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Buckling under compressive stress

w(x) = A sin(λx) + B cos(λx), λ =

√
P

E

Boundary conditions (pinned ends):
I Base: w(0) = 0 =⇒ B = 0

I Top: w(L) = 0 =⇒ A sin(λL) = 0 A 6=0
=⇒ λ =

nπ

L
, n ∈ N

Upshot:

I P <
π2E

L2
=⇒ λ =

√
P

E
<
π

L
=⇒ w(x) ≡ 0

Only trivial solution exists; no buckling!

I P ≥ n2π2E

L2
=⇒ wj(x) = A sin(λjx), λj =

jπ

L
, 0 ≤ j ≤ n

Nontrivial solutions appear; at least n buckling modes!
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Bifurcation phenomena
In Physics, Engineering, Finance, and other Applied Sciences:

I Buckling under compressive
stress;
Current oscillations in electric
circuits;
Taylor vortices and turbulence in
fluid dynamics;
Cahn–Hillard equation for phase
separation in fluids;
Ginzburg–Landau equation for
superconductors;
Competitive equilibria in
iterative auctions
...

Euler beam equation
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Bifurcation phenomena
In Mathematics:

A way to use instability of trivial solutions to produce
nontrivial solutions to differential equations.

I X = {“states”}, or {“configurations”}
I ft : X → R, 1-parameter family of functionals

ft(x) = energy of state x ∈ X with parameter t

Euler-Lagrange equation

dft(x) = 0

I xt trivial branch of solutions, dft(xt) = 0
I xt = “ground state”, typically minimizes ft(x)

Principle of Least Action: xt is state observed in nature
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Bifurcation

xt trivial branch
dft(xt) = 0

Definition
Bifurcation occurs at xt∗ if:
I ∃ tn, tn → t∗
I ∃ xn → xt∗ , dftn(xn) = 0,

xn 6= xtn

xt

xt∗

t∗ tn

xn

t

Equivalently, the Implicit Function Theorem fails at xt∗!

Thus, ker d2ft∗(xt∗) 6= {0} is a necessary condition
but it is not sufficient...
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but it is not sufficient...
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Sufficient condition for bifurcation

M. Morse
(1965)

Definition (Morse index)
iMorse(x) = # Spec

(
d2ft(x)

)
∩ (−∞, 0),

where Spec(A) = {Eigenvalues of A}.

!4Technical warnings (for experts):
• d2ft must be Fredholm of index 0
• xa and xb must be nondegenerate.



Sufficient condition for bifurcation

M. A. Krasnosel’skij
(1979)

Definition (Morse index)
iMorse(x) = # Spec

(
d2ft(x)

)
∩ (−∞, 0),

where Spec(A) = {Eigenvalues of A}.

Theorem (Krasnosel’skij)
If ∃ a < b such that

iMorse(xa) 6= iMorse(xb)

then ∃ t∗ ∈ (a, b) a bifurcation instant.

!4 Technical warnings (for experts):
• d2ft must be Fredholm (of index 0)
• xa and xb must be nondegenerate.
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Toy example from Calculus

I X = R2

I ft(x , y) = 1
2(x2 + y 4 − ty 2)

I dft(x , y) = (x , 2y 3− ty) = (0, 0)

I Trivial branch: (xt , yt) = (0, 0)

I d2ft(x , y) =

(
1 0
0 6y 2 − t

)

d2ft(0, 0) =

(
1 0
0 −t

)

I iMorse(0, 0) =

{
0, if t < 0

1, if t > 0

⇒ Bifurcation occurs at t∗ = 0!

(xt , yt)

t

(x , y)

Two bifurcating branches issue
from xt∗ = (0, 0)

(xt , yt) =
(
0,±

√
t/2
)
,

t > 0
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t < 0

t > 0

“Pitchfork bifurcation”

(xt , yt)

t

(x , y)

(xt , yt) trivial solutions

I If t < 0, stable
I If t > 0, unstable

(xt , yt) bifurcating solutions
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H. Poincaré. “L’Équilibre d’une masse fluide animée d’un mouvement de

rotation”. Acta Math., vol. 7, pp. 259-380, 1885.



PDE Application: Semilinear elliptic equations

(PDE)

∆u(x) + t f (u(x)) = 0 in Bn

αu(x)− t β
∂u

∂ν
(x) = 0 on ∂Bn

Look for radial solutions, i.e., u = u(r),
r = |x |, invariant under O(n) y Bn

(ODE)

{
u′′(r) + n−1

r
u′(r) + t f (u(r)) = 0

u′(0) = 0 = αu(1)− t βu′(1)

If f (u) satisfy certain conditions, e.g.,
f (u) = sin u, then ∃ ut solution ∀ t ≥ t0

Theorem (Smoller-Wasserman, 1990)
There are infinitely many bifurcations from ut
as t ↗ +∞ by nonradial solutions to (PDE).

J. Smoller

A. Wasserman
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Symmetry-breaking

Radial solutions ut

Bifurcating solutions
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Geometric Application I: Constant Mean Curvature
Σn ⊂ Rn+1

hypersurface

Principal curvatures:
κ1, κ2, . . . , κn.

Definition
Σn ⊂ Rn+1 has
Constant Mean
Curvature (CMC) if

κ1 + · · ·+ κn︸ ︷︷ ︸
H(Σ)

= c

I Soap bubbles in R3 are CMC surfaces: round spheres
I General isoperimetric regions have CMC boundary
I Center of Mass in General Relativity
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Roulette of a conic section

Theorem (Delaunay, 1841)
Surface of revolution

Σ ⊂ R3 has CMC
⇐⇒ Profile curve of Σ is the

roulette of a conic section.
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Delaunay

C.-E. Delaunay

Southeast side of the Eiffel tower:



Delaunay surfaces

Unduloid

Catenoid Nodoid

(ellipse)

(parabola) (hyperbola)

Sphere Cylinder
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Conics of varying eccentricity

ellipses
0 < e < 1

parabola
e = 1

hyperbolae
1 < e < +∞



Video credit: GeometrieWerkstatt Gallery
http://service.ifam.uni-hannover.de/~geometriewerkstatt/
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Bifurcating Nodoids

Theorem (Mazzeo-Pacard, 2002)
There are infinitely many families of CMC
surfaces in R3 that bifurcate from nodoids as
their eccentricity goes to +∞.

Symmetry-breaking:
Bifurcating surfaces are not of revolution!

Theorem (Koiso-Palmer-Piccione, 2015)
There are infinitely many families of CMC
surfaces in R3 with boundary on two fixed
coaxial circles that bifurcate from portions of
nodoids as their conormal angle varies.



Image credit: GeometrieWerkstatt Gallery
http://service.ifam.uni-hannover.de/~geometriewerkstatt/gallery/0003.html
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Image credit: Koiso-Palmer-Piccione, 2015
https://www.ime.usp.br/~piccione/Downloads/NodoidBifurcation_revisionACV.pdf

https://www.ime.usp.br/~piccione/Downloads/NodoidBifurcation_revisionACV.pdf


New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces

I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces

I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold

;
i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1].

E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



New Delaunay-type hypersurfaces
Plot twist:
I Bifurcate Delaunay surfaces into new CMC surfaces
I Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:
I (M , g) cohomogeneity one manifold;

i.e., G y M , with M/G = [0, 1]. E.g.,
Sn, CPn, HPn, Kervaire spheres, . . .

I Σt ⊂ M principal G-orbits, t ∈ [0, 1]
trivially have CMC due to symmetries

t

ΣtΣ0 Σ1

0 1
M/G

M

Theorem (B.-Piccione, 2016)
There are infinitely many families of CMC embeddings
bifurcating from Σt as t ↘ 0 and t ↗ 1.

Significance: These are Delaunay-type hypersurfaces in these spaces!



Example: Delaunay tori in S3

S3 =
{

(z ,w) ∈ C2 : |z |2 + |w |2 = 1
}

Σt =
{

(z ,w) ∈ S3 : |z | = cos
(
π
2 t
)
, |w | = sin

(
π
2 t
)}
, t ∈ [0, 1]

t ↘ 0

I Principal orbits (CMC tori):
Σt , t ∈ (0, 1)

H(Σt) = tan
(
π
2 t
)
− cot

(
π
2 t
)

I Singular orbits (circles): Σ0, Σ1

I Delaunay-type tori bifurcate
from Σt as t ↘ 0 and t ↗ 1
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Proof (of all above results).

I X =
{

Σ ↪→ M
}

I fH(Σ) = Area(Σ) + H Vol(Σ)

I dfH(Σ) = 0 ⇐⇒ Σ has constant mean curvature H

I iMorse(Σ) = #
(

Spec(∆Σ)︸ ︷︷ ︸
Laplace eigenvalues

∩ (−∞,Ric(ν) + ‖AΣ‖2︸ ︷︷ ︸
“geometric potential”

)
)

I iMorse(Σt)↗ +∞ as Σt collapses

I Krasnosel’skij’s Theorem =⇒ Infinitely many bifurcations
�
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Geometric Application II: Conformal Deformations

Uniformization Theorem (Poincaré 1882; Klein 1883)
Every closed surface

admits a metric of constant curvature
which can be achieved with a conformal deformation.

Genus 0 Genus 1 Genus ≥ 2
K = 1 K = 0 K = −1

Image credit: Thomas Krämer
https://www2.mathematik.hu-berlin.de/~kraemeth/riemann-surfaces/index.html
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Conformal Deformations

I Preserves angles (but not distances)

I Encoded by a positive function

g up g, u > 0

I Conformal class of metric g:

[g] =
{
up g : u > 0

}

∼= C∞+ (M)
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Yamabe problem: “Uniformization” for n ≥ 3
(M , g)

n-manifold

 
(
M , u

4
n−2 g

)
with

constant scalar curvature

−4 n−1
n−2 ∆gu + scalg u = c u

n+2
n−2

I Yamabe (1960)
I Trudinger (1968)
I Aubin (1976)
I Schoen (1984)

H. Yamabe
(1923 – 1960)

Theorem
Every (M , g) admits a conformal deformation

(
M , u

4
n−2 g

)
with constant scalar curvature.

Is it unique?
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Yamabe problem: non-uniqueness results

(M , g) homogeneous
M = G/H

=⇒ scalg = const
(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989)
The trivial (product) solution to the Yamabe problem on
Sn × S1(t) bifurcates infinitely many times as t ↘ 0.

Theorem (Lima-Piccione-Zedda, 2012)

I (M , gM) one of Sn,RPn,CPn,HPn,CaP2 (CROSS)
I (N , gN) closed manifold, scalN > 0 constant
I gt = gM ⊕ t gN trivial solution

Then
(
M × N , gt

)
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gt = ghor ⊕ t gver
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Yamabe problem: non-uniqueness results
Theorem (B.-Piccione, 2013)
The Berger spheres (S4n+3, gt) and (S15, gt) bifurcate infinitely
many times as t ↘ 0.

Theorem (B.-Piccione, 2013)
The canonical variation gt = ghor ⊕ t gver of a homogeneous bundle

K/H −→ G/H −→ G/K
with scalK/H > 0 bifurcates infinitely many times as t ↘ 0.

Theorem (Otoba-Petean, 2016)
The canonical variation gt = ghor ⊕ t gver of a harmonic
Riemannian submersion with constant scalar curvature

F −→ M −→ B

with scalF > 0 bifurcates infinitely many times as t ↘ 0.
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Proof (of all above results).
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I ft(g) =

∫
M
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⇐⇒ g is a solution to the Yamabe problem

I iMorse(g) = #
(

Spec(∆g)︸ ︷︷ ︸
Laplace eigenvalues

∩ (−∞, scalg /(n − 1)︸ ︷︷ ︸
“geometric potential”

)
)

I iMorse(gt)↗ +∞ as gt collapses

I Krasnosel’skij’s Theorem =⇒ Infinitely many bifurcations
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A singular cousin

I M closed manifold

, e.g., M = Sn

I Λ ⊂ M closed subset

, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset

, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset

, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]

I If 1 < k < n−2
2 , other methods are needed [B.-Piccione, 2018]



A singular cousin

I M closed manifold, e.g., M = Sn

I Λ ⊂ M closed subset, e.g., Λ = Sk , 0 ≤ k < n

Singular Yamabe Problem
Find complete metrics on M \ Λ with scal = const. in a given
conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem
on Sn \ Sk , 0 ≤ k ≤ n−2

2 .

I If k > n−2
2 , no solutions exist (asymptotic maximum principle)

I If k = 1, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
I If 1 < k < n−2

2 , other methods are needed [B.-Piccione, 2018]



A fourth-order cousin

Constant Q-curvature Problem
Find complete conformal metrics on (Mn, g) such that

Qg = 1
2(n−1)

∆g scalg− 2
(n−2)2

∥∥Ricg
∥∥2 + n3−4n2+16n−16

8(n−1)2(n−2)2
scal2g≡ const.

Theorem (B.-Piccione-Sire, 2018)

Hopf bundle
Infinitely many
bifurcations
as t ↘ 0

Infinitely many
bifurcations
as t ↗ +∞

S1 → S2q+1 → CPq no if q ≥ 6

S3 → S4q+3 → HPq if q ≥ 1 if q ≥ 2

CP1 → CP2q+1 → HPq if q ≥ 2 if q ≥ 3

S7 → S15 → S8(1/2) yes yes
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Thank you for
your attention!
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