Convex Algebraic Geometry of Curvature Operators

Renato G. Bettiol

Algebraic curvature operators

$R: \wedge^{2} \mathbb{R}^{n} \rightarrow \wedge^{2} \mathbb{R}^{n}$

Algebraic curvature operators

$R: \wedge^{2} \mathbb{R}^{n} \rightarrow \wedge^{2} \mathbb{R}^{n}$

- Symmetric: $\langle R(X \wedge Y), Z \wedge W\rangle=\langle R(Z \wedge W), X \wedge Y\rangle$

Algebraic curvature operators

$R: \wedge^{2} \mathbb{R}^{n} \rightarrow \wedge^{2} \mathbb{R}^{n}, R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$

- Symmetric: $\langle R(X \wedge Y), Z \wedge W\rangle=\langle R(Z \wedge W), X \wedge Y\rangle$

Algebraic curvature operators

$R: \wedge^{2} \mathbb{R}^{n} \rightarrow \wedge^{2} \mathbb{R}^{n}, R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$

- Symmetric: $\langle R(X \wedge Y), Z \wedge W\rangle=\langle R(Z \wedge W), X \wedge Y\rangle$
- First Bianchi identity:

$$
\begin{aligned}
\langle R(X \wedge Y), Z \wedge W\rangle+\langle R(& Y \wedge Z), X \wedge W\rangle \\
& +\langle R(Z \wedge X), Y \wedge W\rangle=0
\end{aligned}
$$

Algebraic curvature operators

$R: \wedge^{2} \mathbb{R}^{n} \rightarrow \wedge^{2} \mathbb{R}^{n}, R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$

- Symmetric: $\langle R(X \wedge Y), Z \wedge W\rangle=\langle R(Z \wedge W), X \wedge Y\rangle$
- First Bianchi identity:

$$
\begin{aligned}
&\langle R(X \wedge Y), Z \wedge W\rangle+\langle R(Y \wedge Z), X \wedge W\rangle \\
&+\langle R(Z \wedge X), Y \wedge W\rangle=0
\end{aligned}
$$

Example
$\left(M^{n}, g\right)$ (pseudo-)Riemannian manifold, $p \in M$,

$$
\begin{gathered}
R_{p}: \wedge^{2} T_{p} M \rightarrow \wedge^{2} T_{p} M \\
R_{p}(X \wedge Y, Z \wedge W)=\mathrm{g}_{p}\left(R_{p}(X, Y) Z, W\right)
\end{gathered}
$$

Sectional curvature bounds

$R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$
$\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\}$

Sectional curvature bounds

$R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$

$$
\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\}
$$

$$
=\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}: \begin{array}{c}
X, Y \in \mathbb{R}^{n}, \\
|X|^{2}|Y|^{2}-\langle X, Y\rangle^{2}=1
\end{array}\right\}
$$

Sectional curvature bounds

$$
\begin{aligned}
& R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
& \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
& =\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}:|X|^{2}|Y|^{2}-\left\langle X, Y \mathbb{R}^{n},\right.\right. \\
& \\
& \sec _{R}: \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R} \\
& \sec _{R}(\sigma)=\langle R(\sigma), \sigma\rangle
\end{aligned}
$$

Sectional curvature bounds

$$
\left.\begin{array}{l}
R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
=\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}:|X|^{2}|Y|^{2}-\left\langle X, Y \mathbb{R}^{n},\right.\right. \\
\\
\sec _{R}: \quad \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R} \\
\sec _{R}(\sigma)
\end{array}\right)=\langle R(\sigma), \sigma\rangle, \begin{aligned}
& =\langle R(X \wedge Y), X \wedge Y\rangle
\end{aligned}
$$

Sectional curvature bounds

$$
\left.\begin{array}{l}
R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
=\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}:|X|^{2}|Y|^{2}-\left\langle X, Y \mathbb{R}^{n},\right.\right. \\
\\
\quad \sec _{R}: \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)
\end{array}\right) \rightarrow \mathbb{R} \quad \begin{aligned}
\sec _{R}(\sigma) & =\langle R(\sigma), \sigma\rangle \\
& =\langle R(X \wedge Y), X \wedge Y\rangle
\end{aligned}
$$

Definition
R has sec $\geq k \Longleftrightarrow \sec _{R}(\sigma) \geq k, \forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)$

Sectional curvature bounds

$$
\left.\begin{array}{l}
R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
=\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}:|X|^{2}|Y|^{2}-\left\langle X, Y \mathbb{R}^{n},\right.\right. \\
\\
\quad \sec _{R}: \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)
\end{array}\right) \rightarrow \mathbb{R} \quad \begin{aligned}
\sec _{R}(\sigma) & =\langle R(\sigma), \sigma\rangle \\
& =\langle R(X \wedge Y), X \wedge Y\rangle
\end{aligned}
$$

Definition
R has sec $>k \Longleftrightarrow \sec _{R}(\sigma)>k, \forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)$

Sectional curvature bounds

$$
\left.\begin{array}{l}
R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
=\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}:|X|^{2}|Y|^{2}-\left\langle X, Y \mathbb{R}^{n},\right.\right. \\
\\
\quad \sec _{R}: \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)
\end{array}\right) \rightarrow \mathbb{R} \quad \begin{aligned}
\sec _{R}(\sigma) & =\langle R(\sigma), \sigma\rangle \\
& =\langle R(X \wedge Y), X \wedge Y\rangle
\end{aligned}
$$

Definition
R has sec $\leq k \Longleftrightarrow \sec _{R}(\sigma) \leq k, \forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)$

Sectional curvature bounds

$$
\begin{aligned}
& R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
& \mathrm{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
& =\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}: \begin{array}{c}
X, Y \in \mathbb{R}^{n}, \\
|X|^{2}|Y|^{2}-\langle X, Y\rangle^{2}=1
\end{array}\right\} \\
& \sec _{R}: \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R} \\
& \sec _{R}(\sigma)=\langle R(\sigma), \sigma\rangle \\
& =\langle R(X \wedge Y), X \wedge Y\rangle
\end{aligned}
$$

Definition
R has sec $<k \Longleftrightarrow \sec _{R}(\sigma)<k, \forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)$

Sectional curvature bounds

$$
\left.\begin{array}{l}
R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
=\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}:|X|^{2}|Y|^{2}-\left\langle X, Y \mathbb{R}^{n},\right.\right. \\
\\
\quad \sec _{R}: \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)
\end{array}\right) \rightarrow \mathbb{R} \quad \begin{aligned}
\sec _{R}(\sigma) & =\langle R(\sigma), \sigma\rangle \\
& =\langle R(X \wedge Y), X \wedge Y\rangle
\end{aligned}
$$

Definition
R has sec $\geq k \Longleftrightarrow \sec _{R}(\sigma) \geq k, \forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)$

Sectional curvature bounds

$$
\left.\left.\begin{array}{l}
R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right) \\
\operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{n}: \sigma \wedge \sigma=0,\|\sigma\|=1\right\} \\
=\left\{\sigma=X \wedge Y \in \wedge^{2} \mathbb{R}^{n}:|X|^{2}|Y|^{2}-\left\langle X, Y \mathbb{R}^{n},\right.\right. \\
\\
\sec _{R}: \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)
\end{array}\right) \rightarrow \mathbb{R}\right\}
$$

Definition
R has sec $\geq k \Longleftrightarrow \sec _{R}(\sigma) \geq k, \forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right)$

$$
\Re_{\mathrm{sec} \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

Questions

$$
\Re_{\text {sec } _k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

Questions

$$
\Re_{\mathrm{sec} \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathrm{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\Re_{\text {sec } \geq k}(n)$?

Questions

$$
\Re_{\mathrm{sec} \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\mathfrak{R}_{\text {sec } \geq k}(n)$?

A: Convex cone in $\operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$

Questions

$$
\Re_{\mathrm{sec} \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\mathfrak{R}_{\text {sec } \geq k}(n)$?

A: Convex cone in $\operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$; semialgebraic subset

Questions

$$
\Re_{\sec \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\Re_{\text {sec } \geq k}(n)$?

A: Convex cone in $\operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R

Questions

$$
\Re_{\mathrm{sec} \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\Re_{\text {sec } \geq k}(n)$?

A: Convex cone in $\operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R

Quantifier elimination

Theorem (Tarski-Seidenberg)

A. Tarski

A. Seidenberg

Quantifier elimination

Theorem (Tarski-Seidenberg)
Any finite list of quantified polynomial equalities and inequalities over the real numbers

$$
\begin{aligned}
& (\forall, \exists) t_{1}, t_{2}, t_{3}, \ldots \\
& F_{i}\left(t_{1}, t_{2}, t_{3}, \ldots ; x_{1}, x_{2}, x_{3}, \ldots\right)=0 \\
& G_{i}\left(t_{1}, t_{2}, t_{3}, \ldots ; x_{1}, x_{2}, x_{3}, \ldots\right) \neq 0 \\
& H_{i}\left(t_{1}, t_{2}, t_{3}, \ldots ; x_{1}, x_{2}, x_{3}, \ldots\right)>0
\end{aligned}
$$

A. Tarski

A. Seidenberg

Quantifier elimination

Theorem (Tarski-Seidenberg)
Any finite list of quantified polynomial equalities and inequalities over the real numbers

$$
\begin{aligned}
& (\forall, \exists) t_{1}, t_{2}, t_{3}, \ldots \\
& F_{i}\left(t_{1}, t_{2}, t_{3}, \ldots ; x_{1}, x_{2}, x_{3}, \ldots\right)=0 \\
& G_{i}\left(t_{1}, t_{2}, t_{3}, \ldots ; x_{1}, x_{2}, x_{3}, \ldots\right) \neq 0 \\
& H_{i}\left(t_{1}, t_{2}, t_{3}, \ldots ; x_{1}, x_{2}, x_{3}, \ldots\right)>0
\end{aligned}
$$

is equivalent to a list of quantifier-free polynomial equalities and inequalities

$$
\begin{aligned}
& \widetilde{F}_{i}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0 \\
& \widetilde{G}_{i}\left(x_{1}, x_{2}, x_{3}, \ldots\right) \neq 0 \\
& \widetilde{H}_{i}\left(x_{1}, x_{2}, x_{3}, \ldots\right)>0
\end{aligned}
$$

A. Tarski

A. Seidenberg

Quantifier elimination in practice

Quantified:

$$
\begin{array}{rl}
\exists t \in \mathbb{R} & a t^{2}+b t+c=0 \\
& a \neq 0
\end{array}
$$

Quantifier elimination in practice

Quantified:

$$
\begin{array}{rl}
\exists t \in \mathbb{R} & a t^{2}+b t+c=0 \\
& a \neq 0
\end{array}
$$

Quantifier-free:

$$
b^{2}-4 a c \geq 0
$$

Quantifier elimination in practice

Quantified:

$$
\begin{array}{rl}
\exists t \in \mathbb{R} & a t^{2}+b t+c=0 \\
& a \neq 0
\end{array}
$$

Quantified:
$\forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right) \quad \sec _{R}(\sigma) \geq k$

Quantifier-free:

$$
b^{2}-4 a c \geq 0
$$

Quantifier elimination in practice

Quantified:

$$
\begin{array}{rl}
\exists t \in \mathbb{R} & a t^{2}+b t+c=0 \\
& a \neq 0
\end{array}
$$

Quantifier-free:

$$
b^{2}-4 a c \geq 0
$$

Quantified:
$\forall \sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{n}\right) \quad \sec _{R}(\sigma) \geq k$

Quantifier-free:

$$
F_{i}(R, k) \geq 0, \quad 1 \leq i \leq N
$$

Questions

$$
\Re_{\sec \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\Re_{\text {sec } \geq k}(n)$?

A: Convex cone in $\operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R

- Q: Can we parametrize $\Re_{\text {sec } \geq k}(n)$ explicitly?

Questions

$$
\Re_{\sec \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\Re_{\text {sec } \geq k}(n)$?

A: Convex cone in $\operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R

- Q: Can we parametrize $\Re_{\text {sec } \geq k}(n)$ explicitly? That is, explicitly write $F_{i}(R, k) \geq 0$?

Questions

$$
\Re_{\sec \geq k}(n):=\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \sec _{R} \geq k\right\}
$$

- Q: What is the structure of the set $\Re_{\text {sec } \geq k}(n)$?

A: Convex cone in $\operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right)$; semialgebraic subset, i.e., described by finitely many polynomial inequalities on R

- Q: Can we parametrize $\Re_{\text {sec } \geq k}(n)$ explicitly? That is, explicitly write $F_{i}(R, k) \geq 0$?
A: Maybe...?
"Unfortunately, the procedure is too long to be used in practice even with the aid of a computer (...)"
[Weinstein, 1972]

"Unfortunately, the procedure is too long to be used in practice even with the aid of a computer (...)"
[Weinstein, 1972]

"Unfortunately, the procedure is too long to be used in practice even with the aid of a computer (...)"
[Weinstein, 1972]

Even with today's (2015) computers, this is still intractable...
"Unfortunately, the procedure is too long to be used in practice even with the aid of a computer (...)"
[Weinstein, 1972]

Even with today's (2015) computers, this is still intractable...

Crash course in Convex Algebraic Geometry

Definition (Spectrahedron)
$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$

Crash course in Convex Algebraic Geometry

Definition (Spectrahedron)
$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$
Example
Polyhedron: A, B_{i} diagonal matrices

Crash course in Convex Algebraic Geometry

Definition (Spectrahedron)
$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$
Example
Polyhedron: A, B_{i} diagonal matrices
Cylinder:

$$
\left(\begin{array}{cccc}
1+x & y & 0 & 0 \\
y & 1-x & 0 & 0 \\
0 & 0 & 1+z & 0 \\
0 & 0 & 0 & 1-z
\end{array}\right) \succeq 0
$$

Crash course in Convex Algebraic Geometry

Definition (Spectrahedron)
$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$
Example
Polyhedron: A, B_{i} diagonal matrices
Cylinder:
$\left(\begin{array}{cccc}1+x & y & 0 & 0 \\ y & 1-x & 0 & 0 \\ 0 & 0 & 1+z & 0 \\ 0 & 0 & 0 & 1-z\end{array}\right) \succeq 0$
Elliptope:
$\left(\begin{array}{lll}1 & x & y \\ x & 1 & z \\ y & z & 1\end{array}\right) \succeq 0$

Crash course in Convex Algebraic Geometry Definition (Spectrahedron)
$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$

Crash course in Convex Algebraic Geometry Definition (Spectrahedron)
$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$
\ Linear projections of spectrahedra need not be spectrahedra!

Crash course in Convex Algebraic Geometry

 Definition (Spectrahedron)$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$
Linear projections of spectrahedra need not be spectrahedra!
Definition (Spectrahedral shadow)
$S=\left\{x \in \mathbb{R}^{d}: \exists t \in \mathbb{R}^{\ell}, A+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{j=1}^{\ell} t_{j} C_{j} \succeq 0\right\}$,
where $A, B_{i}, C_{j} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$

Crash course in Convex Algebraic Geometry

 Definition (Spectrahedron)$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$
Linear projections of spectrahedra need not be spectrahedra!
Definition (Spectrahedral shadow)
$S=\left\{x \in \mathbb{R}^{d}: \exists t \in \mathbb{R}^{\ell}, A+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{j=1}^{\ell} t_{j} C_{j} \succeq 0\right\}$,
where $A, B_{i}, C_{j} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$

- Linear programming: optimize linear functionals on polyhedra (solvable in polynomial time!)

Crash course in Convex Algebraic Geometry

 Definition (Spectrahedron)$S=\left\{x \in \mathbb{R}^{d}: A+\sum_{i=1}^{d} x_{i} B_{i} \succeq 0\right\}$, where $A, B_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$
Linear projections of spectrahedra need not be spectrahedra!
Definition (Spectrahedral shadow)
$S=\left\{x \in \mathbb{R}^{d}: \exists t \in \mathbb{R}^{\ell}, A+\sum_{i=1}^{d} x_{i} B_{i}+\sum_{j=1}^{\ell} t_{j} C_{j} \succeq 0\right\}$,
where $A, B_{i}, C_{j} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{m}\right)$

- Linear programming: optimize linear functionals on polyhedra (solvable in polynomial time!)
- Semidefinite programming: optimize linear functionals on spectrahedra (also solvable in polynomial time!)

Motivated by questions from Nemirovski's 2006 ICM plenary:

Motivated by questions from Nemirovski's 2006 ICM plenary:
Conjecture (Helton-Nie, 2009)
Any convex semialgebraic subset of \mathbb{R}^{n} is a spectrahedral shadow.

Conjecture (Helton-Nie, 2009)

Any convex semialgebraic subset of \mathbb{R}^{n} is a spectrahedral shadow.
Theorem (Scheiderer, 2018) Helton-Nie Conjecture is TRUE if $n=2$!

C. Scheiderer

Motivated by questions from Nemirovski's 2006 ICM plenary:
Conjecture (Helton-Nie, 2009)
Any convex semialgebraic subset of \mathbb{R}^{n} is a spectrahedral shadow.
Theorem (Scheiderer, 2018)
Helton-Nie Conjecture is TRUE if $n=2$!
Theorem (Scheiderer, 2018)
Helton-Nie Conjecture is FALSE if $n \geq 3$!

C. Scheiderer

Conjecture (Helton-Nie, 2009)
Any convex semialgebraic subset of \mathbb{R}^{n} is a spectrahedral shadow.
Theorem (Scheiderer, 2018)
Helton-Nie Conjecture is TRUE if $n=2$!
Theorem (Scheiderer, 2018)
Helton-Nie Conjecture is FALSE if $n \geq 3$!
A convex semialgebraic cone $C=\overline{\operatorname{cone}(S)}$ is a spectrahedral shadow if and only if $\exists \phi: X \rightarrow \mathbb{A}^{n}$ morphism of affine \mathbb{R}-varieties and a finite-dimensional subspace $U \subset \mathbb{R}[X]$ s.t.:

- $S \subset \phi(X(\mathbb{R}))$,
- $\forall f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous linear

C. Scheiderer polynomial, $f \geq 0$ on $S, \phi^{*}(f) \in \mathbb{R}[X]$ is a sum of squares of elements in U.

Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:

Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:
Theorem (B.-Kummer-Mendes, 2018)

- $\Re_{\sec \geq k}(2)$ and $\Re_{\sec \geq k}(3)$ are spectrahedra;
- $\Re_{\text {sec } \geq k}(4)$ is a spectrahedral shadow, and not a spectrahedron;
- $\Re_{\sec \geq k}(n), n \geq 5$ is not a spectrahedral shadow.

Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:
Theorem (B.-Kummer-Mendes, 2018)

- $\Re_{\text {sec } \geq k}(2)$ and $\Re_{\text {sec } \geq k}(3)$ are spectrahedra;
- $\mathfrak{R}_{\text {sec } \geq k}(4)$ is a spectrahedral shadow, and not a spectrahedron;
- $\Re_{\text {sec } \geq k}(n), n \geq 5$ is not a spectrahedral shadow.
$\{$ spectrahedra $\} \subsetneq\left\{\begin{array}{c}\text { spectrahedral } \\ \text { shadows }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { convex } \\ \text { semialgebraic set }\end{array}\right\}$

Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:
Theorem (B.-Kummer-Mendes, 2018)

- $\Re_{\text {sec } \geq k}(2)$ and $\Re_{\text {sec } \geq k}(3)$ are spectrahedra;
- $\Re_{\text {sec } \geq k}(4)$ is a spectrahedral shadow, and not a spectrahedron;
- $\Re_{\sec \geq k}(n), n \geq 5$ is not a spectrahedral shadow.
$\{$ spectrahedra $\} \subsetneq\left\{\begin{array}{c}\text { spectrahedral } \\ \text { shadows }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { convex } \\ \text { semialgebraic set }\end{array}\right\}$ $\Re_{\text {sec } \geq k}(2)$
$\Re_{\text {sec } \geq k}(3)$

Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:
Theorem (B.-Kummer-Mendes, 2018)

- $\Re_{\sec \geq k}(2)$ and $\Re_{\sec \geq k}(3)$ are spectrahedra;
- $\Re_{\text {sec } \geq k}(4)$ is a spectrahedral shadow, and not a spectrahedron;
- $\Re_{\sec \geq k}(n), n \geq 5$ is not a spectrahedral shadow.
$\{$ spectrahedra $\} \subsetneq\left\{\begin{array}{c}\text { spectrahedral } \\ \text { shadows }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { convex } \\ \text { semialgebraic set }\end{array}\right\}$

$$
\begin{aligned}
& \Re_{\sec \geq k}(2) \\
& \Re_{\sec \geq k}(3)
\end{aligned}
$$

$$
\Re_{\mathrm{sec} \geq k}(4)
$$

Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:
Theorem (B.-Kummer-Mendes, 2018)

- $\Re_{\text {sec } \geq k}(2)$ and $\Re_{\text {sec } \geq k}(3)$ are spectrahedra;
- $\mathfrak{R}_{\text {sec } \geq k}(4)$ is a spectrahedral shadow, and not a spectrahedron;
- $\Re_{\text {sec } \geq k}(n), n \geq 5$ is not a spectrahedral shadow.
$\{$ spectrahedra $\} \subsetneq\left\{\begin{array}{c}\text { spectrahedral } \\ \text { shadows }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { convex } \\ \text { semialgebraic set }\end{array}\right\}$

$$
\begin{aligned}
& \mathfrak{R}_{\mathrm{sec} \geq k}(2) \\
& \mathfrak{R}_{\mathrm{sec} \geq k}(3)
\end{aligned}
$$

$$
\Re_{\mathrm{sec} \geq k}(4)
$$

$$
\Re_{\text {sec } \geq k}(n), \forall n \geq 5
$$

Building on Scheiderer [SIAM 2018]; Blekherman, Smith, Velasco [JAMS 2016]:
Theorem (B.-Kummer-Mendes, 2018)

- $\Re_{\sec \geq k}(2)$ and $\Re_{\sec \geq k}(3)$ are spectrahedra;
- $\mathfrak{R}_{\text {sec } \geq k}(4)$ is a spectrahedral shadow, and not a spectrahedron;
- $\Re_{\sec \geq k}(n), n \geq 5$ is not a spectrahedral shadow.
$\{$ spectrahedra $\} \subsetneq\left\{\begin{array}{c}\text { spectrahedral } \\ \text { shadows }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { convex } \\ \text { semialgebraic set }\end{array}\right\}$

$$
\begin{aligned}
& \mathfrak{R}_{\mathrm{sec} \geq k}(2) \\
& \mathfrak{R}_{\mathrm{sec} \geq k}(3)
\end{aligned}
$$

$$
\Re_{\mathrm{sec} \geq k}(4) \quad \Re_{\mathrm{sec} \geq k}(n), \forall n \geq 5
$$

Upshot: sec $\geq k$ is algebraically much harder to verify if $n \geq 5$

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Finsler Lemma ("Thorpe's trick").

$$
R \in \Re_{\text {sec } \geq k}(4) \Longleftrightarrow\langle(R-k \operatorname{ld})(\sigma), \sigma\rangle \geq 0, \forall \sigma \neq 0 \text { s.t. }\langle * \sigma, \sigma\rangle=0
$$

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Finsler Lemma ("Thorpe's trick").

$$
\begin{aligned}
R \in \Re_{\mathrm{sec} \geq k}(4) & \Longleftrightarrow\langle(R-k \mathrm{Id})(\sigma), \sigma\rangle \geq 0, \forall \sigma \neq 0 \text { s.t. }\langle * \sigma, \sigma\rangle=0 \\
& \Longleftrightarrow \exists x \in \mathbb{R}, R-k \mathrm{Id}+x * \succeq 0
\end{aligned}
$$

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Finsler Lemma ("Thorpe's trick").

$$
\begin{aligned}
R \in \Re_{\text {sec } \geq k}(4) & \Longleftrightarrow\langle(R-k \operatorname{ld})(\sigma), \sigma\rangle \geq 0, \forall \sigma \neq 0 \text { s.t. }\langle * \sigma, \sigma\rangle=0 \\
& \Longleftrightarrow \exists x \in \mathbb{R}, R-k \operatorname{ld}+x * \succeq 0
\end{aligned}
$$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018) $\partial \mathfrak{R}_{\text {sec } \geq k}(4) \subset\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=0\right\}$

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Finsler Lemma ("Thorpe's trick").
$R \in \Re_{\text {sec } \geq k}(4) \Longleftrightarrow\langle(R-k \operatorname{ld})(\sigma), \sigma\rangle \geq 0, \forall \sigma \neq 0$ s.t. $\langle * \sigma, \sigma\rangle=0$ $\Longleftrightarrow \exists x \in \mathbb{R}, R-k \operatorname{ld}+x * \succeq 0$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018) $\partial \mathfrak{R}_{\text {sec } \geq k}(4) \subset\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=0\right\}$

Recall: $\operatorname{Disc}_{x}(p(x))=$ discriminant of $p(x)$ in the variable x

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Finsler Lemma ("Thorpe's trick").
$R \in \Re_{\text {sec } \geq k}(4) \Longleftrightarrow\langle(R-k \operatorname{ld})(\sigma), \sigma\rangle \geq 0, \forall \sigma \neq 0$ s.t. $\langle * \sigma, \sigma\rangle=0$ $\Longleftrightarrow \exists x \in \mathbb{R}, R-k \operatorname{ld}+x * \succeq 0$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018) $\partial \mathfrak{R}_{\text {sec } \geq k}(4) \subset\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=0\right\}$

Recall: $\operatorname{Disc}_{x}(p(x))=$ discriminant of $p(x)$ in the variable x (polynomial in the coefficients of $p(x)$)

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Finsler Lemma ("Thorpe's trick").
$R \in \Re_{\text {sec } \geq k}(4) \Longleftrightarrow\langle(R-k \operatorname{ld})(\sigma), \sigma\rangle \geq 0, \forall \sigma \neq 0$ s.t. $\langle * \sigma, \sigma\rangle=0$ $\Longleftrightarrow \exists x \in \mathbb{R}, R-k \operatorname{ld}+x * \succeq 0$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018) $\partial \mathfrak{R}_{\text {sec } \geq k}(4) \subset\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=0\right\}$

Recall: $\operatorname{Disc}_{x}(p(x))=$ discriminant of $p(x)$ in the variable x (polynomial in the coefficients of $p(x)$)
$\operatorname{Disc}_{x}(p(x))=0 \Longleftrightarrow p(x)$ has a multiple root

Dimension $n=4$

- Hodge star $*: \wedge^{2} \mathbb{R}^{4} \rightarrow \wedge^{2} \mathbb{R}^{4}$
- $\sigma \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \subset \wedge^{2} \mathbb{R}^{4} \Longleftrightarrow\langle * \sigma, \sigma\rangle=0$

Finsler Lemma ("Thorpe's trick").
$R \in \Re_{\text {sec } \geq k}(4) \Longleftrightarrow\langle(R-k \operatorname{ld})(\sigma), \sigma\rangle \geq 0, \forall \sigma \neq 0$ s.t. $\langle * \sigma, \sigma\rangle=0$ $\Longleftrightarrow \exists x \in \mathbb{R}, R-k \operatorname{ld}+x * \succeq 0$

Theorem (B.-Kummer-Mendes, 2018; Fodor 2018) $\partial \Re_{\text {sec } \geq k}(4) \subset\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=0\right\}$

Corollary

$\Re_{\text {sec } \geq k}(4)$ is the closure of a union of connected components of the semialgebraic set $\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *)) \neq 0\right\}$.

Towards a parametrization of $\mathfrak{R}_{\mathrm{sec} \geq k}(4)$

Corollary

$\Re_{\text {sec } \geq k}(4)$ is the closure of a union of connected components of the semialgebraic set $\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *)) \neq 0\right\}$.

Towards a parametrization of $\mathfrak{R}_{\mathrm{sec} \geq k}(4)$

Corollary

$\Re_{\text {sec } \geq k}(4)$ is the closure of a union of connected components of the semialgebraic set $\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *)) \neq 0\right\}$.

Proposition (B.-Kummer-Mendes, 2018)

$$
\operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=\sum_{a} p_{a}(R)^{2}-\sum_{b} q_{b}(R)^{2},
$$

where $p_{a}(R)$ and $q_{b}(R)$ are explicit homogeneous polynomials of degree 15 in R.

Towards a parametrization of $\mathfrak{R}_{\mathrm{sec} \geq k}(4)$

Corollary

$\Re_{\text {sec } \geq k}(4)$ is the closure of a union of connected components of the semialgebraic set $\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *)) \neq 0\right\}$.

Proposition (B.-Kummer-Mendes, 2018)

$$
\operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=\sum_{a} p_{a}(R)^{2}-\sum_{b} q_{b}(R)^{2},
$$

where $p_{a}(R)$ and $q_{b}(R)$ are explicit homogeneous polynomials of degree 15 in R.
〔 Problem: There are 27,144 $p_{a}(R)$'s and $27,120 q_{b}(R)$'s...

Towards a parametrization of $\mathfrak{R}_{\mathrm{sec} \geq k}(4)$

Corollary

$\Re_{\text {sec } \geq k}(4)$ is the closure of a union of connected components of the semialgebraic set $\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *)) \neq 0\right\}$.

Proposition (B.-Kummer-Mendes, 2018)

$$
\operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=\sum_{a} p_{a}(R)^{2}-\sum_{b} q_{b}(R)^{2},
$$

where $p_{a}(R)$ and $q_{b}(R)$ are explicit homogeneous polynomials of degree 15 in R.
〔. Problem: There are 27,144 $p_{a}(R)$'s and 27,120 $q_{b}(R)$'s... Some hope:

Towards a parametrization of $\mathfrak{R}_{\mathrm{sec} \geq k}(4)$

Corollary

$\Re_{\text {sec } \geq k}(4)$ is the closure of a union of connected components of the semialgebraic set $\left\{R: \operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *)) \neq 0\right\}$.

Proposition (B.-Kummer-Mendes, 2018)

$$
\operatorname{Disc}_{x}(\operatorname{det}(R-k \operatorname{ld}+x *))=\sum_{a} p_{a}(R)^{2}-\sum_{b} q_{b}(R)^{2},
$$

where $p_{a}(R)$ and $q_{b}(R)$ are explicit homogeneous polynomials of degree 15 in R.
4. Problem: There are $27,144 p_{a}(R)$'s and $27,120 q_{b}(R)$'s...

Some hope: outer approximation by Weitzenböck spectrahedra
Theorem (B.-Mendes, 2017)
$\Re_{\mathrm{sec} \geq k}(n)=\bigcap_{p \geq 2}\left\{R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{n}\right): \mathcal{K}\left(R-k \operatorname{Id}, \operatorname{Sym}_{0}^{p} \mathbb{R}^{n}\right) \succeq 0\right\}$

At the very least...

In dimension $n=4$:

At the very least...

In dimension $n=4$:
Even without the quantifier-free parametrization of $\mathfrak{R}_{\text {sec } \geq k}(4)$,

At the very least...

In dimension $n=4$:
Even without the quantifier-free parametrization of $\Re_{\text {sec } \geq k}(4)$, given an explicit $R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{4}\right)$,

At the very least...

In dimension $n=4$:
Even without the quantifier-free parametrization of $\Re_{\text {sec } \geq k}(4)$, given an explicit $R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{4}\right)$, can quickly test if $R \in \mathfrak{R}_{\text {sec } \geq k}(4)$

At the very least...

In dimension $n=4$:
Even without the quantifier-free parametrization of $\Re_{\mathrm{sec} \geq k}(4)$, given an explicit $R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{4}\right)$, can quickly test if $R \in \mathfrak{R}_{\text {sec } \geq k}(4)$
$\mathfrak{R}_{\text {sec } \geq k}(4)$ is a
spectrahedral shadow

At the very least...

In dimension $n=4$:
Even without the quantifier-free parametrization of $\Re_{\mathrm{sec} \geq k}(4)$, given an explicit $R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{4}\right)$, can quickly test if $R \in \mathfrak{R}_{\text {sec } \geq k}(4)$

$\Re_{\text {sec } \geq k}(4)$ is a
spectrahedral shadow
:---:
to test for $\sec _{R} \geq k$

At the very least...

In dimension $n=4$:
Even without the quantifier-free parametrization of $\Re_{\text {sec } \geq k}(4)$, given an explicit $R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{4}\right)$, can quickly test if $R \in \mathfrak{R}_{\text {sec } \geq k}(4)$
$\Re_{\text {sec } \geq k}(4)$ is a

spectrahedral shadow \Longrightarrow| "Easy" algorithm |
| :---: |
| to test for $\sec _{R} \geq k$ |

In dimensions $n \geq 5$:
$\Re_{\text {sec } \geq k}(n)$ is not a
spectrahedral shadow

At the very least...

In dimension $n=4$:
Even without the quantifier-free parametrization of $\Re_{\text {sec } \geq k}(4)$, given an explicit $R \in \operatorname{Sym}^{2}\left(\wedge^{2} \mathbb{R}^{4}\right)$, can quickly test if $R \in \Re_{\text {sec } \geq k}(4)$
$\Re_{\text {sec } \geq k}(4)$ is a

spectrahedral shadow \Longrightarrow| "Easy" algorithm |
| :---: |
| to test for $\sec _{R} \geq k$ |

In dimensions $n \geq 5$:
\(\left.\begin{array}{|c}\Re_{sec 2 k}(n) is not a

spectrahedral shadow\end{array}\right] \Longrightarrow\)| No such |
| :---: |
| algorithm... |

Thank you for your attention!

