d^2 f_t$ must be Fredholm (of index 0)
- x_a and x_b must be nondegenerate.

 \triangleright $X = \mathbb{R}^2$

►
$$f_t(x, y) = \frac{1}{2}(x^2 + y^4 - ty^2)$$

- $\blacktriangleright X = \mathbb{R}^2$
- $f_t(x,y) = \frac{1}{2}(x^2 + y^4 ty^2)$
- $df_t(x, y) = (x, 2y^3 ty) = (0, 0)$

$$X = \mathbb{R}^{2}$$

$$f_{t}(x, y) = \frac{1}{2}(x^{2} + y^{4} - ty^{2})$$

$$df_{t}(x, y) = (x, 2y^{3} - ty) = (0, 0)$$

$$(x_{t}, y_{t})$$

$$Trivial branch: (x_{t}, y_{t}) = (0, 0)$$

$$d^{2}f_{t}(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 6y^{2} - t \end{pmatrix}$$

$$(x, y)$$
$$X = \mathbb{R}^{2}$$

$$f_{t}(x, y) = \frac{1}{2}(x^{2} + y^{4} - ty^{2})$$

$$df_{t}(x, y) = (x, 2y^{3} - ty) = (0, 0)$$

$$Trivial branch: (x_{t}, y_{t}) = (0, 0)$$

$$d^{2}f_{t}(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 6y^{2} - t \end{pmatrix}$$

$$d^{2}f_{t}(0, 0) = \begin{pmatrix} 1 & 0 \\ 0 & -t \end{pmatrix}$$

$$X = \mathbb{R}^{2}$$

$$f_{t}(x, y) = \frac{1}{2}(x^{2} + y^{4} - ty^{2})$$

$$df_{t}(x, y) = (x, 2y^{3} - ty) = (0, 0)$$

$$Trivial branch: (x_{t}, y_{t}) = (0, 0)$$

$$d^{2}f_{t}(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 6y^{2} - t \end{pmatrix}$$

$$d^{2}f_{t}(0, 0) = \begin{pmatrix} 1 & 0 \\ 0 & -t \end{pmatrix}$$

$$i_{Morse}(0, 0) = \begin{cases} 0, \text{ if } t < 0 \end{cases}$$

$$X = \mathbb{R}^{2}$$

$$f_{t}(x, y) = \frac{1}{2}(x^{2} + y^{4} - ty^{2})$$

$$df_{t}(x, y) = (x, 2y^{3} - ty) = (0, 0)$$

$$Trivial branch: (x_{t}, y_{t}) = (0, 0)$$

$$d^{2}f_{t}(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 6y^{2} - t \end{pmatrix}$$

$$d^{2}f_{t}(0, 0) = \begin{pmatrix} 1 & 0 \\ 0 & -t \end{pmatrix}$$

$$i_{Morse}(0, 0) = \begin{cases} 0, \text{ if } t < 0 \\ 1, \text{ if } t > 0 \end{cases}$$

$$X = \mathbb{R}^{2}$$

$$f_{t}(x, y) = \frac{1}{2}(x^{2} + y^{4} - ty^{2})$$

$$df_{t}(x, y) = (x, 2y^{3} - ty) = (0, 0)$$

$$Trivial branch: (x_{t}, y_{t}) = (0, 0)$$

$$d^{2}f_{t}(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 6y^{2} - t \end{pmatrix}$$

$$d^{2}f_{t}(0, 0) = \begin{pmatrix} 1 & 0 \\ 0 & -t \end{pmatrix}$$

$$i_{Morse}(0, 0) = \begin{cases} 0, \text{ if } t < 0 \\ 1, \text{ if } t > 0 \end{cases}$$

 \Rightarrow Bifurcation occurs at $t_* = 0!$

 \Rightarrow Bifurcation occurs at $t_* = 0!$

Two bifurcating branches issue from $x_{t_*} = (0,0)$ $(x_t, y_t) = (0, \pm \sqrt{t/2}),$ t > 0

(x, y)

t

 (x_t, y_t) trivial solutions

 (x_t, y_t) bifurcating solutions

(x_t, y_t) trivial solutions
▶ If t < 0, stable

 (x_t, y_t) bifurcating solutions

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

Avant de démontrer ce résultat général, donnons quelques exemples. Soit:

$$F = Ax_1^2 + \frac{1}{3}x_2^3 - y^2x_2 - \alpha yx_2.$$

Il vient pour les équations d'équilibre:

$$x_1 = 0, \qquad x_2 = \pm \sqrt{y^2 + ay}$$

d'où

$$\Delta = 4Ax_2 = \pm 4A\sqrt{y^2 + ay}$$

(PDE)
$$\begin{cases} \Delta u(x) + t f(u(x)) = 0 & \text{in } B^n \\ \alpha u(x) - t \beta \frac{\partial u}{\partial \nu}(x) = 0 & \text{on } \partial B^n \end{cases}$$

(PDE)
$$\begin{cases} \Delta u(x) + t f(u(x)) = 0 & \text{in } B^n \\ \alpha u(x) - t \beta \frac{\partial u}{\partial \nu}(x) = 0 & \text{on } \partial B^n \end{cases}$$

Look for *radial solutions*, i.e., u = u(r), r = |x|, invariant under $O(n) \curvearrowright B^n$

(PDE)
$$\begin{cases} \Delta u(x) + t f(u(x)) = 0 & \text{in } B^n \\ \alpha u(x) - t \beta \frac{\partial u}{\partial \nu}(x) = 0 & \text{on } \partial B^n \end{cases}$$

Look for *radial solutions*, i.e., u = u(r), r = |x|, invariant under $O(n) \frown B^n$

(ODE)
$$\begin{cases} u''(r) + \frac{n-1}{r}u'(r) + t f(u(r)) = 0\\ u'(0) = 0 = \alpha u(1) - t \beta u'(1) \end{cases}$$

(PDE)
$$\begin{cases} \Delta u(x) + t f(u(x)) = 0 & \text{in } B^n \\ \alpha u(x) - t \beta \frac{\partial u}{\partial \nu}(x) = 0 & \text{on } \partial B^n \end{cases}$$

Look for *radial solutions*, i.e., u = u(r), r = |x|, invariant under $O(n) \frown B^n$

(ODE)
$$\begin{cases} u''(r) + \frac{n-1}{r}u'(r) + t f(u(r)) = 0\\ u'(0) = 0 = \alpha u(1) - t \beta u'(1) \end{cases}$$

If f(u) satisfy certain conditions, e.g., $f(u) = \sin u$, then $\exists u_t$ solution $\forall t \ge t_0$

(PDE)
$$\begin{cases} \Delta u(x) + t f(u(x)) = 0 & \text{in } B^n \\ \alpha u(x) - t \beta \frac{\partial u}{\partial \nu}(x) = 0 & \text{on } \partial B^n \end{cases}$$

Look for *radial solutions*, i.e., u = u(r), r = |x|, invariant under $O(n) \curvearrowright B^n$

(ODE)
$$\begin{cases} u''(r) + \frac{n-1}{r}u'(r) + t f(u(r)) = 0\\ u'(0) = 0 = \alpha u(1) - t \beta u'(1) \end{cases}$$

If f(u) satisfy certain conditions, e.g., $f(u) = \sin u$, then $\exists u_t$ solution $\forall t \ge t_0$

Theorem (Smoller-Wasserman, 1990) There are infinitely many bifurcations from u_t as $t \nearrow +\infty$ by nonradial solutions to (PDE).

J. Smoller

A. Wasserman

Symmetry-breaking

Radial solutions u_t

Symmetry-breaking

- Principal curvatures:
- κ_1

Principal curvatures:

 κ_1 , κ_2

Principal curvatures:

 $\kappa_1, \kappa_2, \ldots, \kappa_n.$

Principal curvatures:

 $\kappa_1, \kappa_2, \ldots, \kappa_n.$

 $\begin{array}{l} \text{Definition} \\ \Sigma^n \subset \mathbb{R}^{n+1} \text{ has} \\ \text{Constant Mean} \\ \text{Curvature (CMC) if} \end{array}$

Principal curvatures:

 $\kappa_1, \kappa_2, \ldots, \kappa_n.$

 $\begin{array}{l} \text{Definition} \\ \Sigma^n \subset \mathbb{R}^{n+1} \text{ has} \\ \text{Constant Mean} \\ \text{Curvature (CMC) if} \end{array}$

$$\underbrace{\kappa_1 + \dots + \kappa_n}_{H(\Sigma)} = c$$

Principal curvatures:

 $\kappa_1, \kappa_2, \ldots, \kappa_n.$

 $\begin{array}{l} \text{Definition} \\ \Sigma^n \subset \mathbb{R}^{n+1} \text{ has} \\ \text{Constant Mean} \\ \text{Curvature (CMC) if} \end{array}$

$$\underbrace{\kappa_1 + \dots + \kappa_n}_{H(\Sigma)} = c$$

▶ Soap bubbles in \mathbb{R}^3 are CMC surfaces: round spheres

Principal curvatures:

 $\kappa_1, \kappa_2, \ldots, \kappa_n.$

 $\begin{array}{l} {\sf Definition} \\ {\Sigma}^n \subset {\mathbb R}^{n+1} \text{ has} \\ {\sf Constant Mean} \\ {\sf Curvature (CMC) if} \end{array}$

$$\underbrace{\kappa_1 + \dots + \kappa_n}_{H(\Sigma)} = c$$

Soap bubbles in R³ are CMC surfaces: round spheres
 General *isoperimetric regions* have CMC boundary

Principal curvatures:

 $\kappa_1, \kappa_2, \ldots, \kappa_n.$

 $\begin{array}{l} \text{Definition} \\ \Sigma^n \subset \mathbb{R}^{n+1} \text{ has} \\ \text{Constant Mean} \\ \text{Curvature (CMC) if} \end{array}$

$$\underbrace{\kappa_1 + \dots + \kappa_n}_{H(\Sigma)} = c$$

- ▶ Soap bubbles in \mathbb{R}^3 are CMC surfaces: round spheres
- General isoperimetric regions have CMC boundary
- Center of Mass in General Relativity

Theorem (Delaunay, 1841)

Surface of revolution $\Sigma \subset \mathbb{R}^3$ has CMC

Profile curve of Σ is the roulette of a conic section.

Delaunay

C.-E. Delaunay

Southeast side of the Eiffel tower:

Delaunay surfaces

Conics of varying eccentricity

Video credit: GeometrieWerkstatt Gallery http://service.ifam.uni-hannover.de/~geometriewerkstatt/

Theorem (Mazzeo-Pacard, 2002)

There are infinitely many families of CMC surfaces in \mathbb{R}^3 that bifurcate from nodoids as their eccentricity goes to $+\infty$.

http://service.ifam.uni-hannover.de/~geometriewerkstatt/gallery/0003.html

Theorem (Mazzeo-Pacard, 2002)

There are infinitely many families of CMC surfaces in \mathbb{R}^3 that bifurcate from nodoids as their eccentricity goes to $+\infty$.

Theorem (Mazzeo-Pacard, 2002)

There are infinitely many families of CMC surfaces in \mathbb{R}^3 that bifurcate from nodoids as their eccentricity goes to $+\infty$.

Symmetry-breaking:

Bifurcating surfaces are not of revolution!

Theorem (Mazzeo-Pacard, 2002)

There are infinitely many families of CMC surfaces in \mathbb{R}^3 that bifurcate from nodoids as their eccentricity goes to $+\infty$.

Symmetry-breaking:

Bifurcating surfaces are not of revolution!

Theorem (Koiso-Palmer-Piccione, 2015)

There are infinitely many families of CMC surfaces in \mathbb{R}^3 with boundary on two fixed coaxial circles that bifurcate from portions of nodoids as their conormal angle varies.

Image credit: Koiso-Palmer-Piccione, 2015 https://www.ime.usp.br/~piccione/Downloads/NodoidBifurcation_revisionACV.pdf

Plot twist:

Bifurcate Delaunay surfaces into new CMC surfaces

Plot twist:

Bifurcate Delaunay surfaces into new CMC surfaces

- Bifurcate Delaunay surfaces into new CMC surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces!

- Bifurcate Delaunay surfaces into new CMC surfaces
- Bifurcate known CMC surfaces into *new Delaunay surfaces*! Setup:
- ▶ (*M*, g) cohomogeneity one manifold

- Bifurcate Delaunay surfaces into new CMC surfaces
- Bifurcate known CMC surfaces into *new Delaunay surfaces*!
 Setup:
- (*M*, g) cohomogeneity one manifold;
 i.e., G → *M*, with *M*/G = [0, 1].

- Bifurcate Delaunay surfaces into new CMC surfaces
- Bifurcate known CMC surfaces into *new Delaunay surfaces*! Setup:
- (M,g) cohomogeneity one manifold;
 i.e., G ∼ M, with M/G = [0, 1]. E.g.,
 Sⁿ, CPⁿ, HPⁿ, Kervaire spheres, ...

New Delaunay-type hypersurfaces Plot twist:

- Bifurcate Delaunay surfaces into new CMC surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces! Setup:
- (M,g) cohomogeneity one manifold;
 i.e., G ∼ M, with M/G = [0,1]. E.g., Sⁿ, CPⁿ, HPⁿ, Kervaire spheres, ...
- Σ_t ⊂ M principal G-orbits, t ∈ [0, 1] trivially have CMC due to symmetries

New Delaunay-type hypersurfaces Plot twist:

- Bifurcate Delaunay surfaces into new CMC surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces! Setup:
- (M,g) cohomogeneity one manifold;
 i.e., G ∼ M, with M/G = [0,1]. E.g., Sⁿ, CPⁿ, HPⁿ, Kervaire spheres, ...
- Σ_t ⊂ M principal G-orbits, t ∈ [0, 1] trivially have CMC due to symmetries

Theorem (B.-Piccione, 2016)

There are infinitely many families of CMC embeddings bifurcating from Σ_t as $t \searrow 0$ and $t \nearrow 1$.

New Delaunay-type hypersurfaces Plot twist:

- Bifurcate Delaunay surfaces into new CMC surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces! Setup:
- (M,g) cohomogeneity one manifold;
 i.e., G ∼ M, with M/G = [0,1]. E.g., Sⁿ, CPⁿ, HPⁿ, Kervaire spheres, ...
- Σ_t ⊂ M principal G-orbits, t ∈ [0, 1] trivially have CMC due to symmetries

Theorem (B.-Piccione, 2016)

There are infinitely many families of CMC embeddings bifurcating from Σ_t as $t \searrow 0$ and $t \nearrow 1$.

Significance: These are Delaunay-type hypersurfaces in these spaces!

$$S^3 = ig\{(z,w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 1ig\}$$

$$S^{3} = \left\{ (z, w) \in \mathbb{C}^{2} : |z|^{2} + |w|^{2} = 1 \right\}$$

$$\Sigma_{t} = \left\{ (z, w) \in S^{3} : |z| = \cos\left(\frac{\pi}{2}t\right), |w| = \sin\left(\frac{\pi}{2}t\right) \right\}, \ t \in [0, 1]$$

$$S^{3} = \left\{ (z, w) \in \mathbb{C}^{2} : |z|^{2} + |w|^{2} = 1 \right\}$$

$$\Sigma_{t} = \left\{ (z, w) \in S^{3} : |z| = \cos\left(\frac{\pi}{2}t\right), |w| = \sin\left(\frac{\pi}{2}t\right) \right\}, \ t \in [0, 1]$$

Principal orbits (CMC tori): Σ_t, t ∈ (0, 1)

$$S^{3} = \left\{ (z, w) \in \mathbb{C}^{2} : |z|^{2} + |w|^{2} = 1 \right\}$$

$$\Sigma_{t} = \left\{ (z, w) \in S^{3} : |z| = \cos\left(\frac{\pi}{2}t\right), |w| = \sin\left(\frac{\pi}{2}t\right) \right\}, \ t \in [0, 1]$$

Principal orbits (CMC tori): $\Sigma_t, t \in (0, 1)$ $H(\Sigma_t) = \tan\left(\frac{\pi}{2}t\right) - \cot\left(\frac{\pi}{2}t\right)$

$$egin{aligned} S^3 &= ig\{(z,w) \in \mathbb{C}^2: |z|^2 + |w|^2 = 1ig\}\ \Sigma_t &= ig\{(z,w) \in S^3: |z| = \cosig(rac{\pi}{2}tig), |w| = \sinig(rac{\pi}{2}tig)ig\}, \ t \in [0,1] \end{aligned}$$

 $t \searrow 0$

- Principal orbits (CMC tori): Σ_t , $t \in (0, 1)$
 - $H(\Sigma_t) = anig(rac{\pi}{2}tig) ext{cot}ig(rac{\pi}{2}tig)$
- Singular orbits (circles): Σ_0 , Σ_1

$$egin{aligned} S^3 &= ig\{(z,w) \in \mathbb{C}^2: |z|^2 + |w|^2 = 1ig\}\ \Sigma_t &= ig\{(z,w) \in S^3: |z| = \cosig(rac{\pi}{2}tig), |w| = \sinig(rac{\pi}{2}tig)ig\}, \ t \in [0,1] \end{aligned}$$

- Principal orbits (CMC tori): $\Sigma_t, t \in (0, 1)$
 - $H(\Sigma_t) = anig(rac{\pi}{2}tig) ext{cot}ig(rac{\pi}{2}tig)$
- Singular orbits (circles): Σ_0 , Σ_1
- Delaunay-type tori bifurcate from Σ_t as $t \searrow 0$ and $t \nearrow 1$

Proof (of all above results). • $X = \{\Sigma \hookrightarrow M\}$

•
$$X = \{\Sigma \hookrightarrow M\}$$

• $f_H(\Sigma) = \operatorname{Area}(\Sigma) + H\operatorname{Vol}(\Sigma)$

$$\blacktriangleright X = \{\Sigma \hookrightarrow M\}$$

•
$$f_H(\Sigma) = \operatorname{Area}(\Sigma) + H \operatorname{Vol}(\Sigma)$$

• $df_H(\Sigma) = 0 \iff \Sigma$ has constant mean curvature H

•
$$X = \{\Sigma \hookrightarrow M\}$$

• $f_H(\Sigma) = \operatorname{Area}(\Sigma) + H \operatorname{Vol}(\Sigma)$
• $df_H(\Sigma) = 0 \iff \Sigma$ has constant mean curvature H
• $i_{\operatorname{Morse}}(\Sigma) = \#(\underbrace{\operatorname{Spec}(\Delta_{\Sigma})}_{\operatorname{Laplace eigenvalues}} \cap (-\infty, \underbrace{\operatorname{Ric}(\nu) + ||A_{\Sigma}||^2}_{"geometric potential"}))$

•
$$X = \{\Sigma \hookrightarrow M\}$$

• $f_H(\Sigma) = \operatorname{Area}(\Sigma) + H \operatorname{Vol}(\Sigma)$
• $df_H(\Sigma) = 0 \iff \Sigma$ has constant mean curvature H
• $i_{\operatorname{Morse}}(\Sigma) = \#(\underbrace{\operatorname{Spec}(\Delta_{\Sigma})}_{\operatorname{Laplace eigenvalues}} \cap (-\infty, \underbrace{\operatorname{Ric}(\nu) + ||A_{\Sigma}||^2}_{"geometric potential"}))$
• $i_{\operatorname{Morse}}(\Sigma_t) \nearrow +\infty$ as Σ_t collapses
Proof (of all above results).

•
$$X = \{\Sigma \hookrightarrow M\}$$

• $f_H(\Sigma) = \operatorname{Area}(\Sigma) + H \operatorname{Vol}(\Sigma)$
• $df_H(\Sigma) = 0 \iff \Sigma$ has constant mean curvature H
• $i_{\operatorname{Morse}}(\Sigma) = \#(\underbrace{\operatorname{Spec}(\Delta_{\Sigma})}_{\operatorname{Laplace eigenvalues}} \cap (-\infty, \underbrace{\operatorname{Ric}(\nu) + ||A_{\Sigma}||^2}_{"geometric potential"}))$
• $i_{\operatorname{Morse}}(\Sigma_t) \nearrow +\infty$ as Σ_t collapses

► Krasnosel'skij's Theorem ⇒ Infinitely many bifurcations

Uniformization Theorem (Poincaré 1882; Klein 1883) *Every closed surface*

Uniformization Theorem (Poincaré 1882; Klein 1883) Every closed surface

Genus 0

Image credit: Thomas Krämer https://www2.mathematik.hu-berlin.de/~kraemeth/riemann-surfaces/index.html

Uniformization Theorem (Poincaré 1882; Klein 1883) *Every closed surface*

Image credit: Thomas Krämer https://www2.mathematik.hu-berlin.de/~kraemeth/riemann-surfaces/index.html

Uniformization Theorem (Poincaré 1882; Klein 1883) *Every closed surface*

Uniformization Theorem (Poincaré 1882; Klein 1883) Every closed surface admits a metric of constant curvature

Uniformization Theorem (Poincaré 1882; Klein 1883) Every closed surface admits a metric of constant curvature which can be achieved with a conformal deformation.

Preserves angles (but not distances)

- Preserves angles (but not distances)
- Encoded by a positive function

$$\mathbf{g} \rightsquigarrow u^p \mathbf{g}, \quad u > 0$$

- Preserves angles (but not distances)
- Encoded by a positive function

$$g \rightsquigarrow u^p g, \quad u > 0$$

Conformal class of metric g:

$$[\mathbf{g}] = \left\{ u^p \, \mathbf{g} : u > 0 \right\}$$

- Preserves angles (but not distances)
- Encoded by a positive function

$$g \rightsquigarrow u^p g, \quad u > 0$$

Conformal class of metric g:

$$[\mathbf{g}] = \left\{ u^{p} \, \mathbf{g} : u > 0 \right\}$$
$$\cong C^{\infty}_{+}(M)$$

Yamabe problem: "Uniformization" for $n \ge 3$ (M,g) n-manifold

H. Yamabe (1923 – 1960)

H. Yamabe (1923 – 1960)

$$-4 \frac{n-1}{n-2} \Delta_g u + \operatorname{scal}_g u = c u^{\frac{n+2}{n-2}}$$

H. Yamabe (1923 – 1960)

$$-4 \frac{n-1}{n-2} \Delta_g u + \operatorname{scal}_g u = c u^{\frac{n+2}{n-2}}$$

Yamabe (1960)

H. Yamabe (1923 – 1960)

Yamabe problem: "Uniformization" for $n \ge 3$

 $(M, g) \longrightarrow (M, u^{\frac{4}{n-2}} g)$ with *n*-manifold constant *scalar* curvature

$$-4 \tfrac{n-1}{n-2} \Delta_g u + \operatorname{scal}_g u = c \, u^{\frac{n+2}{n-2}}$$

- Yamabe (1960)
- Trudinger (1968)

N. Trudinger (1969)

$$-4 \tfrac{n-1}{n-2} \Delta_g u + \operatorname{scal}_g u = c \, u^{\frac{n+2}{n-2}}$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)

T. Aubin (1976)

Yamabe problem: "Uniformization" for $n \ge 3$ $(M, g) \xrightarrow[n-manifold]{} \longrightarrow (M, u^{\frac{4}{n-2}} g)$ with constant scalar curvature

$$-4 \tfrac{n-1}{n-2} \Delta_g u + \operatorname{scal}_g u = c \, u^{\frac{n+2}{n-2}}$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)
- Schoen (1984)

R. Schoen (1983)

Yamabe problem: "Uniformization" for $n \ge 3$ $(M, g) \xrightarrow[n-manifold]{} (M, u^{\frac{4}{n-2}}g)$ with constant scalar curvature

$$-4 \frac{n-1}{n-2} \Delta_g u + \operatorname{scal}_g u = c u^{\frac{n+2}{n-2}}$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)
- Schoen (1984)

Theorem

Every (M, g) admits a conformal deformation $(M, u^{\frac{4}{n-2}}g)$ with constant scalar curvature.

R. Schoen (1983)

Yamabe problem: "Uniformization" for $n \ge 3$ $(M, g) \xrightarrow[n-manifold]{} (M, u^{\frac{4}{n-2}} g)$ with constant scalar curvature

$$-4 \frac{n-1}{n-2} \Delta_g u + \operatorname{scal}_g u = c u^{\frac{n+2}{n-2}}$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)
- Schoen (1984)

Theorem

Every (M, g) admits a conformal deformation $(M, u^{\frac{4}{n-2}}g)$ with constant scalar curvature.

Is it <u>unique</u>?

R. Schoen (1983)

(M, g) homogeneous M = G/H

$$\begin{array}{c} (M, \mathrm{g}) \text{ homogeneous} \\ M = \mathsf{G}/\mathsf{H} \end{array} \implies \begin{array}{c} \operatorname{scal}_{\mathrm{g}} = \textit{const} \\ (\text{trivial solution}) \end{array}$$

$$(M, g)$$
 homogeneous
 $M = G/H$
 \implies
 $scal_g = const$
(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989) The trivial (product) solution to the Yamabe problem on $S^n \times S^1(t)$ bifurcates infinitely many times as $t \searrow 0$.

$$(M, g)$$
 homogeneous
 $M = G/H \implies$ $scal_g = const$
(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989) The trivial (product) solution to the Yamabe problem on $S^n \times S^1(t)$ bifurcates infinitely many times as $t \searrow 0$. Theorem (Lima-Piccione-Zedda, 2012) (M, g_M) one of $S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2$ (CROSS)

$$(M, g)$$
 homogeneous
 $M = G/H \implies$ $scal_g = const$
(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989) The trivial (product) solution to the Yamabe problem on $S^n \times S^1(t)$ bifurcates infinitely many times as $t \searrow 0$.

Theorem (Lima-Piccione-Zedda, 2012)

- ▶ (M, g_M) one of $S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2$ (CROSS)
- (N, g_N) closed manifold, scal_N > 0 constant

$$(M, g)$$
 homogeneous
 $M = G/H \implies$ $scal_g = const$
(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989) The trivial (product) solution to the Yamabe problem on $S^n \times S^1(t)$ bifurcates infinitely many times as $t \searrow 0$.

Theorem (Lima-Piccione-Zedda, 2012)

▶ (M, g_M) one of $S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2$ (CROSS)

▶
$$g_t = g_M \oplus t g_N$$
 trivial solution

$$(M, g)$$
 homogeneous
 $M = G/H \implies$ $scal_g = const$
(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989) The trivial (product) solution to the Yamabe problem on $S^n \times S^1(t)$ bifurcates infinitely many times as $t \searrow 0$.

Theorem (Lima-Piccione-Zedda, 2012)

▶ (M, g_M) one of $S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2$ (CROSS)

•
$$(N, g_N)$$
 closed manifold, scal_N > 0 constant

▶ $g_t = g_M \oplus t g_N$ trivial solution

Then $(M \times N, g_t)$ bifurcates infinitely many times as $t \searrow 0$.

 $\blacktriangleright S^1 \to S^{2n+1} \to \mathbb{C}P^n$

► $S^1 \to S^{2n+1} \to \mathbb{C}P^n$ ► $S^3 \to S^{4n+3} \to \mathbb{H}P^n$

 $S^1 \to S^{2n+1} \to \mathbb{C}P^n$ $S^3 \to S^{4n+3} \to \mathbb{H}P^n$ $S^7 \to S^{15} \to S^8(\frac{1}{2})$

- $\blacktriangleright S^1 \to S^{2n+1} \to \mathbb{C}P^n$
- $\blacktriangleright S^3 \to S^{4n+3} \to \mathbb{H}P^n$
- $\blacktriangleright \ S^7 \to S^{15} \to S^8 \bigl(\tfrac{1}{2} \bigr)$

Berger metrics $g_t = g_{hor} \oplus t g_{ver}$ (homogeneous)

$$\blacktriangleright \ S^1 \to S^{2n+1} \to \mathbb{C}P^n$$

$$\blacktriangleright \ S^3 \to S^{4n+3} \to \mathbb{H}P^n$$

$$\blacktriangleright \ S^7 \to S^{15} \to S^8 \left(\frac{1}{2} \right)$$

Berger metrics $g_t = g_{hor} \oplus t g_{ver}$ (homogeneous)

Rescale vertical space by t > 0

Theorem (B.-Piccione, 2013)

The Berger spheres (S^{4n+3}, g_t) and (S^{15}, g_t) bifurcate infinitely many times as $t \searrow 0$.

Theorem (B.-Piccione, 2013) The Berger spheres (S^{4n+3}, g_t) and (S^{15}, g_t) bifurcate infinitely many times as $t \searrow 0$.

Theorem (B.-Piccione, 2013) The canonical variation $g_t = g_{hor} \oplus t g_{ver}$ of a homogeneous bundle $K/H \longrightarrow G/H \longrightarrow G/K$

with scal_{K/H} > 0 bifurcates infinitely many times as $t \searrow 0$.

Theorem (B.-Piccione, 2013) The Berger spheres (S^{4n+3}, g_t) and (S^{15}, g_t) bifurcate infinitely many times as $t \searrow 0$.

 $\begin{array}{l} \mbox{Theorem (B.-Piccione, 2013)}\\ \mbox{The canonical variation } g_t = g_{hor} \oplus t \: g_{ver} \mbox{ of a homogeneous bundle}\\ \mbox{K/H} \longrightarrow \mbox{G/H} \longrightarrow \mbox{G/K} \end{array}$

with scal_{K/H} > 0 bifurcates infinitely many times as $t\searrow 0$.

Theorem (Otoba-Petean, 2016)

The canonical variation $g_t = g_{hor} \oplus t g_{ver}$ of a harmonic Riemannian submersion with constant scalar curvature

$$F \longrightarrow M \longrightarrow B$$

with scal_F > 0 bifurcates infinitely many times as $t \searrow 0$.

Proof (of all above results).
$$\triangleright X = \{g \in [g_t] : Vol(M,g) = 1\}$$

►
$$X = \{g \in [g_t] : Vol(M, g) = 1\}$$

► $f_t(g) = \int_M scal_g vol_g$

• $df_t(g) = 0 \iff g$ has constant scalar curvature

 $df_t(g) = 0 \iff g \text{ has constant scalar curvature} \\ \iff g \text{ is a solution to the Yamabe problem}$

►
$$X = \{g \in [g_t] : Vol(M, g) = 1\}$$

► $f_t(g) = \int_M scal_g vol_g$

 $df_t(g) = 0 \iff g \text{ has constant scalar curvature} \\ \iff g \text{ is a solution to the Yamabe problem}$

$$\bullet i_{\text{Morse}}(g) = \# \left(\underbrace{\text{Spec}(\Delta_g)}_{l \to l} \cap \left(-\infty, \underbrace{\text{scal}_g / (n-1)}_{l \to l}\right) \right)$$

Laplace eigenvalues

"geometric potential"

•
$$X = \{g \in [g_t] : Vol(M, g) = 1\}$$

• $f_t(g) = \int_M scal_g vol_g$

▶ $df_t(g) = 0 \iff g$ has constant scalar curvature $\iff g$ is a solution to the Yamabe problem

$$i_{\text{Morse}}(g) = \# \left(\underbrace{\text{Spec}(\Delta_g)}_{i \in \mathbb{N}} \cap \left(-\infty, \underbrace{\text{scal}_g / (n-1)}_{i \in \mathbb{N}}\right) \right)$$

Laplace eigenvalues

"geometric potential"

► $i_{Morse}(g_t) \nearrow +\infty$ as g_t collapses

▶ $df_t(g) = 0 \iff g$ has constant scalar curvature $\iff g$ is a solution to the Yamabe problem

►
$$i_{Morse}(g) = #(\underbrace{Spec(\Delta_g)}_{Laplace \ eigenvalues} \cap (-\infty, \underbrace{scal_g / (n-1)}_{"geometric \ potential"}))$$

• $i_{Morse}(g_t) \nearrow +\infty$ as g_t collapses

▶ Krasnosel'skij's Theorem ⇒ Infinitely many bifurcations

► *M* closed manifold

► *M* closed manifold, e.g., $M = S^n$

- ► *M* closed manifold, e.g., $M = S^n$
- ► $\Lambda \subset M$ closed subset

- *M* closed manifold, e.g., $M = S^n$
- ▶ $\Lambda \subset M$ closed subset, e.g., $\Lambda = S^k$, $0 \le k < n$

- *M* closed manifold, e.g., $M = S^n$
- ▶ $\Lambda \subset M$ closed subset, e.g., $\Lambda = S^k$, $0 \le k < n$

Singular Yamabe Problem

Find complete metrics on $M \setminus \Lambda$ with scal = const. in a given conformal class.

- *M* closed manifold, e.g., $M = S^n$
- ▶ $\Lambda \subset M$ closed subset, e.g., $\Lambda = S^k$, $0 \le k < n$

Singular Yamabe Problem

Find complete metrics on $M \setminus \Lambda$ with scal = const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018) There are infinitely many solutions to the singular Yamabe problem on $S^n \setminus S^k$, $0 \le k \le \frac{n-2}{2}$.

• *M* closed manifold, e.g.,
$$M = S^n$$

▶ $\Lambda \subset M$ closed subset, e.g., $\Lambda = S^k$, $0 \le k < n$

Singular Yamabe Problem

Find complete metrics on $M \setminus \Lambda$ with scal = const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018) There are infinitely many solutions to the singular Yamabe problem on $S^n \setminus S^k$, $0 \le k \le \frac{n-2}{2}$.

• If $k > \frac{n-2}{2}$, no solutions exist (asymptotic maximum principle)

- *M* closed manifold, e.g., $M = S^n$
- ▶ $\Lambda \subset M$ closed subset, e.g., $\Lambda = S^k$, $0 \le k < n$

Singular Yamabe Problem

Find complete metrics on $M \setminus \Lambda$ with scal = const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018) There are infinitely many solutions to the singular Yamabe problem on $S^n \setminus S^k$, $0 \le k \le \frac{n-2}{2}$.

If k > n-2/2, no solutions exist (asymptotic maximum principle)
 If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]

• *M* closed manifold, e.g.,
$$M = S^n$$

▶ $\Lambda \subset M$ closed subset, e.g., $\Lambda = S^k$, $0 \le k < n$

Singular Yamabe Problem

Find complete metrics on $M \setminus \Lambda$ with scal = const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018) There are infinitely many solutions to the singular Yamabe problem on $S^n \setminus S^k$, $0 \le k \le \frac{n-2}{2}$.

If k > n-2/2, no solutions exist (asymptotic maximum principle)
 If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
 If 1 < k < n-2/2, other methods are needed [B.-Piccione, 2018]

Constant Q-curvature Problem Find complete conformal metrics on (M^n, g) such that

Constant Q-curvature Problem Find complete conformal metrics on (M^n, g) such that

$$Q_{\rm g} = \frac{1}{2(n-1)} \Delta_{\rm g} \operatorname{scal}_{\rm g} - \frac{2}{(n-2)^2} \left\| \operatorname{Ric}_{\rm g} \right\|^2 + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} \operatorname{scal}_{\rm g}^2$$

Constant Q-curvature Problem Find complete conformal metrics on (M^n, g) such that

$$Q_{\rm g} = \frac{1}{2(n-1)} \Delta_{\rm g} \operatorname{scal}_{\rm g} - \frac{2}{(n-2)^2} \left\| \operatorname{Ric}_{\rm g} \right\|^2 + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} \operatorname{scal}_{\rm g}^2 \equiv \operatorname{const.}$$

Constant Q-curvature Problem Find complete conformal metrics on (M^n, g) such that

$$Q_{\rm g} = \frac{1}{2(n-1)} \Delta_{\rm g} \operatorname{scal}_{\rm g} - \frac{2}{(n-2)^2} \left\| \operatorname{Ric}_{\rm g} \right\|^2 + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} \operatorname{scal}_{\rm g}^2 \equiv \operatorname{const.}$$

Theorem (B.-Piccione-Sire, 2018)

Hopf bundle	Infinitely many bifurcations as $t \searrow 0$	Infinitely many bifurcations as $t earrow +\infty$
$S^1 o S^{2q+1} o \mathbb{C}P^q$	no	if $q \ge 6$
$S^3 o S^{4q+3} o \mathbb{H}P^q$	$if \; q \geq 1$	if $q \ge 2$
$\mathbb{C}P^1 \to \mathbb{C}P^{2q+1} \to \mathbb{H}P^q$	$if \; q \geq 2$	if $q \ge 3$
$S^7 ightarrow S^{15} ightarrow S^8(1/2)$	yes	yes

Thank you for your attention!