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More important than any theorems in this talk ...

What many people told me when I was a PhD student:

(and I sort of believed them; turns out they were right)

I Find a problem you are passionate about, and study it

I Once in a while, check if you are still on Earth

I All other things (papers, jobs, grants) sort themselves out

I Have fun doing Mathematics!
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“I would not dare to say that there is a
direct relation between mathematics and

madness, but there is no doubt that
great mathematicians suffer from

maniacal characteristics, delirium and
symptoms of schizophrenia.”

J. Nash
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Flat worlds

Definition
A metric space (X , dX ) is locally isometric to (Y , dY ) if

∀ x ∈ X , ∃U ⊂ X neighborhood of x , and φ : U → Y so that

dY

(
φ(p), φ(q)

)
= dX (p, q), ∀ p, q ∈ U

Definition
A flat manifold is a metric space locally isometric to Rn.
(always smooth!)

A flat orbifold is a metric space locally isometric to Rn/Γ,
where Γ < O(n) is a finite group of (linear) isometries.
(only smooth where Γ = {1}!)
I Recall: O(n) =

{
A ∈ Mn×n(R) : AtA = Id

}

I In this talk: only compact manifolds and orbifolds.
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Two-dimensional flat manifolds

I Local model: R2

All points have neighborhoods isometric to a subset of R2

I Compact: maxx ,y d(x , y) < +∞
I Only possibilities are:

Torus T 2 Klein bottle K 2
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Two-dimensional flat orbifolds
Local models: R2/Γ, where Γ < O(2) is a finite subgroup

Local models: R2/Zk , cone with angle 2π
k
, k ≥ 2;

R2/Dk , wedge with angle π
k
, k ≥ 1

(1) Rectangle
D2(; 2, 2, 2, 2)

(2) “Half square”
D2(; 2, 4, 4)

(3) “Equilateral triangle”
D2(; 3, 3, 3)

(4) “Half equilateral triangle”
D2(; 2, 3, 6)
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Local to global
Q: How to classify flat orbifolds and flat manifolds?

Definition
A subgroup π < Iso(Rn) ∼= O(n) nRn is
I crystallographic if π is discrete and cocompact;

(i.e., orbit space of π y Rn is Hausdorff and compact)
I Bieberbach if π is crystallographic and torsion-free.

(i.e., π y Rn is free; orbit space is smooth)

Theorem
I M is a flat manifold ⇐⇒ M = Rn/π, π Bieberbach
I O is a flat orbifold ⇐⇒ O = Rn/π, π crystallographic

A: Classify crystallographic and Bieberbach groups!
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Structure of crystallographic groups

ρ : Iso(Rn) ∼= O(n) nRn −→ O(n)

0 −→ Lπ −→ π
ρ−→ Hπ −→ 0

ker ρ = Lπ ! translations
im ρ = Hπ ! rotations and reflections

Theorem (Bieberbach, 1911)

1. Lπ ∼= Zn is a lattice and Hπ < O(n) is finite;
2. π, π′ < Iso(Rn) crystallographic groups are isomorphic if

and only if π, π′ are conjugate in Aff(Rn) = GL(n) nRn;
3. For each n, there are only finitely many isomorphism

types of crystallographic groups in Iso(Rn).

Solved (first third of) Hilbert’s 18th problem
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Classification in low dimensions

n # Bieberbach
groups

# Crystallographic
groups

2 2 17

3 10 219

4 74 4,783

5 1,060 222,018

6 38,746 28,927,922

(Computer assisted)
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Flat deformations of Rn/π ! Hπ-invariant subspaces of Rn

Theorem (Hiss, Szczepański, 1991)
π < Iso(Rn) Bieberbach group =⇒ Hπ y Rn is reducible.

Corollary
All flat manifolds admit (nonhomothetic) flat deformations.

But:
∃ π < Iso(Rn) crystallographic with Hπ y Rn irreducible.

So:
Not all flat orbifolds have (nonhomothetic) flat deformations.
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If it can be deformed, what is the limit?

T 2 −→ ε→0−→

S1

K 2 −→ ε→0−→ I

K 2 −→ ε→0−→ S1

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of flat manifolds is a flat orbifold.
Conversely, every flat orbifold is the Gromov-Hausdorff limit of
flat manifolds.
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Q: Given a family of flat n-manifolds Mt = Rn/πt that collapses
as t ↘ 0, compute the resulting orbifold O = limt↘0 Mt .

Collapsing an Hπ-invariant subspace V ⊂ Rn:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V ⊂ R2 rational slope V ⊂ R2 irrational slope

I V smallest Hπ-invariant, spanned by elements of Lπ
I ∃W Hπ-invariant, spanned by elements of Lπ, V ⊕W = Rn

I HW
π = Hπ/

{
A ∈ Hπ : A|V = Id

}

Theorem (B., Derdzinski, Mossa, Piccione, 2018)
Collapsing M = Rn/π along V results in OV = (L ∩W )\W /HW

π .
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Q: Given a family of flat n-manifolds Mt = Rn/πt that collapses
as t ↘ 0, compute the resulting orbifold O = limt↘0 Mt .
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Q: Given a flat n-orbifold O, what is the smallest k such that
a flat (n + k)-manifold collapses to O?

Theorem (B., Derdzinski, Piccione, 2018)
The Gromov-Hausdorff limit of a sequence of flat 3-manifolds
must be one of:
I Flat 0-orbifold: {p};
I Flat 1-orbifolds: I , S1;
I Flat 2-orbifolds (10 out of 17):

T 2, K 2, S1 × I , M2, D2(4; 2), D2(3; 3), D2(2, 2; ),
S2(3, 3, 3; ), S2(2, 2, 2, 2; ), RP2(2, 2; );

I Flat 3-manifold (trivial).

A: When n = 2, k = 1 for 10 out of 17 flat 2-orbifolds.
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Moduli space and Teichmüller space

Moduli space of flat metrics:
Mflat(O) :=

{
flat metrics on O

}
/
{
isometries

}

Theorem (Wolf, Thurston, Baues, . . . )
There exists a Teichmüller space Tflat(O) ∼= Rd such that

Mflat(O) = Tflat(O)/MCG(O),

where MCG(O) = Diff(O)/Diff0(O) is the mapping class
group, which is countable and discrete.

Tflat(O) is the space of flat deformations.
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Algebraic characterization of Teichmüller space

I O = Rn/π flat n-orbifold

I Hπ y Rn =
⊕̀

i=1

Wi isotypical components of holonomy

I Wi direct sum of mi copies of irreducible of type
Ki ∈ {R,C,H}

Theorem (B., Derdzinski, Piccione, 2018)

Tflat(O) =
∏̀

i=1

GL(mi ,Ki )

O(mi ,Ki )

GL(mi ,Ki )

O(mi ,Ki )
∼= Rdi , di =





1
2mi (mi + 1), if Ki = R,

m2
i , if Ki = C,

mi (2mi − 1), if Ki = H.
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“Archimedes will be remembered when
Aeschylus is forgotten, because

languages die and mathematical ideas do
not. "Immortality" may be a silly word,
but probably a mathematician has the
best chance of whatever it may mean.”

G. H. Hardy

Thank you for your attention!


