How to recognize the shape of a world from within it?

Renato G. Bettiol

Supported by NSF Award DMS-1904342

What is the shape of the Earth?

Maybe it is shaped like a Donut (a.k.a. torus)...

Light rays from Sun are nearly parallel

At noon of summer solstice:
Syene: Sun directly overhead
Alexandria: Sun casts shadows

so the Earth cannot be flat...

Eratosthenes (Greece, 276 BC - 195 BC)

How to measure the Earth's circumference?

- Light rays from the Sun are nearly parallel
- Syene on the Tropic of Cancer, so Sun directly overhead at noon of summer solstice
- Alexandria and Syene on the same meridian, $I=5000$ stadia apart

Eratosthenes (Greece, 276 BC - 195 BC)

Measure α at noon:
How to measure the Earth's circumference?

$1 / 50$ th of circle
$\alpha \cong \frac{\pi}{25} \cong 7.2^{\circ}$
$\frac{l}{c}=\frac{\alpha}{2 \pi}$
$\begin{aligned} c & =\frac{2 \pi l}{\alpha} \\ & =\frac{2 \pi \cdot 5000}{\pi / 25}\end{aligned}$
$=250,000$ stadia
$\cong 39,375 \mathrm{~km}$

Actual value:
$40,076 \mathrm{~km}$

Definitely curved (not flat). But why spherical?

Walk around the whole Earth?

Little Prince (Antoine de Saint-Exupéry)

How long until you're back (on a torus Earth)?

Practical matters

Since we can't actually walk the whole Earth, need to determine global shape using only local measurements.

By the way, what is "shape"?

Topology

Surfaces are classified by their genus

$$
g=0
$$

$g=1$

$$
g=2
$$

Topological obstructions

Can you comb a hairy ball?
What about a hairy torus?

The Hairy Ball Theorem

Definition

The Euler Characteristic of a surface M is $\chi(M)=2-2 g$.
"can be combed" = admits a nonvanishing tangent vector field
Theorem (Poincaré, 1885)
A surface M admits a nonvanishing tangent vector field if and only if $\chi(M)=0$.

Q: In how many ways can you comb a hairy torus?

A: Two basic hairstyles

1. Around the hole 2. Through the hole All others are linear combinations of the above two.

$$
b_{1}\left(T^{2}\right)=\operatorname{dim} H^{2}\left(T^{2}, \mathbb{R}\right)=2
$$

Back to our quest for the shape of the Earth: What "local measurements" can we use?

Curvature

How can we mathematically express the difference?

1) Sum of inner angles in a triangle T

Definition (Sectional curvature)

$$
\sec =\frac{\alpha+\beta+\gamma-\pi}{\operatorname{Area}(T)}
$$

2) Area inside circles

Farbstudie - Quadrate und konzentrische Ringe (Wassily Kandinsky)

$$
A(r)=\pi r^{2}
$$

$\widetilde{A}(r)$

$$
\mathrm{sec}=\lim _{r \searrow 0} 12 \frac{A(r)-\widetilde{A}(r)}{\pi r^{4}}
$$

3) Fancy formulas using Calculus

If surface is a graph, then:

$$
\sec =\frac{\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} F}{\partial y^{2}}-\left(\frac{\partial^{2} F}{\partial x \partial y}\right)^{2}}{\left(1+\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}\right)^{2}}
$$

$$
z=F(x, y)
$$

Curvature meets Topology, at last

Theorem (Gauss-Bonnet)

$$
\int_{M} \sec =2 \pi \chi(M)
$$

Corollary
If a surface has sec >0, then it must be a sphere.
Proof.
$0<\int_{M} \sec =2 \pi \chi(M)=2 \pi(2-2 g) \Longrightarrow g=0$

"Almost" local measurement

Need sufficiently large triangle, or circle, otherwise too close to " $0 / 0$ ".
$\sec =\frac{\alpha+\beta+\gamma-\pi}{\operatorname{Area}(T)}$
$\mathrm{sec}=\lim _{r \searrow 0} 12 \frac{A(r)-\widetilde{A}(r)}{\pi r^{4}}$

My current research

How do Curvature and Topology interact in higher dimensions?

- Topological obstructions to sec >0 ?
- If unobstructed, construct examples!
- Which deformations preserve sec >0 ?
- How rigid are shape optimizers?

Some of my colleagues whose research is related

J. Behrstock

M. Zeinalian

We hope you consider joining us!

Thank you for your attention!

