Pinched 4-manifolds

Renato G. Bettiol

A very naive approach to a very big problem

 $\begin{array}{l} \text{Conjecture (Folklore)}\\ (M^4, \mathrm{g}) \ \textit{closed}, \\ \pi_1(M) = \{1\}, \ \mathrm{sec}_M > 0 \end{array} \implies M^4 \cong_{\textit{diffeo}} \underline{S^4 \ or \ \mathbb{C}P^2}. \end{array}$

Definition (M^n , g) is δ -pinched if $\delta \leq \sec_M \leq 1$.

Question

How small can we make $\delta > 0$ and prove:

$$(M^4, g)$$
 closed,
 $\pi_1(M) = \{1\}, \delta$ -pinched $\implies M^4 \cong_{\substack{\text{diffeo?} \\ homeo?}} \underline{S^4 \text{ or } \mathbb{C}P^2}.$

Pinching theorems

Let (M^4, g) be closed, $\pi_1(M) = \{1\}$, and δ -pinched. Theorem (Berger 1960, Klingenberg 1961) $\delta > \frac{1}{4} \implies \underline{M \cong_{homeo} S^4}$

Theorem (Brendle–Schoen, 2009) $\delta > \frac{1}{4} \implies \underline{M \cong_{diffeo} S^4}$

Theorem (Berger 1983; Petersen–Tao, 2009) $\exists \varepsilon > 0, \quad \delta > \frac{1}{4} - \varepsilon \implies \underline{M \cong_{diffeo} S^4 \text{ or } \mathbb{C}P^2}$

Theorem (Ville, 1989) $\delta \ge \frac{4}{19} \cong 0.2105 \implies M \cong_{homeo} S^4 \text{ or } \mathbb{C}P^2.$

Theorem (Seaman, 1989) $\delta \geq \frac{1}{3\sqrt{1+(2^{5/4}/5^{1/2})}+1} \cong 0.1883 \implies \underline{M \cong_{homeo} S^4 \text{ or } \mathbb{C}P^2}.$

Theorem A (B., Kummer, Mendes, 2020) Let (M^4 , g) be closed, $\pi_1(M) = \{1\}$, and δ -pinched, with

$$\delta \geq \frac{1}{1+3\sqrt{3}} \cong 0.16139$$

Then $M \cong_{homeo} S^4$ or $\mathbb{C}P^2$.

smbc-comics.com

Actually, there's a bit more to it

Throughout proofs: sharp pointwise algebraic bounds, only possible slack is global. Fits in larger context:

- Convex algebraic geometry of curvature operators Spectrahedral shadows, Lasserre relaxations, ...
- Long-term projects using optimization in geometry Semidefinite programming
- Other applications on the horizon
 Quadratic curvature funcionals, Ricci solitons,

And also:

Theorem B (B., Kummer, Mendes, 2020) Given $\delta > 0$, if (M^4 , g), $\pi_1(M) = \{1\}$, is δ -pinched, then:

$$\chi(M) \leq \underline{\frac{8}{9}\left(\frac{1}{\delta}-1\right)^2}$$
 and $|\sigma(M)| \leq \underline{\frac{8}{27}\left(\frac{1}{\delta}-1\right)^2}$

cf. Berger, 1962: $\chi(M) \leq \frac{8}{9} \left(\frac{1}{\delta} - 1\right)^2 + \frac{11}{27\delta^2} + \frac{16}{27} \left(\frac{2}{\delta} - 1\right).$

Corollary **Explicit (finite) list** of homeomorphism types for each $\delta > 0$:

$$(M^4, \mathrm{g}), \ \pi_1(M) = \{1\}, \implies M^4 \cong_{homeo} \begin{cases} \#^r \mathbb{C}P^2 \#^s \overline{\mathbb{C}P^2}, \\ \#^k S^2 \times S^2, \end{cases}$$

where $r, s, k \in \mathbb{N}_0$ satisfy

$$\begin{cases} r+s+2 \le \min\left\{ \underline{\frac{8}{9}\left(\frac{1}{\delta}-1\right)^2}, 10^{1440} \right\} \\ |r-s| \le \underline{\frac{8}{27}\left(\frac{1}{\delta}-1\right)^2} \\ 2k+2 \le \min\left\{ \underline{\frac{8}{9}\left(\frac{1}{\delta}-1\right)^2}, 10^{1440} \right\} \end{cases}$$

Recall that, conjecturally, $(r,s) \in \left\{ (0,0), (0,1), (1,0) \right\}$ and k = 0. Topology of (smooth) 4-manifolds

$$b_1(M) = b_3(M) = 0$$

 M^4 closed, $\pi_1(M) = \{1\} \implies$ All information in $H_2(M)$
"intersection form"

.

Hodge Theory:

$$b_2(M) = b_+(M) + b_-(M)$$

$$b_+(M) = \dim\{\alpha \in \Omega^2(M) : \Delta \alpha = 0, *\alpha = \alpha\}$$

$$b_-(M) = \dim\{\alpha \in \Omega^2(M) : \Delta \alpha = 0, *\alpha = -\alpha\}$$

$$\chi(M) = \underline{2 + b_+(M) + b_-(M)}, \qquad \sigma(M) = \underline{b_+(M) - b_-(M)}$$

Topological building blocks

Theorem (Freedman 1982; Donaldson 1983) If M^4 is closed, smooth, $\pi_1(M) = \{1\}$, then

$$M^{4} \cong_{homeo} \begin{cases} \frac{\#^{r} \mathbb{C} P^{2} \#^{s} \overline{\mathbb{C} P^{2}}}{\#^{k} (S^{2} \times S^{2}) \#^{\ell} M_{E_{8}}} & \underbrace{\blacksquare}_{k} & \underbrace{\blacksquare}_{k} & \underbrace{\blacksquare}_{\ell} & \underbrace{\blacksquare}_{k} & \underbrace{\blacksquare}_{k} & \underbrace{\blacksquare}_{\ell} & \underbrace{\blacksquare}_{k} & \underbrace{\blacksquare}_{k}$$

Corollary (Lichnerowicz, Atiyah-Singer, Hirzebruch) If (M^4, g) is closed, $\pi_1(M) = \{1\}$, and <u>scal > 0</u> then

Conversely...

Theorem (Gromov–Lawson 1980; Schoen–Yau 1979) Any connected sum of $\mathbb{C}P^2$'s, $\overline{\mathbb{C}P^2}$'s, $S^2 \times S^2$'s has scal > 0.

Theorem (Sha–Yang 1993; Perelman 1997) Any connected sum of $\mathbb{C}P^2$'s, $\overline{\mathbb{C}P^2}$'s, $S^2 \times S^2$'s has <u>Ric > 0</u>.

All have Ric > 0!

But recall that, conjecturally, very few have sec > 0...

Curvature operator

и

Eigenspaces of Hodge star *

$$\wedge^2 TM = \wedge^2_+ TM \oplus \wedge^2_- TM$$

Curvature operator canonical form, using $O(4) \curvearrowright \wedge^2 TM$

$$R: \wedge^{2} TM \longrightarrow \wedge^{2} TM$$

$$R = \begin{pmatrix} u \operatorname{Id} + W_{+} & C \\ C^{t} & u \operatorname{Id} + W_{-} \end{pmatrix} \in \operatorname{Sym}_{b}^{2}(\wedge^{2} TM)$$

$$u = \frac{1}{12} \operatorname{scal}$$

$$W_{\pm} = \operatorname{diag}(w_{1}^{\pm}, w_{2}^{\pm}, w_{3}^{\pm}) \quad \underline{\text{Weyl tensor}}$$

$$C = \overset{\circ}{\operatorname{Ric}} \quad \underline{\text{traceless Ricci}}$$

$$R \quad \underline{\text{diagonal}} \iff C = \underline{0} \iff \underline{M} \text{ is Einstein}$$

Chern-Gauss-Bonnet, Hirzebruch

Integral formulas for topological invariants:

$$\chi(M) = \frac{1}{\pi^2} \int_M \underline{\chi}(R) \qquad \sigma(M) = \frac{1}{\pi^2} \int_M \underline{\sigma}(R)$$

Integrands are indefinite quadratic forms on $R \in \text{Sym}_b^2(\wedge^2 \mathbb{R}^4)$, and SO(4)-invariant:

$$\underline{\chi}, \underline{\sigma}: \operatorname{Sym}_{b}^{2}(\wedge^{2}\mathbb{R}^{4}) \longrightarrow \mathbb{R}$$
$$\underline{\chi}(R) = \frac{1}{8} \left(6u^{2} + |W_{+}|^{2} + |W_{-}|^{2} - 2|C|^{2} \right)$$
$$\underline{\sigma}(R) = \frac{1}{12} \left(|W_{+}|^{2} - |W_{-}|^{2} \right)$$

Blackbox optimization lemmas (more on this later)

Definition

$$\Omega_{\delta} := \frac{\{R \in \operatorname{Sym}_{b}^{2}(\wedge^{2}\mathbb{R}^{4}) : \delta \leq \sec_{R} \leq 1\}}{\operatorname{Lemma} A}$$
If $\delta > \frac{1}{1+3\sqrt{3}}$, then $\min_{R \in \Omega_{\delta}} \underline{\chi}(R) - 2\underline{\sigma}(R) > 0$.
Lemma B
For all $\delta > 0$, and $t \in [-1, 1]$,

$$\max_{R \in \Omega_{\delta}} |W_{1}|^{2} + t|W_{1}|^{2} = \frac{8}{(1-\delta)^{2}}$$

$$\max_{R \in \Omega_{\delta}} |W_{+}|^{2} + t |W_{-}|^{2} = \frac{8}{3}(1-\delta)^{2}.$$

In particular, $(t=+1) \max_{R\in\Omega_{\delta}} |W|^2 = \frac{8}{3}(1-\delta)^2,$ $(t=-1) \max_{R\in\Omega_{\delta}} \underline{\sigma}(R) = \frac{2}{9}(1-\delta)^2.$

Proof of Theorem A

Let (M^4, g) be closed, $\pi_1(M) = \{1\}$, and δ -pinched, with $\delta \geq rac{1}{1+3\sqrt{3}}\cong 0.16139$

Up to reversing orientation, assume $\sigma(M) \ge 0$.

Theorem (Diógenes–Ribeiro, 2019) M^4 is <u>definite</u>, i.e., $b_-(M) = 0$.

Thus:
$$\underline{M^4 \cong_{homeo} \#^r \mathbb{C} P^2, \ r = b_+(M) \ge 0, \ b_-(M) = 0.}$$

Lemma A

$$\implies \chi(M) - 2\sigma(M) > 0$$

$$\implies \frac{2 + b_{+}(M) - 2b_{+}(M) > 0}{b_{+}(M) \le 1}$$

Proof of Theorem B (Part 1) Let (M^4, g) be closed, $\pi_1(M) = \{1\}$, and δ -pinched, $\delta > 0$. Theorem (Chang–Gurksy–Yang, 2003) If $\int_{M} |W|^2 < 4\pi^2 \chi(M)$, then $\underline{M} \cong_{diffeo} S^4$. Suppose $M \not\cong_{homeo} S^4$. Then: $\chi(M) \leq \frac{1}{4\pi^2} \int_M |W|^2$ $\leq rac{1}{4\pi^2}rac{8}{3}(1-\delta)^2 \operatorname{Vol}(M)$ Lemma B 📕 {Bishop–Gromov Diameter Sphere Theorem $\leq rac{1}{4\pi^2}rac{8}{3}(1-\delta)^2 \operatorname{Vol}\left(S^4_+\left(rac{1}{\sqrt{\delta}}
ight)
ight)$ $\operatorname{Vol}\left(S_{+}^{4}\left(\frac{1}{\sqrt{\delta}}\right)\right) = \frac{4\pi^{2}}{3\delta^{2}} = \frac{8}{9}\left(\frac{1}{\delta}-1\right)^{2}.$

Proof of Theorem B (Part 2)

Let (M^4, g) be closed, $\pi_1(M) = \{1\}$, $M \not\cong_{homeo} S^4$, δ -pinched.

Remark: Nothing else to squeeze from $a \chi + b \underline{\sigma}$.

Lemma B:
$$\forall t \in [-1,1], \quad \max_{R \in \Omega_{\delta}} |W_+|^2 + t |W_-|^2 = \frac{8}{3}(1-\delta)^2$$

 $\implies \forall s \ge 0, \quad \chi(M) \le \frac{8}{27} \left(\frac{1}{\delta} - 1\right)^2 (s+3) - s \sigma(M)$

Inside the blackbox

 If A_q is *indefinite*, "brute force" semidefinite programming on Ω_δ does not work, nor do other *convex* methods

$$\min_{R\in\Omega_{\delta}}q(R)=? \qquad \max_{R\in\Omega_{\delta}}q(R)=?$$

The Einstein simplex

Proposition

The set of δ -pinched Einstein curvature operators $E_{\delta} := \operatorname{Diag} \cap \Omega_{\delta}$ is a <u>5-simplex</u>, and $\operatorname{proj}(\Omega_{\delta}) = E_{\delta}$, where $\operatorname{proj}: \operatorname{Sym}_{b}^{2}(\wedge^{2}\mathbb{R}^{4}) \longrightarrow \operatorname{Diag}$.

Proposition

The set of modified δ -pinched Einstein operators $\widetilde{E}_{\delta} := \{ (R, \alpha) \in E_{\delta} \times \mathbb{R} : R - \delta \mathrm{Id} + \alpha * \succeq 0 \}$ is a <u>6-simplex</u>.

Note: All vertices are explicit *affine functions* of δ .

Quadratic optimization on simplices

Lemma

 $\Delta^n = \operatorname{conv}(V) \subset \mathbb{R}^n$ simplex, $q \colon \mathbb{R}^n o \mathbb{R}$ quadratic form, $A_q = \operatorname{Hess} q$

$$\begin{array}{ccc} A_{q} & \underline{indefinite} & \implies & \max_{\Delta^{n}} q = \max_{\partial \Delta^{n}} q \\ A_{q} & \underline{positive-semidefinite} & \implies & \max_{\Delta^{n}} q = \max_{V} q \\ A_{q} & \underline{negative-definite} & \implies & Use \ Calculus \ to \ find \ \max_{\mathbb{R}^{n}} q \end{array}$$

Proof of Lemma B. For all $\delta > 0$, and $t \in [-1, 1]$, since $\operatorname{proj}(\Omega_{\delta}) = E_{\delta}$,

$$\max_{R \in \Omega_{\delta}} |W_{+}|^{2} + t |W_{-}|^{2} \stackrel{\mathsf{Prop}}{=} \max_{R \in E_{\delta}} \underbrace{|W_{+}|^{2} + t |W_{-}|^{2}}_{q_{t}(R)}$$
$$\overset{\mathsf{Lemma}}{=} \frac{8}{3}(1 - \delta)^{2}.$$

Need to inspect faces of dimension $\leq \operatorname{ind}(A_{q_t}) = 2$ if t < 0.

Integrand in Lemma A depends on $|C|^2$...

Lemma Given $\lambda_i \ge 0, \ \mu_i \ge 0,$ $\begin{pmatrix} \operatorname{diag}(\lambda_i) & C \\ C^t & \operatorname{diag}(\mu_i) \end{pmatrix} \succeq 0 \implies |C|^2 \le \sum_{i=1}^3 \lambda_i \mu_i.$

Proof.

- Schur complements
- ▶ $O(3) \subset B_1^{spec} \subset Mat_{3 \times 3}(\mathbb{R})$ are its extreme points
- Birkhoff–von Neumann Theorem

Corollary

If $R \in \Omega_{\delta}$ is such that $R - \delta \operatorname{Id} + \alpha * \succeq 0$, then $|C|^{2} \leq \sum_{i=1}^{3} (u - \delta + w_{i}^{+} + \alpha)(u - \delta + w_{i}^{-} - \alpha)$ $= 3(u - \delta)^{2} - 3\alpha^{2} + \langle W_{+}, W_{-} \rangle.$

Proof of Lemma A

• Let
$$\delta > \frac{1}{1+3\sqrt{3}}$$
, $R \in \Omega_{\delta}$, and $\alpha \in \mathbb{R}$ s.t. $R - \delta \mathrm{Id} + \alpha * \succeq 0$.

• Recall that $\operatorname{proj}(\Omega_{\delta}) = E_{\delta}$, hence $(\operatorname{proj}(R), \alpha) \in \widetilde{E}_{\delta}$.

• Use Corollary to eliminate $|C|^2$:

$$8(\underline{\chi}(R) - 2\underline{\sigma}(R)) = 6u^{2} - \frac{1}{3}|W_{+}|^{2} + \frac{7}{3}|W_{-}|^{2} - 2|C|^{2}$$

$$\geq -\frac{1}{3}|W_{+}|^{2} + \frac{7}{3}|W_{-}|^{2} - 2\langle W_{+}, W_{-} \rangle$$

$$+ 6\alpha^{2} + 12u\delta - 6\delta^{2}$$

$$q(\operatorname{proj}(R),\alpha)$$

 $q \colon \widetilde{E}_{\delta} \longrightarrow \mathbb{R}$ indefinite quadratic form, $\operatorname{ind}(A_q) = 3$. • Optimize q on the 6-simplex \widetilde{E}_{δ} as before, obtaining

$$8\min_{\Omega_{\delta}} \underline{\chi} - 2 \underline{\sigma} \geq \min_{\widetilde{E}_{\delta}} q > 0.$$

Bonus: Hopf Conjecture

M compact, even-dimensional, $\sec_M > 0 \implies \chi(M) > 0$

Algebraic version:
$$\sec_R > 0 \implies \underline{\chi}(R) > 0$$

True if $n = 4$ (Milnor / Chern, 1955)
False if $n \ge 6$ (Geroch, 1976)
Proof $(n = 4)$.
If $\sec_R > 0$, then $R + \alpha * \succ 0$ for some $\alpha \in \mathbb{R}$. Thus:
 $8\underline{\chi}(R) = 6u^2 + |W_+|^2 + |W_-|^2 - 2|C|^2$
(Corollary) $> 6\alpha^2 + |W_+|^2 + |W_-|^2 - 2\langle W_+, W_- \rangle$
 $= 6\alpha^2 + |W_+ - W_-|^2$
 ≥ 0 .

Thank you for your attention!

Vertices of Einstein simplices E_{δ} and E_{δ}

The Einstein simplex $E_{\delta} \subset \mathbb{R}^5$ is the convex hull of the rows

The simplex $\widetilde{E}_{\delta} \subset \mathbb{R}^6$ is the convex hull of the rows of

Zoom near $\delta \cong 0.16139$

Change of sign at:

$$\delta = \frac{1}{71} \left(9\sqrt{545} - 199 \right)$$
$$\cong 0.1564$$