How to find non-trivial solutions out of trivial ones

Renato G. Bettiol

How to find non-trivial solutions out of trivial ones?

How to find non-trivial solutions out of trivial ones?

Of course, I have no clue ...

How to find non-trivial solutions out of trivial ones?

Of course, I have no clue ...
... but try deforming trivial solutions until they become very unstable

How to find non-trivial solutions out of trivial ones?

Of course, I have no clue ...
... but try deforming trivial solutions until they become very unstable and that might give you new solutions!

Buckling under compressive stress

Image credit: Paul Rumbach (University of Notre Dame)
https://www3.nd.edu/~prumbach/AME20217/B4/index.html

Buckling under compressive stress

Image credit: Paul Rumbach (University of Notre Dame)
https://www3.nd.edu/~prumbach/AME20217/B4/index.html

Buckling under compressive stress

Euler (1757)

$$
w(x)=A \sin (\lambda x)+B \cos (\lambda x), \quad \lambda=\sqrt{\frac{P}{E}}
$$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x)+B \cos (\lambda x), \quad \lambda=\sqrt{\frac{P}{E}}
$$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x)+B \cos (\lambda x), \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x)+B \cos (\lambda x), \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x)+B \cos (\lambda x), \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0 \stackrel{A \neq 0}{\Longrightarrow} \lambda=\frac{n \pi}{L}, n \in \mathbb{N}$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0 \stackrel{A \neq 0}{\Longrightarrow} \lambda=\frac{n \pi}{L}, n \in \mathbb{N}$

Upshot:

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0 \stackrel{A \neq 0}{\Longrightarrow} \lambda=\frac{n \pi}{L}, n \in \mathbb{N}$

Upshot:

- $P<\frac{\pi^{2} E}{L^{2}}$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0 \stackrel{A \neq 0}{\Longrightarrow} \lambda=\frac{n \pi}{L}, n \in \mathbb{N}$

Upshot:
$>P<\frac{\pi^{2} E}{L^{2}} \Longrightarrow \lambda=\sqrt{\frac{P}{E}}<\frac{\pi}{L}$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0 \stackrel{A \neq 0}{\Longrightarrow} \lambda=\frac{n \pi}{L}, n \in \mathbb{N}$

Upshot:
-P< $\frac{\pi^{2} E}{L^{2}} \Longrightarrow \lambda=\sqrt{\frac{P}{E}}<\frac{\pi}{L} \Longrightarrow w(x) \equiv 0$
Only trivial solution exists; no buckling!

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x) \quad \lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0 \stackrel{A \neq 0}{\Longrightarrow} \lambda=\frac{n \pi}{L}, n \in \mathbb{N}$

Upshot:
-P< $\frac{\pi^{2} E}{L^{2}} \Longrightarrow \lambda=\sqrt{\frac{P}{E}}<\frac{\pi}{L} \Longrightarrow w(x) \equiv 0$
Only trivial solution exists; no buckling!

- $P \geq \frac{n^{2} \pi^{2} E}{L^{2}}$

Buckling under compressive stress

$$
w(x)=A \sin (\lambda x)
$$

$$
\lambda=\sqrt{\frac{P}{E}}
$$

Boundary conditions (pinned ends):

- Base: $w(0)=0 \Longrightarrow B=0$
- Top: $w(L)=0 \Longrightarrow A \sin (\lambda L)=0 \stackrel{A \neq 0}{\Longrightarrow} \lambda=\frac{n \pi}{L}, n \in \mathbb{N}$ Upshot:
- $P<\frac{\pi^{2} E}{L^{2}} \Longrightarrow \lambda=\sqrt{\frac{P}{E}}<\frac{\pi}{L} \Longrightarrow w(x) \equiv 0$

Only trivial solution exists; no buckling!
-P $P \frac{n^{2} \pi^{2} E}{L^{2}} \Longrightarrow w_{j}(x)=A \sin \left(\lambda_{j} x\right), \lambda_{j}=\frac{j \pi}{L}, 0 \leq j \leq n$
Nontrivial solutions appear; at least n buckling modes!

Increasing the load P

Solutions to $E \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}+P w=0$ with $0 \leq P<\frac{\pi^{2} E}{L^{2}}$

w_{0}

Increasing the load P

Solutions to $E \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}+P w=0$ with $\frac{\pi^{2} E}{L^{2}} \leq P<\frac{2^{2} \pi^{2} E}{L^{2}}$

x
w_{0}, w_{1}

Increasing the load P

Solutions to $E \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}+P w=0$ with $\frac{2^{2} \pi^{2} E}{L^{2}} \leq P<\frac{3^{2} \pi^{2} E}{L^{2}}$

w_{0}, w_{1}, w_{2}

Increasing the load P

Solutions to $E \frac{\mathrm{~d}^{2} w}{\mathrm{dx}}+P w=0$ with $\frac{3^{2} \pi^{2} E}{L^{2}} \leq P<\frac{4^{2} \pi^{2} E}{L^{2}}$

$w_{0}, w_{1}, w_{2}, w_{3}$

Increasing the load P

Solutions to $E \frac{\mathrm{~d}^{2} w}{\mathrm{dx}}+P w=0$ with $\frac{4^{2} \pi^{2} E}{L^{2}} \leq P<\frac{5^{2} \pi^{2} E}{L^{2}}$

Increasing the load P

Solutions to $E \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}+P w=0$ with $\frac{5^{2} \pi^{2} E}{L^{2}} \leq P<\frac{6^{2} \pi^{2} E}{L^{2}}$
w

$w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$

Bifurcation

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

H. Poincaré

Bifurcation

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

> "Topological change in the structure of a dynamical system when a parameter crosses a bifurcation value"
H. Poincaré

Bifurcation

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

> "Topological change in the structure of a dynamical system when a parameter crosses a bifurcation value"

Parameter: P (load)

H. Poincaré

Bifurcation

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

> "Topological change in the structure of a dynamical system when a parameter crosses a bifurcation value"

Parameter: P (load)
Bifurcation values: $\frac{n^{2} \pi^{2} E}{L^{2}}$
H. Poincaré

Bifurcation

Il pourra d'ailleurs arriver qu'une mème forme d'équilibre appartienne à la fois à deux ou plusieurs séries linéaires. Nous dirons alors que c'est une forme de bifurcation. On peut en effet, pour une valeur de y infiniment voisine de celle qui correspond ì cette forme, trouver deux formes d'équilibre qui différent infiniment peu de la forme de bifurcation.

Il nout arrivor éralomont ame danv sórios linéaives de formes d'énui-

Bifurcation phenomena

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;

Euler beam equation

$$
E \frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}+P w=0
$$

Bifurcation phenomena

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;

Kirchhoff voltage law

$$
\frac{\mathrm{d}^{2} I}{\mathrm{~d} t^{2}}+\frac{R}{L} \frac{\mathrm{~d} I}{\mathrm{~d} t}+\frac{1}{L C} I=0
$$

Bifurcation phenomena

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor-Couette vortices and turbulence in fluid dynamics;

Navier-Stokes equation

$$
\rho \frac{\partial u}{\partial t}=-\nabla p+\nabla \cdot \tau+\rho g
$$

Bifurcation phenomena

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor-Couette vortices and turbulence in fluid dynamics;
- Cahn-Hillard equation for phase separation in fluids;

$$
\frac{\partial c}{\partial t}=d \nabla^{2}\left(c^{3}-c-\gamma \nabla^{2} c\right)
$$

Bifurcation phenomena

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor-Couette vortices and turbulence in fluid dynamics;
- Cahn-Hillard equation for phase separation in fluids;
- Ginzburg-Landau equation for superconductors;

$$
\begin{aligned}
& \quad \alpha \psi+\beta|\psi|^{2} \psi \\
& +\frac{1}{2 m}(-i \hbar \nabla-2 e A)^{2} \psi=0 \\
& j=\frac{2 e}{m} \operatorname{Re}\left(\psi^{*}(-i \hbar \nabla-2 e A) \psi\right) \\
& \quad \nabla \times B=\mu_{0} j
\end{aligned}
$$

Bifurcation phenomena

In Physics, Engineering, Finance, and other Applied Sciences:

- Buckling under compressive stress;
- Current oscillations in electric circuits;
- Taylor-Couette vortices and turbulence in fluid dynamics;
- Cahn-Hillard equation for phase separation in fluids;
- Ginzburg-Landau equation for superconductors;
- Competitive equilibria in iterative auctions

Bifurcation phenomena

In Mathematics:

Bifurcation phenomena

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

Bifurcation phenomena

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

- $X=\{$ "states" $\}$, or \{"configurations" $\}$

Bifurcation phenomena

In Mathematics:

A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

- $X=\{$ "states" $\}$, or \{"configurations" $\}$
- $f_{t}: X \rightarrow \mathbb{R}$, 1-parameter family of functionals

Bifurcation phenomena

In Mathematics:
A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

- $X=\{$ "states" $\}$, or $\{$ "configurations" $\}$
- $f_{t}: X \rightarrow \mathbb{R}$, 1-parameter family of functionals $f_{t}(x)=$ energy of state $x \in X$ with parameter t

Bifurcation phenomena

In Mathematics:
A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

- $X=\{$ "states" $\}$, or $\{$ "configurations" $\}$
- $f_{t}: X \rightarrow \mathbb{R}$, 1-parameter family of functionals $f_{t}(x)=$ energy of state $x \in X$ with parameter t

Euler-Lagrange equation

$$
\mathrm{d} f_{t}(x)=0
$$

Bifurcation phenomena

 In Mathematics:A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

- $X=\{$ "states" $\}$, or \{"configurations" $\}$
- $f_{t}: X \rightarrow \mathrm{R}$, 1-parameter family of functionals $f_{t}(x)=$ energy of state $x \in X$ with parameter t

Euler-Lagrange equation

$$
\mathrm{d} f_{t}(x)=0
$$

- x_{t} trivial branch of solutions, $\mathrm{d} f_{t}\left(x_{t}\right)=0$

Bifurcation phenomena

 In Mathematics:A way to use instability of trivial solutions to produce nontrivial solutions to differential equations.

- $X=\{$ "states" $\}$, or \{"configurations" $\}$
- $f_{t}: X \rightarrow \mathbb{R}$, 1-parameter family of functionals $f_{t}(x)=$ energy of state $x \in X$ with parameter t

Euler-Lagrange equation

$$
\mathrm{d} f_{t}(x)=0
$$

- x_{t} trivial branch of solutions, $\mathrm{d} f_{t}\left(x_{t}\right)=0$
- $x_{t}=$ "ground state", typically minimizes $f_{t}(x)$

Principle of Least Action: x_{t} is state observed in nature

Bifurcation

x_{t} trivial branch
$$
\mathrm{d} f_{t}\left(x_{t}\right)=0
$$

Bifurcation

x_{t} trivial branch

$$
\mathrm{d} f_{t}\left(x_{t}\right)=0
$$

Definition
Bifurcation occurs at $x_{t_{*}}$ if:

Bifurcation

$$
\begin{aligned}
& x_{t} \text { trivial branch } \\
& \mathrm{d} f_{t}\left(x_{t}\right)=0
\end{aligned}
$$

Definition
Bifurcation occurs at $x_{t_{*}}$ if:

- $\exists t_{n}, t_{n} \rightarrow t_{*}$

Bifurcation

$$
\begin{aligned}
& x_{t} \text { trivial branch } \\
& \mathrm{d} f_{t}\left(x_{t}\right)=0
\end{aligned}
$$

Definition
Bifurcation occurs at $x_{t_{*}}$ if:

- $\exists t_{n}, t_{n} \rightarrow t_{*}$
$-\exists x_{n} \rightarrow x_{t_{*}}, \mathrm{~d} f_{t_{n}}\left(x_{n}\right)=0$,
 $x_{n} \neq x_{t_{n}}$

Bifurcation

x_{t} trivial branch

$$
\mathrm{d} f_{t}\left(x_{t}\right)=0
$$

Definition
Bifurcation occurs at $x_{t_{*}}$ if:

- $\exists t_{n}, t_{n} \rightarrow t_{*}$
$-\exists x_{n} \rightarrow x_{t_{*}}, \mathrm{~d} f_{t_{n}}\left(x_{n}\right)=0$,

Equivalently, the Implicit Function Theorem fails at $x_{t_{*}}$!

Bifurcation

x_{t} trivial branch

$$
\mathrm{d} f_{t}\left(x_{t}\right)=0
$$

Definition
Bifurcation occurs at $x_{t_{*}}$ if:
$-\exists t_{n}, t_{n} \rightarrow t_{*}$
$-\exists x_{n} \rightarrow x_{t_{*}}, \mathrm{~d} f_{t_{n}}\left(x_{n}\right)=0$,

Equivalently, the Implicit Function Theorem fails at $x_{t_{*}}$!
Thus, $\operatorname{ker} \mathrm{d}^{2} f_{t_{*}}\left(x_{t_{*}}\right) \neq\{0\}$ is a necessary condition

Bifurcation

x_{t} trivial branch

$$
\mathrm{d} f_{t}\left(x_{t}\right)=0
$$

Definition

Bifurcation occurs at $x_{t_{*}}$ if:

- $\exists t_{n}, t_{n} \rightarrow t_{*}$
$-\exists x_{n} \rightarrow x_{t_{*}}, \mathrm{~d} f_{t_{n}}\left(x_{n}\right)=0$,
 $x_{n} \neq x_{t_{n}}$

Equivalently, the Implicit Function Theorem fails at $x_{t_{*}}$!
Thus, $\operatorname{ker} \mathrm{d}^{2} f_{t_{*}}\left(x_{t_{*}}\right) \neq\{0\}$ is a necessary condition but it is not sufficient...

Sufficient condition for bifurcation

Definition (Morse index) $i_{\text {Morse }}(x)=\# \operatorname{Spec}\left(\mathrm{~d}^{2} f_{t}(x)\right) \cap(-\infty, 0)$, where $\operatorname{Spec}(A)=\{$ Eigenvalues of $A\}$.

M. Morse
(1965)

Sufficient condition for bifurcation

Definition (Morse index)
imorse $(x)=\# \operatorname{Spec}\left(\mathrm{~d}^{2} f_{t}(x)\right) \cap(-\infty, 0)$, where $\operatorname{Spec}(A)=\{$ Eigenvalues of $A\}$.

Theorem (Krasnosel'skij) If $\exists a<b$ such that

$$
i_{\text {Morse }}\left(x_{a}\right) \neq i_{\text {Morse }}\left(x_{b}\right)
$$

then $\exists t_{*} \in(a, b)$ a bifurcation instant.
M. A. Krasnosel'skij
(1979)

Sufficient condition for bifurcation

M. A. Krasnosel'skij (1979)

Definition (Morse index) $i_{\text {Morse }}(x)=\# \operatorname{Spec}\left(\mathrm{~d}^{2} f_{t}(x)\right) \cap(-\infty, 0)$, where $\operatorname{Spec}(A)=\{$ Eigenvalues of $A\}$.

Theorem (Krasnosel'skij) If $\exists a<b$ such that

$$
i_{\text {Morse }}\left(x_{a}\right) \neq i_{\text {Morse }}\left(x_{b}\right)
$$

then $\exists t_{*} \in(a, b)$ a bifurcation instant.
\} Technical warnings (for experts):

- $\mathrm{d}^{2} f_{t}$ must be Fredholm (of index 0)
- x_{a} and x_{b} must be nondegenerate.

Toy example from Calculus

- $X=\mathbb{R}^{2}$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0)$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
(x, y)
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0) \quad\left(x_{t}, y_{t}\right)$
- Trivial branch: $\left(x_{t}, y_{t}\right)=(0,0)$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
(x, y)
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0) \quad\left(x_{t}, y_{t}\right)$
- Trivial branch: $\left(x_{t}, y_{t}\right)=(0,0)$
- $\mathrm{d}^{2} f_{t}(x, y)=\left(\begin{array}{cc}1 & 0 \\ 0 & 6 y^{2}-t\end{array}\right)$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
(x, y)
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0) \quad\left(x_{t}, y_{t}\right)$
- Trivial branch: $\left(x_{t}, y_{t}\right)=(0,0)$
- $\mathrm{d}^{2} f_{t}(x, y)=\left(\begin{array}{cc}1 & 0 \\ 0 & 6 y^{2}-t\end{array}\right)$
$\mathrm{d}^{2} f_{t}(0,0)=\left(\begin{array}{cc}1 & 0 \\ 0 & -t\end{array}\right)$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
(x, y)
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0) \quad\left(x_{t}, y_{t}\right)$
- Trivial branch: $\left(x_{t}, y_{t}\right)=(0,0)$
- $\mathrm{d}^{2} f_{t}(x, y)=\left(\begin{array}{cc}1 & 0 \\ 0 & 6 y^{2}-t\end{array}\right)$
$\mathrm{d}^{2} f_{t}(0,0)=\left(\begin{array}{cc}1 & 0 \\ 0 & -t\end{array}\right)$
- $i_{\text {Morse }}(0,0)=\left\{\begin{array}{l}0, \text { if } t<0\end{array}\right.$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
(x, y)
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0) \quad\left(x_{t}, y_{t}\right)$
- Trivial branch: $\left(x_{t}, y_{t}\right)=(0,0)$
- $\mathrm{d}^{2} f_{t}(x, y)=\left(\begin{array}{cc}1 & 0 \\ 0 & 6 y^{2}-t\end{array}\right)$
$\mathrm{d}^{2} f_{t}(0,0)=\left(\begin{array}{cc}1 & 0 \\ 0 & -t\end{array}\right)$
- $i_{\text {Morse }}(0,0)=\left\{\begin{array}{l}0, \text { if } t<0 \\ 1, \text { if } t>0\end{array}\right.$

Toy example from Calculus

- $X=\mathbb{R}^{2}$
(x, y)
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0) \quad\left(x_{t}, y_{t}\right)$
- Trivial branch: $\left(x_{t}, y_{t}\right)=(0,0)$
- $\mathrm{d}^{2} f_{t}(x, y)=\left(\begin{array}{cc}1 & 0 \\ 0 & 6 y^{2}-t\end{array}\right)$
$\mathrm{d}^{2} f_{t}(0,0)=\left(\begin{array}{cc}1 & 0 \\ 0 & -t\end{array}\right)$
- $i_{\text {Morse }}(0,0)=\left\{\begin{array}{l}0, \text { if } t<0 \\ 1, \text { if } t>0\end{array}\right.$
\Rightarrow Bifurcation occurs at $t_{*}=0$!

Toy example from Calculus

- $X=R^{2}$
- $f_{t}(x, y)=\frac{1}{2}\left(x^{2}+y^{4}-t y^{2}\right)$
- $\mathrm{d} f_{t}(x, y)=\left(x, 2 y^{3}-t y\right)=(0,0) \quad\left(x_{t}, y_{t}\right)$
- Trivial branch: $\left(x_{t}, y_{t}\right)=(0,0)$
$-\mathrm{d}^{2} f_{t}(x, y)=\left(\begin{array}{cc}1 & 0 \\ 0 & 6 y^{2}-t\end{array}\right)$
$\mathrm{d}^{2} f_{t}(0,0)=\left(\begin{array}{cc}1 & 0 \\ 0 & -t\end{array}\right)$
$-i_{\text {Morse }}(0,0)= \begin{cases}0, & \text { if } t<0 \\ 1, & \text { if } t>0\end{cases}$
\Rightarrow Bifurcation occurs at $t_{*}=0$!
Two bifurcating branches issue

$$
\text { from } x_{t_{*}}=(0,0)
$$

$$
\begin{array}{r}
\left(x_{t}, y_{t}\right)=(0, \pm \sqrt{t / 2}) \\
t>0
\end{array}
$$

"Pitchfork bifurcation"

$\left(x_{t}, y_{t}\right)$ trivial solutions
$\left(x_{t}, y_{t}\right)$ bifurcating solutions

$\left(x_{t}, y_{t}\right)$ trivial solutions

- If $t<0$, stable
$\left(x_{t}, y_{t}\right)$ bifurcating solutions

H. Poincaré. "L'Équilibre d'une masse fluide animée d'un mouvement de rotation". Acta Math., vol. 7, pp. 259-380, 1885.

Avant de démontrer ce résultat général, donnons quelques exemples. Soit:

$$
F=A x_{1}^{2}+\frac{1}{3} x_{2}^{3}-y^{2} x_{2}-x y x_{2} .
$$

Il vient pour les équations d'équilibre:

$$
x_{1}=0, \quad x_{2}= \pm \sqrt{y^{2}+u y}
$$

d'où

$$
\Delta=4 A x_{2}= \pm 4 A \sqrt{y^{2}+\alpha y} .
$$

PDE Application: Semilinear elliptic equations
(PDE) $\begin{cases}\Delta u(x)+t f(u(x))=0 & \text { in } B^{n} \\ \alpha u(x)-t \beta \frac{\partial u}{\partial \nu}(x)=0 & \text { on } \partial B^{n}\end{cases}$

PDE Application: Semilinear elliptic equations

(PDE) $\left\{\begin{array}{l}\Delta u(x)+t f(u(x))=0 \text { in } B^{n} \\ \alpha u(x)-t \beta \frac{\partial u}{\partial \nu}(x)=0 \text { on } \partial B^{n}\end{array}\right.$
Look for radial solutions, i.e., $u=u(r)$, $r=|x|$, invariant under $\mathrm{O}(n) \curvearrowright B^{n}$

PDE Application: Semilinear elliptic equations

(PDE) $\begin{cases}\Delta u(x)+t f(u(x))=0 & \text { in } B^{n} \\ \alpha u(x)-t \beta \frac{\partial u}{\partial \nu}(x)=0 & \text { on } \partial B^{n}\end{cases}$
Look for radial solutions, i.e., $u=u(r)$, $r=|x|$, invariant under $O(n) \curvearrowright B^{n}$
$(\mathrm{ODE})\left\{\begin{array}{l}u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+t f(u(r))=0 \\ u^{\prime}(0)=0=\alpha u(1)-t \beta u^{\prime}(1)\end{array}\right.$

PDE Application: Semilinear elliptic equations

(PDE) $\left\{\begin{array}{l}\Delta u(x)+t f(u(x))=0 \text { in } B^{n} \\ \alpha u(x)-t \beta \frac{\partial u}{\partial \nu}(x)=0 \text { on } \partial B^{n}\end{array}\right.$
Look for radial solutions, i.e., $u=u(r)$, $r=|x|$, invariant under $O(n) \curvearrowright B^{n}$
$(\mathrm{ODE})\left\{\begin{array}{l}u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+t f(u(r))=0 \\ u^{\prime}(0)=0=\alpha u(1)-t \beta u^{\prime}(1)\end{array}\right.$
If $f(u)$ satisfy certain conditions, e.g.,
$f(u)=\sin u$, then $\exists u_{t}$ solution $\forall t \geq t_{0}$

PDE Application: Semilinear elliptic equations

(PDE) $\begin{cases}\Delta u(x)+t f(u(x))=0 & \text { in } B^{n} \\ \alpha u(x)-t \beta \frac{\partial u}{\partial \nu}(x)=0 & \text { on } \partial B^{n}\end{cases}$
Look for radial solutions, i.e., $u=u(r)$, $r=|x|$, invariant under $O(n) \curvearrowright B^{n}$
$(\mathrm{ODE})\left\{\begin{array}{l}u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+t f(u(r))=0 \\ u^{\prime}(0)=0=\alpha u(1)-t \beta u^{\prime}(1)\end{array}\right.$
If $f(u)$ satisfy certain conditions, e.g., $f(u)=\sin u$, then $\exists u_{t}$ solution $\forall t \geq t_{0}$
Theorem (Smoller-Wasserman, 1990)
There are infinitely many bifurcations from u_{t} as $t \nearrow+\infty$ by nonradial solutions to (PDE).
J. Smoller

A. Wasserman

Symmetry-breaking

Radial solutions u_{t}

Symmetry-breaking

Radial solutions u_{t}

Bifurcating solutions

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
κ_{1}

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
κ_{1}, κ_{2}

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$.

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$.
Definition
$\Sigma^{n} \subset \mathbb{R}^{n+1}$ has
Constant Mean
Curvature (CMC) if

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$.
Definition
$\Sigma^{n} \subset \mathbb{R}^{n+1}$ has
Constant Mean
Curvature (CMC) if

$$
\underbrace{\kappa_{1}+\cdots+\kappa_{n}}_{H(\Sigma)}=c
$$

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$.
Definition
$\Sigma^{n} \subset \mathbb{R}^{n+1}$ has
Constant Mean
Curvature (CMC) if

$$
\underbrace{\kappa_{1}+\cdots+\kappa_{n}}_{H(\Sigma)}=c
$$

- Soap bubbles in \mathbb{R}^{3} are CMC surfaces: round spheres

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$.
Definition
$\Sigma^{n} \subset \mathbb{R}^{n+1}$ has
Constant Mean
Curvature (CMC) if

$$
\underbrace{\kappa_{1}+\cdots+\kappa_{n}}_{H(\Sigma)}=c
$$

- Soap bubbles in \mathbb{R}^{3} are CMC surfaces: round spheres
- General isoperimetric regions have CMC boundary

Geometric Application I: Constant Mean Curvature $\Sigma^{n} \subset \mathbb{R}^{n+1}$
hypersurface
Principal curvatures:
$\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}$.
Definition
$\Sigma^{n} \subset \mathbb{R}^{n+1}$ has
Constant Mean
Curvature (CMC) if

$$
\underbrace{\kappa_{1}+\cdots+\kappa_{n}}_{H(\Sigma)}=c
$$

- Soap bubbles in \mathbb{R}^{3} are CMC surfaces: round spheres
- General isoperimetric regions have CMC boundary
- Center of Mass in General Relativity

Roulette of a conic section

Roulette of a conic section

Roulette of a conic section

Roulette of a conic section

Roulette of a conic section

Roulette of a conic section

Theorem (Delaunay, 1841)
Surface of revolution
$\Sigma \subset \mathbb{R}^{3}$ has CMC $\Longleftrightarrow \quad \begin{gathered}\text { Profile curve of } \sum \text { is the } \\ \text { roulette of a conic section. }\end{gathered}$

Delaunay

C.-E. Delaunay

Southeast side of the Eiffel tower:

Delaunay surfaces

Unduloid
(ellipse)

Delaunay surfaces

Unduloid (ellipse)

Catenoid
(parabola)

Delaunay surfaces

Unduloid (ellipse)

Catenoid
(parabola)

Nodoid (hyperbola)

Delaunay surfaces

Unduloid (ellipse)

Catenoid
(parabola)

Nodoid (hyperbola)

Sphere

Delaunay surfaces

Unduloid (ellipse)

Catenoid
(parabola)

Nodoid (hyperbola)

Cylinder

Conics of varying eccentricity

ellipses
$0<e<1$
parabola
$e=1$
hyperbolae
$1<e<+\infty$

Video credit: GeometrieWerkstatt Gallery
http://service.ifam.uni-hannover.de/~geometriewerkstatt/

Bifurcating Nodoids

Theorem (Mazzeo-Pacard, 2002)
There are infinitely many families of CMC surfaces in \mathbb{R}^{3} that bifurcate from nodoids as their eccentricity goes to $+\infty$.

Image credit: GeometrieWerkstatt Gallery
http://service.ifam.uni-hannover.de/~geometriewerkstatt/gallery/0003.html

Image credit: GeometrieWerkstatt Gallery
http://service.ifam.uni-hannover.de/~geometriewerkstatt/gallery/0003.html

Bifurcating Nodoids

Theorem (Mazzeo-Pacard, 2002)
There are infinitely many families of CMC surfaces in \mathbb{R}^{3} that bifurcate from nodoids as their eccentricity goes to $+\infty$.

Bifurcating Nodoids

Theorem (Mazzeo-Pacard, 2002)
There are infinitely many families of CMC surfaces in \mathbb{R}^{3} that bifurcate from nodoids as their eccentricity goes to $+\infty$.

Symmetry-breaking:
Bifurcating surfaces are not of revolution!

Bifurcating Nodoids

Theorem (Mazzeo-Pacard, 2002)
There are infinitely many families of CMC surfaces in \mathbb{R}^{3} that bifurcate from nodoids as their eccentricity goes to $+\infty$.

Symmetry-breaking:
Bifurcating surfaces are not of revolution!
Theorem (Koiso-Palmer-Piccione, 2015)
There are infinitely many families of CMC surfaces in \mathbb{R}^{3} with boundary on two fixed coaxial circles that bifurcate from portions of nodoids as their conormal angle varies.

Image credit: Koiso-Palmer-Piccione, 2015
https://www.ime.usp.br/~piccione/Downloads/NodoidBifurcation_revisionACV.pdf

New Delaunay-type hypersurfaces

Plot twist:

- Bifurcate Delaunay surfaces into new CMC surfaces

New Delaunay-type hypersurfaces

Plot twist:

- Bifureate Detauntry surfaces into mev CNAC surfaces

New Delaunay-type hypersurfaces

Plot twist:

- Bifureate Detaunay surfaces into mew ende surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces!

New Delaunay-type hypersurfaces

Plot twist:

- Bifureat Delaurray surfaces mencer surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:

- (M, g) cohomogeneity one manifold

New Delaunay-type hypersurfaces

Plot twist:

- Bifureat Delaurray surfaces mencer surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:

- (M, g) cohomogeneity one manifold; i.e., $G \curvearrowright M$, with $M / G=[0,1]$.

New Delaunay-type hypersurfaces

Plot twist:

- Bifureat Delaurray surfaces mencer surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:

- (M, g) cohomogeneity one manifold; i.e., $\mathrm{G} \curvearrowright M$, with $M / \mathrm{G}=[0,1]$. E.g., $S^{n}, \mathbb{C} P^{n}, \mathbb{H} P^{n}$, Kervaire spheres, \ldots

New Delaunay-type hypersurfaces

Plot twist:

- Bifureat Delaurray surfaces mencer surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:

- (M, g) cohomogeneity one manifold; i.e., $\mathrm{G} \curvearrowright M$, with $M / \mathrm{G}=[0,1]$. E.g., $S^{n}, \mathbb{C} P^{n}, \mathbb{H} P^{n}$, Kervaire spheres, \ldots
- $\Sigma_{t} \subset M$ principal G-orbits, $t \in[0,1]$ trivially have CMC due to symmetries

New Delaunay-type hypersurfaces

Plot twist:

- Bifureate Delauray surfaes surnes
- Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:

- $(M, \mathrm{~g})$ cohomogeneity one manifold; i.e., $G \curvearrowright M$, with $M / G=[0,1]$. E.g., $S^{n}, \mathbb{C} P^{n}, \mathbb{H} P^{n}$, Kervaire spheres, \ldots
- $\Sigma_{t} \subset M$ principal G-orbits, $t \in[0,1]$ trivially have CMC due to symmetries

Theorem (B.-Piccione, 2016)

There are infinitely many families of CMC embeddings bifurcating from Σ_{t} as $t \searrow 0$ and $t \nearrow 1$.

New Delaunay-type hypersurfaces

Plot twist:

- Bifureate Detantay surfacesinto rne surfaces
- Bifurcate known CMC surfaces into new Delaunay surfaces!

Setup:

- (M, g) cohomogeneity one manifold; i.e., $G \curvearrowright M$, with $M / G=[0,1]$. E.g., $S^{n}, \mathbb{C} P^{n}, H P^{n}$, Kervaire spheres, \ldots
- $\Sigma_{t} \subset M$ principal G-orbits, $t \in[0,1]$ trivially have CMC due to symmetries

Theorem (B.-Piccione, 2016)

There are infinitely many families of CMC embeddings bifurcating from Σ_{t} as $t \searrow 0$ and $t \nearrow 1$.

Significance: These are Delaunay-type hypersurfaces in these spaces!

Example: Delaunay tori in S^{3}

$$
S^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\}
$$

Example: Delaunay tori in S^{3}

$$
\begin{aligned}
& S^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\} \\
& \Sigma_{t}=\left\{(z, w) \in S^{3}:|z|=\cos \left(\frac{\pi}{2} t\right),|w|=\sin \left(\frac{\pi}{2} t\right)\right\}, t \in[0,1]
\end{aligned}
$$

Example: Delaunay tori in S^{3}

$$
\begin{aligned}
& S^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\} \\
& \Sigma_{t}=\left\{(z, w) \in S^{3}:|z|=\cos \left(\frac{\pi}{2} t\right),|w|=\sin \left(\frac{\pi}{2} t\right)\right\}, t \in[0,1]
\end{aligned}
$$

- Principal orbits (CMC tori): $\Sigma_{t}, t \in(0,1)$

Example: Delaunay tori in S^{3}

$$
\begin{aligned}
& S^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\} \\
& \Sigma_{t}=\left\{(z, w) \in S^{3}:|z|=\cos \left(\frac{\pi}{2} t\right),|w|=\sin \left(\frac{\pi}{2} t\right)\right\}, t \in[0,1]
\end{aligned}
$$

- Principal orbits (CMC tori):

$$
\begin{aligned}
& \Sigma_{t}, t \in(0,1) \\
& H\left(\Sigma_{t}\right)=\tan \left(\frac{\pi}{2} t\right)-\cot \left(\frac{\pi}{2} t\right)
\end{aligned}
$$

Example: Delaunay tori in S^{3}

$$
\begin{aligned}
& S^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\} \\
& \Sigma_{t}=\left\{(z, w) \in S^{3}:|z|=\cos \left(\frac{\pi}{2} t\right),|w|=\sin \left(\frac{\pi}{2} t\right)\right\}, t \in[0,1]
\end{aligned}
$$

- Principal orbits (CMC tori):

$$
\begin{aligned}
& \Sigma_{t}, t \in(0,1) \\
& H\left(\Sigma_{t}\right)=\tan \left(\frac{\pi}{2} t\right)-\cot \left(\frac{\pi}{2} t\right)
\end{aligned}
$$

- Singular orbits (circles): Σ_{0}, Σ_{1}

$$
t \searrow 0
$$

Example: Delaunay tori in S^{3}

$$
\begin{aligned}
& S^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\} \\
& \Sigma_{t}=\left\{(z, w) \in S^{3}:|z|=\cos \left(\frac{\pi}{2} t\right),|w|=\sin \left(\frac{\pi}{2} t\right)\right\}, t \in[0,1]
\end{aligned}
$$

- Principal orbits (CMC tori):

$$
\begin{aligned}
& \Sigma_{t}, t \in(0,1) \\
& H\left(\Sigma_{t}\right)=\tan \left(\frac{\pi}{2} t\right)-\cot \left(\frac{\pi}{2} t\right)
\end{aligned}
$$

- Singular orbits (circles): Σ_{0}, Σ_{1}
- Delaunay-type tori bifurcate from Σ_{t} as $t \searrow 0$ and $t \nearrow 1$
$t \searrow 0$

Image credit: GeometrieWerkstatt Gallery
http://service.ifam.uni-hannover.de/~geometriewerkstatt/gallery/0600.html

Proof (of all above results).

Proof (of all above results).

- $X=\{\Sigma \hookrightarrow M\}$

Proof (of all above results).

- $X=\{\Sigma \hookrightarrow M\}$
- $f_{H}(\Sigma)=\operatorname{Area}(\Sigma)+H \operatorname{Vol}(\Sigma)$

Proof (of all above results).

- $X=\{\Sigma \hookrightarrow M\}$
- $f_{H}(\Sigma)=\operatorname{Area}(\Sigma)+H \operatorname{Vol}(\Sigma)$
- $\mathrm{d} f_{H}(\Sigma)=0 \Longleftrightarrow \Sigma$ has constant mean curvature H

Proof (of all above results).

- $X=\{\Sigma \hookrightarrow M\}$
- $f_{H}(\Sigma)=\operatorname{Area}(\Sigma)+H \operatorname{Vol}(\Sigma)$
- $\mathrm{d}_{H}(\Sigma)=0 \Longleftrightarrow \Sigma$ has constant mean curvature H
$-i_{\text {Morse }}(\Sigma)=\#(\underbrace{\operatorname{Spec}\left(\Delta_{\Sigma}\right)}_{\text {Laplace eigenvalues }} \cap(-\infty, \underbrace{\operatorname{Ric}(\nu)+\left\|A_{\Sigma}\right\|^{2}}_{\text {geometric potential" }}))$

Proof (of all above results).

- $X=\{\Sigma \hookrightarrow M\}$
- $f_{H}(\Sigma)=\operatorname{Area}(\Sigma)+H \operatorname{Vol}(\Sigma)$
- $\mathrm{d}_{H}(\Sigma)=0 \Longleftrightarrow \Sigma$ has constant mean curvature H
$-i_{\text {Morse }}(\Sigma)=\#(\underbrace{\operatorname{Spec}\left(\Delta_{\Sigma}\right)}_{\text {Laplace eigenvalues }} \cap(-\infty, \underbrace{\operatorname{Ric}(\nu)+\left\|A_{\Sigma}\right\|^{2}}_{\text {geometric potential" }}))$
- $i_{\text {Morse }}\left(\Sigma_{t}\right) \nearrow+\infty$ as Σ_{t} collapses

Proof (of all above results).

- $X=\{\Sigma \hookrightarrow M\}$
- $f_{H}(\Sigma)=\operatorname{Area}(\Sigma)+H \operatorname{Vol}(\Sigma)$
- $\mathrm{d}_{H}(\Sigma)=0 \Longleftrightarrow \Sigma$ has constant mean curvature H
$-i_{\text {Morse }}(\Sigma)=\#(\underbrace{\operatorname{Spec}\left(\Delta_{\Sigma}\right)}_{\text {Laplace eigenvalues }} \cap(-\infty, \underbrace{\left.\left.\operatorname{Ric}(\nu)+\left\|A_{\Sigma}\right\|^{2}\right)\right)}_{\text {geometric potential" }}$
- $i_{\text {Morse }}\left(\Sigma_{t}\right) \nearrow+\infty$ as Σ_{t} collapses
- Krasnosel'skij's Theorem \Longrightarrow Infinitely many bifurcations

Geometric Application II: Conformal Deformations

Uniformization Theorem (Poincaré 1882; Klein 1883)
Every closed surface

Geometric Application II: Conformal Deformations

Uniformization Theorem (Poincaré 1882; Klein 1883) Every closed surface

Genus 0

Geometric Application II: Conformal Deformations

Uniformization Theorem (Poincaré 1882; Klein 1883) Every closed surface

Genus 0

Genus 1

Geometric Application II: Conformal Deformations

Uniformization Theorem (Poincaré 1882; Klein 1883) Every closed surface

Genus 0

Genus 1

Genus ≥ 2

Geometric Application II: Conformal Deformations

Uniformization Theorem (Poincaré 1882; Klein 1883) Every closed surface admits a metric of constant curvature

Genus 0 $K=1$

Genus 1
$K=0$

Genus ≥ 2
$K=-1$

Geometric Application II: Conformal Deformations

Uniformization Theorem (Poincaré 1882; Klein 1883)
Every closed surface admits a metric of constant curvature which can be achieved with a conformal deformation.

Genus 0 $K=1$

Genus 1
$K=0$

Genus ≥ 2
$K=-1$

Conformal Deformations

Conformal Deformations

Conformal Deformations

- Preserves angles (but not distances)
- Encoded by a positive function

$$
\mathrm{g} \rightsquigarrow u^{p} \mathrm{~g}, \quad u>0
$$

- Conformal class of metric g :

$$
[\mathrm{g}]=\left\{u^{p} \mathrm{~g}: u>0\right\}
$$

Conformal Deformations

- Preserves angles (but not distances)
- Encoded by a positive function

$$
\mathrm{g} \rightsquigarrow u^{p} \mathrm{~g}, \quad u>0
$$

- Conformal class of metric g :

$$
\begin{aligned}
{[\mathrm{g}] } & =\left\{u^{p} \mathrm{~g}: u>0\right\} \\
& \cong C_{+}^{\infty}(M)
\end{aligned}
$$

Yamabe problem: "Uniformization" for $n \geq 3$ ($M, \mathrm{~g}$) n-manifold

H. Yamabe
(1923-1960)

Yamabe problem: "Uniformization" for $n \geq 3$ $(M, \mathrm{~g}) \leadsto\left(M, \mu^{\frac{4}{n-2}} \mathrm{~g}\right)$ with n-manifold constant scalar curvature

H. Yamabe
(1923-1960)

Yamabe problem: "Uniformization" for $n \geq 3$
$(M, \mathrm{~g}) \leadsto\left(M, \mu^{\frac{4}{n-2} \mathrm{~g}}\right)$ with n-manifold constant scalar curvature

$$
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{scal}_{g} u=c u^{\frac{n+2}{n-2}}
$$

H. Yamabe
(1923-1960)

Yamabe problem: "Uniformization" for $n \geq 3$
$(M, \mathrm{~g}) \leadsto\left(M, \mu^{\frac{4}{n-2} \mathrm{~g}}\right)$ with n-manifold constant scalar curvature

$$
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{scal}_{g} u=c u^{\frac{n+2}{n-2}}
$$

- Yamabe (1960)

H. Yamabe
(1923-1960)

Yamabe problem: "Uniformization" for $n \geq 3$
$(M, \mathrm{~g}) \leadsto\left(M, \mu^{\frac{4}{n-2}} \mathrm{~g}\right)$ with n-manifold constant scalar curvature

$$
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{scal}_{g} u=c u^{\frac{n+2}{n-2}}
$$

- Yamabe (1960)
- Trudinger (1968)

N. Trudinger (1969)

Yamabe problem: "Uniformization" for $n \geq 3$ $(M, \mathrm{~g}) \leadsto\left(M, \mu^{\frac{4}{n-2}} \mathrm{~g}\right)$ with n-manifold constant scalar curvature

$$
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{scal}_{g} u=c u^{\frac{n+2}{n-2}}
$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)

T. Aubin (1976)

Yamabe problem: "Uniformization" for $n \geq 3$
$(M, \mathrm{~g}) \leadsto\left(M, \mu^{\frac{4}{n-2} \mathrm{~g}}\right)$ with
n-manifold constant scalar curvature

$$
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{scal}_{g} u=c u^{\frac{n+2}{n-2}}
$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)
- Schoen (1984)

R. Schoen (1983)

Yamabe problem: "Uniformization" for $n \geq 3$

$(M, \mathrm{~g}) \leadsto\left(M, \mu^{\frac{4}{n-2} \mathrm{~g}}\right)$ with
n-manifold constant scalar curvature

$$
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{scal}_{g} u=c u^{\frac{n+2}{n-2}}
$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)
- Schoen (1984)

R. Schoen (1983)

Theorem
Every $(M, \mathrm{~g})$ admits a conformal deformation $\left(M, u^{\frac{4}{n-2}} \mathrm{~g}\right)$ with constant scalar curvature.

Yamabe problem: "Uniformization" for $n \geq 3$

$(M, g) \quad \rightsquigarrow \quad\left(M, u^{\frac{4}{n-2}} \mathrm{~g}\right)$ with
n-manifold constant scalar curvature

$$
-4 \frac{n-1}{n-2} \Delta_{g} u+\operatorname{scal}_{g} u=c u^{\frac{n+2}{n-2}}
$$

- Yamabe (1960)
- Trudinger (1968)
- Aubin (1976)
- Schoen (1984)

R. Schoen (1983)

Theorem
Every ($M, \mathrm{~g}$) admits a conformal deformation ($M, u^{\frac{4}{n-2}} \mathrm{~g}$) with constant scalar curvature. Is it unique?

Yamabe problem: non-uniqueness results

($M, \mathrm{~g}$) homogeneous
$M=G / H$

Yamabe problem: non-uniqueness results

($M, \mathrm{~g}$) homogeneous
$M=G / H$

Yamabe problem: non-uniqueness results

($M, \mathrm{~g}$) homogeneous $M=G / H$
scal $_{\mathrm{g}}=$ const
(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989)
The trivial (product) solution to the Yamabe problem on $S^{n} \times S^{1}(t)$ bifurcates infinitely many times as $t \searrow 0$.

Yamabe problem: non-uniqueness results

$$
\begin{gathered}
(M, \mathrm{~g}) \text { homogeneous } \\
M=\mathrm{G} / \mathrm{H}
\end{gathered} \Longrightarrow \begin{gathered}
\text { scal }_{\mathrm{g}}=\text { const } \\
\text { (trivial solution) }
\end{gathered}
$$

Theorem (Kobayashi, 1985; Schoen, 1989)
The trivial (product) solution to the Yamabe problem on $S^{n} \times S^{1}(t)$ bifurcates infinitely many times as $t \searrow 0$.

Theorem (Lima-Piccione-Zedda, 2012)

- ($M, \mathrm{~g}_{M}$) one of $S^{n}, \mathbb{R}^{n}, \mathrm{C} P^{n}, \mathrm{H} P^{n}, \mathrm{Ca} P^{2}$ (CROSS)

Yamabe problem: non-uniqueness results

$$
\begin{gathered}
(M, g) \text { homogeneous } \\
M=\mathrm{G} / \mathrm{H}
\end{gathered}
$$

$$
\text { scal }_{\mathrm{g}}=\text { const }
$$

(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989)
The trivial (product) solution to the Yamabe problem on $S^{n} \times S^{1}(t)$ bifurcates infinitely many times as $t \searrow 0$.
Theorem (Lima-Piccione-Zedda, 2012)

- $\left(M, \mathrm{~g}_{M}\right)$ one of $S^{n}, \mathbb{R}^{n}, \mathbb{C} P^{n}, H P^{n}, \mathrm{Ca} P^{2}$ (CROSS)
- $\left(N, \mathrm{~g}_{N}\right)$ closed manifold, scal ${ }_{N}>0$ constant

Yamabe problem: non-uniqueness results

$$
\begin{gathered}
(M, g) \text { homogeneous } \\
M=\mathrm{G} / \mathrm{H}
\end{gathered}
$$

$$
\text { scal }_{\mathrm{g}}=\text { const }
$$

(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989)
The trivial (product) solution to the Yamabe problem on $S^{n} \times S^{1}(t)$ bifurcates infinitely many times as $t \searrow 0$.
Theorem (Lima-Piccione-Zedda, 2012)

- $\left(M, \mathrm{~g}_{M}\right)$ one of $S^{n}, \mathbb{R}^{n}, \mathrm{C} P^{n}, \mathrm{H} P^{n}, \mathrm{Ca} P^{2}$ (CROSS)
- $\left(N, \mathrm{~g}_{N}\right)$ closed manifold, $\mathrm{scal}_{N}>0$ constant
- $\mathrm{g}_{t}=\mathrm{g}_{M} \oplus t \mathrm{~g}_{N}$ trivial solution

Yamabe problem: non-uniqueness results

$$
\begin{gathered}
(M, g) \text { homogeneous } \\
M=\mathrm{G} / \mathrm{H}
\end{gathered}
$$

$$
\text { scal }_{\mathrm{g}}=\text { const }
$$

(trivial solution)

Theorem (Kobayashi, 1985; Schoen, 1989)
The trivial (product) solution to the Yamabe problem on $S^{n} \times S^{1}(t)$ bifurcates infinitely many times as $t \searrow 0$.
Theorem (Lima-Piccione-Zedda, 2012)

- $\left(M, \mathrm{~g}_{M}\right)$ one of $S^{n}, \mathbb{R}^{n}, \mathrm{C} P^{n}, \mathrm{H} P^{n}, \mathrm{Ca} P^{2}$ (CROSS)
- $\left(N, g_{N}\right)$ closed manifold, scal ${ }_{N}>0$ constant
- $\mathrm{g}_{t}=\mathrm{g}_{M} \oplus t \mathrm{~g}_{N}$ trivial solution

Then $\left(M \times N, \mathrm{~g}_{t}\right)$ bifurcates infinitely many times as $t \searrow 0$.

"Twisted products": Hopf bundles

$-S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}$
"Twisted products": Hopf bundles

- $S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}$
$-S^{3} \rightarrow S^{4 n+3} \rightarrow \mathbb{H P}^{n}$
"Twisted products": Hopf bundles

$-S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}$
$-S^{3} \rightarrow S^{4 n+3} \rightarrow \mathrm{HP}^{n}$
$-S^{7} \rightarrow S^{15} \rightarrow S^{8}\left(\frac{1}{2}\right)$
"Twisted products": Hopf bundles

$-S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}$
$-S^{3} \rightarrow S^{4 n+3} \rightarrow \mathrm{HP}^{n}$
$-S^{7} \rightarrow S^{15} \rightarrow S^{8}\left(\frac{1}{2}\right)$

Berger metrics

$$
\begin{gathered}
\mathrm{g}_{t}=\mathrm{g}_{h o r} \oplus t \mathrm{~g}_{\text {ver }} \\
\text { (homogeneous) }
\end{gathered}
$$

"Twisted products": Hopf bundles

$$
\begin{aligned}
& >S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n} \\
& >S^{3} \rightarrow S^{4 n+3} \rightarrow \mathbb{H} P^{n} \\
& >S^{7} \rightarrow S^{15} \rightarrow S^{8}\left(\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Berger metrics } \\
\mathrm{g}_{t}=\mathrm{g}_{\text {hor }} \oplus t \mathrm{~g}_{\text {ver }} \\
\text { (homogeneous) }
\end{gathered}
$$

Rescale vertical space by $t>0$

Yamabe problem: non-uniqueness results

Theorem (B.-Piccione, 2013)
The Berger spheres $\left(S^{4 n+3}, \mathrm{~g}_{t}\right)$ and $\left(S^{15}, \mathrm{~g}_{t}\right)$ bifurcate infinitely many times as $t \searrow 0$.

Yamabe problem: non-uniqueness results

Theorem (B.-Piccione, 2013)
The Berger spheres $\left(S^{4 n+3}, \mathrm{~g}_{t}\right)$ and $\left(S^{15}, \mathrm{~g}_{t}\right)$ bifurcate infinitely many times as $t \searrow 0$.

Theorem (B.-Piccione, 2013)
The canonical variation $\mathrm{g}_{t}=\mathrm{g}_{\text {hor }} \oplus t \mathrm{~g}_{\mathrm{ver}}$ of a homogeneous bundle

$$
\mathrm{K} / \mathrm{H} \longrightarrow \mathrm{G} / \mathrm{H} \longrightarrow \mathrm{G} / \mathrm{K}
$$

with scal ${ }_{K / H}>0$ bifurcates infinitely many times as $t \searrow 0$.

Yamabe problem: non-uniqueness results

Theorem (B.-Piccione, 2013)
The Berger spheres $\left(S^{4 n+3}, \mathrm{~g}_{t}\right)$ and $\left(S^{15}, \mathrm{~g}_{t}\right)$ bifurcate infinitely many times as $t \searrow 0$.

Theorem (B.-Piccione, 2013)
The canonical variation $\mathrm{g}_{t}=\mathrm{g}_{\text {hor }} \oplus t \mathrm{~g}_{\text {ver }}$ of a homogeneous bundle

$$
\mathrm{K} / \mathrm{H} \longrightarrow \mathrm{G} / \mathrm{H} \longrightarrow \mathrm{G} / \mathrm{K}
$$

with scal ${ }_{\mathrm{K} / \mathrm{H}}>0$ bifurcates infinitely many times as $t \searrow 0$.
Theorem (Otoba-Petean, 2016)
The canonical variation $\mathrm{g}_{t}=\mathrm{g}_{\text {hor }} \oplus t \mathrm{~g}_{\text {ver }}$ of a harmonic Riemannian submersion with constant scalar curvature

$$
F \longrightarrow M \longrightarrow B
$$

with scal $_{F}>0$ bifurcates infinitely many times as $t \searrow 0$.

Proof (of all above results).

Proof (of all above results).

- $X=\left\{\mathrm{g} \in\left[\mathrm{g}_{\mathrm{t}}\right]: \operatorname{Vol}(M, \mathrm{~g})=1\right\}$

Proof (of all above results).

- $X=\left\{\mathrm{g} \in\left[\mathrm{g}_{t}\right]: \operatorname{Vol}(M, \mathrm{~g})=1\right\}$
- $f_{t}(\mathrm{~g})=\int_{M}$ scal $_{\mathrm{g}} \operatorname{vol}_{\mathrm{g}}$

Proof (of all above results).

- $X=\left\{\mathrm{g} \in\left[\mathrm{g}_{\mathrm{t}}\right]: \operatorname{Vol}(M, \mathrm{~g})=1\right\}$
- $f_{t}(\mathrm{~g})=\int_{M}$ scal $_{\mathrm{g}} \operatorname{vol}_{\mathrm{g}}$
- $\mathrm{d} f_{t}(\mathrm{~g})=0 \Longleftrightarrow \mathrm{~g}$ has constant scalar curvature

Proof (of all above results).

- $X=\left\{\mathrm{g} \in\left[\mathrm{g}_{t}\right]: \operatorname{Vol}(M, \mathrm{~g})=1\right\}$
- $f_{t}(\mathrm{~g})=\int_{M}$ scal $_{\mathrm{g}} \operatorname{vol}_{\mathrm{g}}$
- $\mathrm{d} f_{t}(\mathrm{~g})=0 \Longleftrightarrow \mathrm{~g}$ has constant scalar curvature $\Longleftrightarrow \mathrm{g}$ is a solution to the Yamabe problem

Proof (of all above results).

- $X=\left\{\mathrm{g} \in\left[\mathrm{g}_{\mathrm{t}}\right]: \operatorname{Vol}(M, \mathrm{~g})=1\right\}$
- $f_{t}(\mathrm{~g})=\int_{M} \operatorname{scal}_{\mathrm{g}} \operatorname{vol}_{g}$
- $\mathrm{d} f_{t}(\mathrm{~g})=0 \Longleftrightarrow \mathrm{~g}$ has constant scalar curvature $\Longleftrightarrow \mathrm{g}$ is a solution to the Yamabe problem
$>i_{\text {Morse }}(\mathrm{g})=\#(\underbrace{\operatorname{Spec}\left(\Delta_{\mathrm{g}}\right)}_{\text {Laplace eigenvalues }} \cap(-\infty, \underbrace{\operatorname{scal}_{\mathrm{g}} /(n-1)}_{\text {"geometric potential" }}))$

Proof (of all above results).

- $X=\left\{\mathrm{g} \in\left[\mathrm{g}_{t}\right]: \operatorname{Vol}(M, \mathrm{~g})=1\right\}$
- $f_{t}(\mathrm{~g})=\int_{M}$ scal $_{\mathrm{g}} \operatorname{vol}_{\mathrm{g}}$
- $\mathrm{d} f_{t}(\mathrm{~g})=0 \Longleftrightarrow \mathrm{~g}$ has constant scalar curvature $\Longleftrightarrow \mathrm{g}$ is a solution to the Yamabe problem
$-i_{\text {Morse }}(\mathrm{g})=\#(\underbrace{\operatorname{Spec}\left(\Delta_{\mathrm{g}}\right)}_{\text {Laplace eigenvalues }} \cap(-\infty, \underbrace{\operatorname{scal}_{\mathrm{g}} /(n-1)}_{\text {"geometric potential" }}))$
- $i_{\text {Morse }}\left(\mathrm{g}_{t}\right) \nearrow+\infty$ as g_{t} collapses

Proof (of all above results).

- $X=\left\{\mathrm{g} \in\left[\mathrm{g}_{t}\right]: \operatorname{Vol}(M, \mathrm{~g})=1\right\}$
- $f_{t}(\mathrm{~g})=\int_{M}$ scal $_{\mathrm{g}} \operatorname{vol}_{\mathrm{g}}$
- $\mathrm{d} f_{t}(\mathrm{~g})=0 \Longleftrightarrow \mathrm{~g}$ has constant scalar curvature $\Longleftrightarrow \mathrm{g}$ is a solution to the Yamabe problem
$-i_{\text {Morse }}(\mathrm{g})=\#(\underbrace{\operatorname{Spec}\left(\Delta_{\mathrm{g}}\right)}_{\text {Laplace eigenvalues }} \cap(-\infty, \underbrace{\operatorname{scal} /(n-1)}_{\text {geometric potential" }}))$
- $i_{\text {Morse }}\left(\mathrm{g}_{t}\right) \nearrow+\infty$ as g_{t} collapses
- Krasnosel'skij's Theorem \Longrightarrow Infinitely many bifurcations

A singular cousin

- M closed manifold

A singular cousin

- M closed manifold, e.g., $M=S^{n}$

A singular cousin

- M closed manifold, e.g., $M=S^{n}$
- $\Lambda \subset M$ closed subset

A singular cousin

- M closed manifold, e.g., $M=S^{n}$
- $\Lambda \subset M$ closed subset, e.g., $\Lambda=S^{k}, 0 \leq k<n$

A singular cousin

- M closed manifold, e.g., $M=S^{n}$
- $\Lambda \subset M$ closed subset, e.g., $\Lambda=S^{k}, 0 \leq k<n$

Singular Yamabe Problem

Find complete metrics on $M \backslash \Lambda$ with scal $=$ const. in a given conformal class.

A singular cousin

- M closed manifold, e.g., $M=S^{n}$
- $\Lambda \subset M$ closed subset, e.g., $\Lambda=S^{k}, 0 \leq k<n$

Singular Yamabe Problem

Find complete metrics on $M \backslash \wedge$ with scal = const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)

There are infinitely many solutions to the singular Yamabe problem on $S^{n} \backslash S^{k}, 0 \leq k \leq \frac{n-2}{2}$.

A singular cousin

- M closed manifold, e.g., $M=S^{n}$
- $\Lambda \subset M$ closed subset, e.g., $\Lambda=S^{k}, 0 \leq k<n$

Singular Yamabe Problem

Find complete metrics on $M \backslash \wedge$ with scal $=$ const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem on $S^{n} \backslash S^{k}, 0 \leq k \leq \frac{n-2}{2}$.

- If $k>\frac{n-2}{2}$, no solutions exist (asymptotic maximum principle)

A singular cousin

- M closed manifold, e.g., $M=S^{n}$
- $\Lambda \subset M$ closed subset, e.g., $\Lambda=S^{k}, 0 \leq k<n$

Singular Yamabe Problem

Find complete metrics on $M \backslash \wedge$ with scal $=$ const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)
There are infinitely many solutions to the singular Yamabe problem on $S^{n} \backslash S^{k}, 0 \leq k \leq \frac{n-2}{2}$.

- If $k>\frac{n-2}{2}$, no solutions exist (asymptotic maximum principle)
- If $k=1$, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]

A singular cousin

- M closed manifold, e.g., $M=S^{n}$
- $\Lambda \subset M$ closed subset, e.g., $\Lambda=S^{k}, 0 \leq k<n$

Singular Yamabe Problem

Find complete metrics on $M \backslash \wedge$ with scal $=$ const. in a given conformal class.

Theorem (B.-Piccione-Santoro 2016; B.-Piccione, 2018)

There are infinitely many solutions to the singular Yamabe problem on $S^{n} \backslash S^{k}, 0 \leq k \leq \frac{n-2}{2}$.

- If $k>\frac{n-2}{2}$, no solutions exist (asymptotic maximum principle)
- If $k=1$, can use Bifurcation Theory [B.-Piccione-Santoro, 2016]
- If $1<k<\frac{n-2}{2}$, other methods are needed [B.-Piccione, 2018]

A fourth-order cousin

Constant Q-curvature Problem

Find complete conformal metrics on $\left(M^{n}, \mathrm{~g}\right)$ such that

A fourth-order cousin

Constant Q-curvature Problem

Find complete conformal metrics on $\left(M^{n}, g\right)$ such that

$$
Q_{\mathrm{g}}=\frac{1}{2(n-1)} \Delta_{\mathrm{g}} \text { scal }_{\mathrm{g}}-\frac{2}{(n-2)^{2}}\left\|\operatorname{Ric}_{\mathrm{g}}\right\|^{2}+\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}} \text { scal }_{\mathrm{g}}^{2}
$$

A fourth-order cousin

Constant Q-curvature Problem

Find complete conformal metrics on $\left(M^{n}, \mathrm{~g}\right)$ such that

$$
Q_{\mathrm{g}}=\frac{1}{2(n-1)} \Delta_{\mathrm{g}} \mathrm{scal}_{\mathrm{g}}-\frac{2}{(n-2)^{2}}\left\|\operatorname{Ric}_{\mathrm{g}}\right\|^{2}+\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}} \text { scal }_{\mathrm{g}}^{2} \equiv \text { const. }
$$

A fourth-order cousin

Constant Q-curvature Problem

Find complete conformal metrics on $\left(M^{n}, \mathrm{~g}\right)$ such that

$$
Q_{\mathrm{g}}=\frac{1}{2(n-1)} \Delta_{\mathrm{g}} \mathrm{scal}_{\mathrm{g}}-\frac{2}{(n-2)^{2}} \| \text { Ric }_{\mathrm{g}} \|^{2}+\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}} \text { scal }_{\mathrm{g}}^{2} \equiv \text { const. }
$$

Theorem (B.-Piccione-Sire, 2018)

Hopf bundle	Infinitely many bifurcations as $t \searrow 0$	Infinitely many bifurcations as $t \nearrow+\infty$
$S^{1} \rightarrow S^{2 q+1} \rightarrow \mathbb{C} P^{q}$	no	if $q \geq 6$
$S^{3} \rightarrow S^{4 q+3} \rightarrow \mathbb{H} P^{q}$	if $q \geq 1$	if $q \geq 2$
$\mathbb{C} P^{1} \rightarrow \mathbb{C} P^{2 q+1} \rightarrow \mathbb{H} P^{q}$	if $q \geq 2$	if $q \geq 3$
$S^{7} \rightarrow S^{15} \rightarrow S^{8}(1 / 2)$	yes	yes

Thank you for your attention!

