Bifurcating minimal surfaces with symmetries

Part 1: Symmetry reduction for minimal hypersurfaces

Renato G. Bettiol

Supported by NSF Award DMS-1904342 and NSF CAREER Award DMS-2142575.

Outline of the talk

1. Symmetry reduction for minimal hypersurfaces (Hsiang-Lawson)
2. Basic tools from Bifurcation theory
3. Minimal spheres in 3-ellipsoids
4. Minimal tori in 3-ellipsoids

Problem
Let $\mathrm{G} \curvearrowright(M, \mathrm{~g})$ be an isometric action. Find G-invariant Minimal hypersurfaces $\Sigma \subset M$. Setup

- $\pi: M \longrightarrow M / G$ quotient map
- $M_{p r} \subset M$ principal pert (open, deuce, connected)
- $\pi:\left(M_{p r}, \mathrm{~g}\right) \longrightarrow\left(M_{p r} / \mathrm{G}, \check{g}\right)$ Rem. Submersion
- Orbital volume function

$$
\begin{aligned}
V_{p r}: M_{p r} / G & \longrightarrow \mathbb{R} \\
x & \longmapsto \operatorname{Vol}_{M}\left(\pi^{-1}(x)\right)
\end{aligned}
$$

is smooth, extends to cont. function $V: M / G \longrightarrow \mathbb{R}$, such that $\left.V\right|_{\partial(M / G)} \equiv 0$

$$
\begin{aligned}
& \Omega:=\left(M_{p r} / G, V^{2 / k} \check{g}\right), \quad k:=\operatorname{dim} M_{p r} / G-1 \\
& =\operatorname{dim} \sum_{p r} / G
\end{aligned}
$$

Symmetry Reduction Theorem (Hsiang-Lawson)

$$
\begin{gathered}
\text { G-invariant hypersurface } \\
\Sigma \subset(M, \mathrm{~g}) \text { is minimal }
\end{gathered} \Longleftrightarrow \Sigma_{p r} / \mathrm{G} \subset \Omega \text { is minimal }
$$

Proof
$\Sigma \subset M$ is a G-invariant hypersurface: $\Sigma_{p r}=\bigcup_{x \in \Sigma_{p r} / G} \frac{\pi^{-1}(x)}{}$,

$$
\begin{aligned}
& V(x)=\operatorname{Vol}_{M}\left(\pi^{-1}(x)\right), \quad k=\operatorname{dim} \Sigma_{p r} / G \\
& \operatorname{Vol}_{M}(\Sigma)=\int_{\Sigma_{p r} / G} V(x) d x=\int_{\Sigma_{p r} / G} \frac{d \operatorname{vol} V^{2 / k} g}{}=\operatorname{Vol}_{\Omega}\left(\Sigma_{p r} / G\right)
\end{aligned}
$$

Pablais' Somm. Criticalty $\left.\downarrow \frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0} \operatorname{Vol} \ln \left(\Sigma_{t}\right)=0$,

$$
\sum \text { minimal in }(M, g)
$$

Actions of cohomogeneity 2

If $\operatorname{dim} \Omega=2$, then we're looking for geodesics $\Sigma_{p r} / G \subset \Omega$!

Ω
$\Sigma \subset M$ closed $\Longleftrightarrow\left\{\begin{array}{l}\Sigma_{p r} / G \subset \Omega \frac{\text { closed, }}{} / \text { if } \partial \Omega=\emptyset \\ \Sigma_{p r} / G \subset \Omega \text { free boundary, if } \partial \Omega \neq \emptyset\end{array}\right.$
$\Sigma \subset M$ embedded $\Longleftrightarrow \Sigma_{p r} / G \subset \Omega$ embedded.

Applications

Chern 1969: "Spherical Bernstein Problem"

Let \mathbb{S}^{n} be the unit round sphere. Is every embedded minimal $S^{n-1} \subset \mathbb{S}^{n}$ planar, i.e., congruent to an equator $\mathbb{S}^{n-1} \subset \mathbb{S}^{n}$?

- Almgren 1966: Yes, if $n=3$,
- Hsiang 1983: No, if $n=4,5,6,7,8,10,12,14, \ldots$

$$
\begin{gathered}
G \cap S^{n} \\
\operatorname{dim} S^{n} / G=2
\end{gathered}
$$

You 1987:
Are there any nonplanar embedded minimal spheres in
$E(a, b, c, d):=\left\{\vec{x} \in \mathbb{R}^{4}: \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}+\frac{x_{4}^{2}}{d^{2}}=1\right\}$?

tot geod.
Planar minimal spheres: $\Pi_{i}:=E(a, b, c, d) \cap\left\{x_{i}=0\right\}$

- Haslhofer-Ketover 2019: At last one, if a is large enough (using Min-Max theory and Mean Curvature Flow)
B.-Piccione 2021: Arbitrarily many, up to congruences if a is large enough, and either $b=e$ or $c=d$

Some other applications:

- Nonplanar minimal hypersurfaces of \mathbb{R}^{n} : Alencar 1993, Q.-M. Wang 1994, ...
- Nonplanar free boundary minimal surfaces in \mathbb{B}^{n} : Freidin-Gulian-McGrath 2017, Siffert-Wuzyk 2021
- Carlotto-Schulz 2022: Embedded minimal $T^{3} \subset \mathbb{S}^{4}$

Bifurcating minimal surfaces with symmetries

Part 2: Basic tools from Bifurcation theory

Renato G. Bettiol

Supported by NSF Award DMS-1904342 and NSF CAREER Award DMS-2142575.

Outline of the talk

1. Symmetry reduction for minimal hypersurfaces (Hsiang-Lawson)
2. Basic tools from Bifurcation theory
3. Minimal spheres in 3-ellipsoids
4. Minimal tori in 3-ellipsoids

"Bifurcation" (1885)

Topological change in the structure of a dynamical system when a parameter crosses a bifurcation value

SUR L'ÉQUILIBRE D'UNE MASSE FLUIDE
ANIMÉE D'UN MOUVEMENT DE ROTATION

PAR
H. POINCARE
a Paris.

§ 1. Introduction

Quelles sont les figures déquilibre relatif que peut affecter une masse fluide homogène dont toutes les molécules sattirent conformément à la loi de Newton et qui est animée autour d'un certain axe d'un mouvement de rotation uniforme?

Quelles sont les conditions de stabilité de cet équilibre?
Tels sont les deux problèmes qui forment l'objet de ce mémoire
On en connait depuis longtemps deux solutions: l'ellipsoïde de révolution et l'ellipsoide à trois axes inégaux de Jacobi. Je me propose d'établir qu'il y en a une infinité d'autres.

Mais je vais avant d'aller plus loin signaler un certain nombre de résultats que l'on trouve dans le Treatise on Natural Philosophy de MM Tait et Thomson, $2^{\text {me }}$ édition, 778. Sir William Thomson énonce la plupart de ces propositions sans aucune démonstration; pour quelques unes d'entre elles, il renvoie à des mémoires plus étendus insérés aux Philosophical Transactions.

Voici ces résultats, qui doivent nous servir de point de départ.
(a). L'ellipsoìde de révolution aplati est une figure d'équilibre toujours stable, si on impose à la masse fluide la condition d'affecter la forme d'un ellipsoïde de révolution.
teta mathematica. 7. Imprime le 16 septemure 1885

§ 2. Equilibre de bifurcation.

Considérons d'abord le cas où il s'agit d'un équilibre absolu et d'un système dont la position est définie par n quantités $x_{1}, x_{2}, \ldots, x_{n}$. Supposons qu'il y ait une fonction des forces $\boldsymbol{F}\left(x_{1}, x_{z}, \ldots, x_{n}\right)$ de façon que l'équilibre ait lieu quand toutes les dérivées de cette fonction s'annulent et qu'il soit stable quand cette fonction est maximum. Je supposerai qu'outre les quantités $x_{1}, x_{2}, \ldots, x_{n}$, il entre dans la fonction F un paramétre variable y, de telle sorte que les valeurs des x qui correspondent à l'équilibre dépendent de ce paramètre y.

Henri Poincaré

How to find nontrivial solutions out of trivial ones?

Try deforming trivial solutions until they become unstable:

$$
f(a, s)=0 \quad f(a, 0)=0, \quad \forall a \in \mathbb{R}
$$

parameter

$$
\begin{array}{ll}
\text { e.g., } f(a, s)=s^{3}-a s \quad s=0 \\
s^{3}=a s \quad \text { if } s \neq 0 \\
s^{2}=a . \quad \text { if } a>0, s= \pm \sqrt{a} \quad a_{*}=0
\end{array}
$$

$$
\frac{\partial f}{\partial s}(a, 0)=\left.\underline{\left(3 s^{2}-a\right)}\right|_{s=0}=-a
$$

$$
\frac{\partial^{2} f}{\partial a \partial s}(a, 0)=-1 \neq 0
$$

Local bifurcation
Theorem (Crandall-Rabinowitz)
Suppose $f(a, 0)=0, \forall a \in \mathbb{R}$, and

- $\frac{\partial f}{\partial f}\left(a_{*}, 0\right)=0$

$$
-\frac{\partial^{2} f}{\partial a \partial{ }_{s}}\left(a_{*}, 0\right) \neq 0
$$

Then $\exists U \ni\left(a_{*}, 0\right)$ such that

$$
f^{-1}(0) \cap U=\{(a, 0) \in U\} \cup B
$$

where \qquad
Proof.
Clever use of Implicit Function Thm.

Global bifurcation

$f:(0,+\infty) \times I \rightarrow \mathbb{R}$, l is an interval, $0 \in I$

Definition

A bifurcating branch \mathcal{B} is a connected component of $f^{-1}(0) \backslash \underbrace{\{(a, 0)\} \text {. }}_{\text {Priv }}$
Theorem (Rabinowitz)
If restriction of $(a, s) \mapsto a$ to $f^{-1}(0)$ is proper, then every branch \mathcal{B} either

- reconnects to trivial brand
- mon compact

Commercial break

Bifurcating minimal surfaces with symmetries

Part 3: Minimal spheres in 3-ellipsoids

Renato G. Bettiol

Supported by NSF Award DMS-1904342 and NSF CAREER Award DMS-2142575.

Outline of the talk

1. Symmetry reduction for minimal hypersurfaces (Hsiang-Lawson)
2. Basic tools from Bifurcation theory
3. Minimal spheres in 3-ellipsoids
4. Minimal tori in 3-ellipsoids

From Part 1: $E(a, b, c, d):=\left\{\vec{x} \in \mathbb{R}^{4}: \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}+\frac{\frac{x}{4}_{2}^{d^{2}}}{}=1\right\}$ Planar minimal spheres $\Pi_{i}:=E(a, b, c, d) \cap\left\{x_{i}=0\right\}, i=1,2,3,4$ Theorem (B.-Piccione, 2021) If $\underline{b}=c$ or $c=d$, the number of distinct nonplanar embedded minimal spheres in $E(a, b, c, d)$ goes to $+\infty$ as $a^{\lambda}+\infty$, and they converge to Π_{1} with increasing multiplicity.

In fact, if $b=c>d$, then $\lim _{a \neq+\infty} \frac{1}{a} \#\{$ distinct nonplanar min. spheres in $E(a, b, b, d)\} \geq \underline{1}$

Symmetry reduction setting:

$$
\left(S^{3}, \mathrm{~g}\right):=E(a, b, b, d)=\left\{\vec{x} \in \mathbb{R}^{4}: \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{b^{2}}+\frac{x_{4}^{2}}{d^{2}}=1\right\}
$$

- $\operatorname{Iso}\left(S^{3}, \mathrm{~g}\right) \supseteq \underline{\mathbb{Z}_{2} \times O(2) \times \mathbb{Z}_{2}}$. Set $G=\underline{O(2)}$
- $\mathrm{G}(x)=\left\{\left(x_{1}, x_{2} \cos \theta-x_{3} \sin \theta, x_{2} \sin \theta+x_{3} \cos \theta, x_{4}\right): \theta \in \mathbb{R}\right\}$
- $\left(S^{3}\right)^{G}=S^{3} \cap\left\{x_{2}=x_{3}=0\right\} \quad S_{p r}^{3}=S^{3} \backslash\left(S^{3}\right)^{G}$

$$
\begin{aligned}
& S^{3} \\
& l \pi \\
& \left(S^{3} / \mathrm{G}, \check{g}\right) \cong\left\{\left(x_{1}, r, x_{4}\right) \in \mathbb{R}^{3}: \frac{x_{1}^{2}}{a^{2}}+\frac{r^{2}}{b^{2}}+\frac{x_{4}^{2}}{d^{2}}=1, r \geq 0\right\} \\
> & \partial\left(S^{3} / \mathrm{G}\right)=\underline{\left(S^{3}\right)^{G}=\{r=0\}} \\
> & V=2 \pi r=2 \pi b \sqrt{1-\frac{x_{1}^{2}}{a^{2}}-\frac{x_{4}^{2}}{d^{2}}} \\
> & \Omega_{a}:=\left(S_{p r}^{3} / \mathrm{G}, \frac{\left.V^{2} \check{g}\right)}{\Re}\right.
\end{aligned}
$$

Symmetry Reduction Theorem:
G-invariant minimal
$\Sigma_{p r} / G \subset \Omega_{a}$ is a 2-sphere $\Sigma \subset\left(S^{3}, \mathrm{~g}\right)$
 free boundory geodexic

Geodesics on Ω_{a}

$$
\begin{aligned}
& \beta:[-\pi, \pi) \longrightarrow \partial \Omega_{a} \\
& \beta(s)=(a \cos s, d \sin s) \\
& \vec{v}_{s}=\text { unit normal of } \beta(s)
\end{aligned}
$$

Theorem
For each $s \in[-\pi, \pi)$, there is a unique maximal geodesic $\gamma_{s}:\left(0, \ell_{s}\right) \rightarrow \Omega_{a}$ that starts transversal to $\partial \Omega_{a}$ at $\beta(s)$.
Moreover, it satisfies $\lim _{t \searrow 0} \frac{\gamma_{s}^{\prime}(t)}{\left.\mid \gamma_{s}^{\prime}(t)\right)_{g}^{g}}=\underline{\vec{v}_{s}}$.

Proof [Hass-Norbry-Rubinitan]

- Let $x \in \Omega_{a}$ be sufficiently close to $\partial \Omega_{a}$
- Orbit $\pi^{-1}(x) \subset S^{3}$ is extremal and real-onalficic
- Plateau problem: least-area disk D_{x} with $\partial D_{x}=\pi^{-1}(x)$ exists and is
unique, Smooth, embedded, G-invariant
- $D_{x} \cap\left(S^{3}\right)^{G}=\{p\}, \pi(p)=\beta(s)$ for some s
- Symmetry Reduction: $\pi\left(D_{x} \backslash\{p\}\right) \subset \Omega_{a}$ is a geodesic γ
- $\lim _{t \searrow 0} \gamma(t)=\pi(p)=\beta(s) \in \partial \Omega_{a}$
$-\underline{\text { Dx }}$ smooth $\Longrightarrow \lim _{t \searrow 0} \frac{\gamma^{\prime}(t)}{\left|\gamma^{\prime}(t)\right| \check{\varepsilon}^{z}}=\vec{v}_{s}$

- Removable Singularity Thm. \& Maximum Princ.: Only geodesic starting transversal to $\beta(s)$ is γ.

Reflections on Ω_{a}

$$
\begin{aligned}
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \curvearrowright \Omega_{a} \\
\gamma_{\text {hor }} & :=\gamma_{0} \\
\gamma_{\text {ver }} & :=\gamma_{\frac{\pi}{2}}
\end{aligned}
$$

Trivial solutions (planar minimal spheres):

$$
\Sigma_{\text {hor }}:=\pi^{-1}\left(\gamma_{\text {hor }}\right)=\Pi_{4}, \quad \Sigma_{\text {ver }}:=\pi^{-1}\left(\gamma_{\text {ver }}\right)=\Pi_{1}
$$

- Find $\gamma_{s}, s \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, meeting $\gamma_{\text {ver }}$ orthogondlly, or at 0
- Reflect to get free boundary geodesic in Ω_{a}, then lift to M
- All geodesics $\gamma_{s}, s \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,
intersect γ var tronsvesaly do not self-intersect
Let $\gamma_{s}\left(\tau_{s}\right)$ be the first intersection! point w/ $\gamma_{\text {vera }}$, ie., $\left[\gamma_{s}\left(3_{s}\right)\right] x_{1}=0$

$s \mapsto \tau_{s}, s \mapsto \gamma_{s}$ are real-onalytic
$\left(f^{\text {odd }}\right)^{-1}(0) \quad\left(f^{\text {even }}\right)^{-1}(0)$

$$
f:(0,+\infty) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}
$$

$$
f^{\text {even }}(a, s)=\left[\gamma_{s}^{\prime}\left(\tau_{s}\right)\right]_{x_{4}}
$$

$$
f^{\text {odd }}(a, s)=\left[\gamma_{s}\left(\tau_{s}\right)\right]_{x_{4}}
$$

- $f(a, s)=0 \rightsquigarrow \begin{aligned} & \pi^{-1}\left(\gamma_{s}\right) \subset S^{3} \\ & \text { minimal 2-sphere }\end{aligned}$
- Trivially: $f(a, 0)=0$, for all a
- Look for bifurcations from 0

Linearized problem

$$
\begin{gathered}
f:(0,+\infty) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R} \\
f^{\text {even }}(a, s)=\left[\gamma_{s}^{\prime}\left(\tau_{s}\right)\right]_{x_{4}}, \quad f^{\text {oodd }}(a, s)=\left[\gamma_{s}\left(\tau_{s}\right)\right]_{x_{4}}
\end{gathered}
$$

- Reparametrize so that

$$
\tau_{s} \equiv 1, \forall a>0
$$

- Jacobi field along $\gamma_{\text {hor }}$

$$
J(t):=\left.\frac{\mathrm{d}}{\mathrm{ds}} \gamma_{s}(t)\right|_{s=0}
$$

$\rightarrow v_{a}:[0,1] \longrightarrow \mathbb{R}$
$v_{a}(t)=[J(t)]_{x_{4}}$

- $\frac{\partial f^{\text {even }}}{\partial s}(a, 0)=V_{a}^{\prime}(1)$
$-\frac{\partial^{2} f^{\text {even }}}{\partial a \partial s}(a, 0)=\frac{d}{d a} V_{a}^{\prime}(1)$

Singular Sturm-Liouville analysis

$\frac{\partial t^{\circ}}{\partial s}(a, s)=0$ corresponds to $\lambda=0$ being an eigenvalue of:

$$
\begin{cases}-\left(p_{a} v_{a}^{\prime}\right)^{\prime}+q_{a} v_{a}=\lambda p_{a} v_{a}, & 0<t<1 \\ a^{2} v_{a}(0)+d^{2} v_{a}^{\prime}(0)=0, & (\text { IC }) \\ v_{a}(1)=0 / v_{a}^{\prime}(1)=0, & (\mathrm{BC}, \bullet=\text { odd } / \text { even })\end{cases}
$$

Proposition
$\exists a_{n}^{\text {odd }}, a_{n}^{\text {even }} \nearrow+\infty$ such that

$$
\begin{aligned}
\frac{\partial f^{\bullet}}{\partial s}\left(a_{n}^{\bullet}, 0\right) & =0 \\
\frac{\partial^{2} f^{\bullet}}{\partial a \partial s}\left(a_{n}^{\bullet}, 0\right) & =\left.\frac{\partial}{\partial a} \lambda(a)\right|_{a=a_{n}^{*}}<0
\end{aligned}
$$

If $b=c=d=r$, then $a_{1}^{\text {odd }}=\underline{r}$.

By Crandall-Rabinowitz (Part 2), both $\left(f^{\circ o d d}\right)^{-1}(0)$ and ($\left.f^{\text {even }}\right)^{-1}(0)$ have infinitely many branches:

we still need to show that branches "persist" as a $\nearrow+\infty$

Last steps

- $N(a, \gamma):=\#\left\{\gamma \cap \gamma_{\text {hor }} \subset \Omega_{a}\right\}$
- $N\left(a, \gamma_{s}\right)$ is locally constant
- Let $\mathcal{B}_{n}^{\bullet} \subset\left(f^{\bullet}\right)^{-1}(0) \backslash\{(a, 0)\}$ be the branch issuing from $\left(a_{n}^{\bullet}, 0\right)$
- If $(a, s) \in \mathcal{B}_{n}^{\bullet}$, then $N\left(a, \gamma_{s}\right)= \begin{cases}2 n & \bullet=\text { even } \\ 2 n-1 & =\text { odd }\end{cases}$

$$
W(a, t)=2
$$

- Thus $\mathcal{B}_{n}^{\bullet}$ are disjoint, hence

Voncompact by Rabinowitz (Part 2)
$\begin{array}{ll}\text { Each }\{a\} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) & a>a_{1} \text { odd } \\ \text { can in } \\ \text { only finitely many } \\ \mathcal{B}_{n}^{*} \text { 's }\end{array}$
$|s| \nearrow \frac{\pi}{2}$ along \mathcal{B}_{n}° as a $\nearrow+\infty$, so minimal spheres converge to $\Sigma_{\text {er }}$ with multiplicity $2 n-1$, or $2 n$.

- $\mathcal{B}_{n}^{\text {even }}$ yield free body min. disks $-\frac{\pi}{2}$

Bonus: When do new minimal spheres bifurcate?

- Q: How to compute the bifurcation instants a_{n}^{\bullet} ?
- No closed formula, only an arithmetic equation involving infinite continued fractions (Heun functions)!
- If $b=c=d=1$, then we know $a_{1}^{\text {odd }}=1$. What is $a_{1}^{\text {even }}$?
- We have strong numeric evidence for:

Conjecture

If $b=c=d=1$, then
$a_{n}^{\text {odd }}=2 n-1$ and $a_{n}^{\text {even }}=\underline{2 n}$

- Similar to bifurcation of closed geodesics on 2-ellipsoids: instants at which Area $\left(\Pi_{i}\right)=\frac{4 \pi}{3}$ a of planar minimal 2-spheres $\Pi_{i} \subset E(a, 1,1,1), i=2,3,4$, is an integer multiple of $\operatorname{Area}\left(\Pi_{1}\right)=\frac{4 \pi}{3}$.

Bifurcating minimal surfaces with symmetries

Part 4: Minimal tori in 3-ellipsoids

Renato G. Bettiol

Supported by NSF Award DMS-1904342 and NSF CAREER Award DMS-2142575.

Outline of the talk

1. Symmetry reduction for minimal hypersurfaces (Hsiang-Lawson)
2. Basic tools from Bifurcation theory
3. Minimal spheres in 3-ellipsoids
4. Minimal tori in 3-ellipsoids

Similarly to Part 3, let
$\left(S^{3}, \mathrm{~g}\right):=E(a, a, b, b)=\left\{\vec{x} \in \mathbb{R}^{4}: \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{a^{2}}+\frac{x_{3}^{2}}{b^{2}}+\frac{x_{4}^{2}}{b^{2}}=1\right\}$

- $\operatorname{Iso}\left(S^{3}, \mathrm{~g}\right) \supseteq \underline{O(2) \times O(2)}$. Set $G=\underline{O(2)}$
- Consider the trivial minimal torus

$$
\Sigma_{a}:=\left\{x \in E(a, a, b, b): \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{a^{2}}=\frac{x_{3}^{2}}{b^{2}}+\frac{x_{1}^{2}}{b^{2}}=\frac{1}{2}\right\}
$$

Theorem (B.-Piccione, 2022)
For all $0<a<b / \sqrt{3}$, there is at least one G-invariant embedded minimal torus in $E(a, a, b, b)$ not congruent to Σ_{a}.

About minimal tori in spheres

Lawson Conjecture, proved by Brendle 2013
If $a=b=c=d$, then every embedded minimal torus in $E(a, a, a, a)$ is congruent to the Clifford torus Σ_{a}.

Theorem (White, 1989)
Every metric on S^{3} with Ric >0 has at least 1 embedded minimal torus.

Conjecture (White, 1989)
Every metric on S^{3} admits at least 5 embedded minimal tori.

Symmetry reduction setting:

- $\left(S^{3} / G, \check{g}\right) \cong\left\{\left(x_{1}, x_{2}, r\right) \in \mathbb{R}^{3}: \frac{x_{1}^{2}}{\partial^{2}}+\frac{x_{2}^{2}}{\partial^{2}}+\frac{r^{2}}{b^{2}}=1, r \geq 0\right\}$
- $\partial\left(S^{3} / G\right)=\left(S^{3}\right)^{G}=\{r=0\}$
- $V=2 \pi r=2 \pi b \sqrt{1-\frac{x_{2}^{2}}{a^{2}}-\frac{x_{2}^{2}}{a^{2}}}$
- $\Omega_{a}:=\left(S_{p r}^{3} / G, V^{2} \check{g}\right)$
- Note Ω_{a} is rotational squmetric, so geodesic ODE has a first integral!

Symmetry Reduction Theorem:
G-invariant minimal torus $\Sigma \subset\left(S^{3}, \mathrm{~g}\right)$
$\Sigma_{p r} / G \subset \Omega_{a}$ is a closed geodesics

Bifurcation setup

- Polar coordinates in $\Omega_{\mathrm{a}}:(\rho, \theta)$
- $\sigma(\theta):=$ radial segment at angle θ with x_{1} axis
$\gamma_{s}(t):=$ geodesic with $\gamma_{s}(t):=$ geodesic with
$\gamma_{s}(0)=(\rho(s), 0), \dot{\gamma}_{s}(0)=\frac{\partial}{\partial \theta}$, where $\left.I_{\exists} s \mapsto \rho(s), 0\right) \in \sigma(0)$ is so that γ_{0} is trivial closed geodesic
- Trivial solution: $\Sigma_{a}:=\pi^{-1}\left(\gamma_{0}\right)$

Find γ_{s} meeting $\sigma(\pi)$ Or thogonolly
-Reflect and lift back to S^{3}

- Write metric as $\mathrm{d} \rho^{2}+\varphi(\rho)^{2} \mathrm{~d} \theta^{2}$
- $(\rho(t), \theta(t))$ is a geodesic iff
$\ddot{\rho}-\varphi(\rho) \varphi^{\prime}(\rho) \dot{\theta}^{2}=0$
$\ddot{\theta}+2 \frac{\varphi^{\prime}(\rho)}{\varphi(\rho)} \dot{\rho} \dot{\theta}=0$
- Conserved quantity $\dot{\theta} \varphi(\rho)^{2}=c(\gamma)$
- θ is constant or monotonic, so can reparametrize $\gamma_{s}(t)$ as $\gamma_{s}(\theta)$
- Define the function

$$
\begin{aligned}
& f:(0,+\infty) \times I \longrightarrow \mathbb{R} \\
& \quad f(a, s)=\left[\gamma_{s}^{\prime}(\pi)\right]_{\frac{\partial}{\partial \rho}}
\end{aligned}
$$

- $f(a, s)=0 \rightsquigarrow \frac{\pi^{-1}\left(\gamma_{s}\right) \subset S^{3}}{\text { minimal torus }}$

- Trivially: $f(a, 0)=0$, for all a

Linearized problem

$$
\begin{gathered}
f:(0,+\infty) \times I \longrightarrow \mathbb{R} \\
f(a, s)=\left[\gamma_{s}^{\prime}(\pi)\right]_{\frac{\partial}{\partial \rho}}^{\partial_{\rho}}
\end{gathered}
$$

- Jacobi field along γ_{0}

$$
\begin{aligned}
J_{a}(\theta) & :=\left.\frac{\mathrm{d}}{\mathrm{~d} s} \gamma_{s}(\theta)\right|_{s=0} \\
& =\left(R_{a}(\theta), T_{a}(\theta)\right)
\end{aligned}
$$

- Jacobi equation:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\ddot{R}_{a}+\frac{4 a^{2}}{a^{2}+b^{2}} R_{a}=0 \\
(\pi a b)^{2} \dot{T}_{a}=\left.\frac{d}{d \varepsilon} c\left(\gamma_{\varepsilon}\right)\right|_{\varepsilon=0}
\end{array}\right. \\
& -\frac{\partial f}{\partial s}(a, 0)=\underline{R_{a}}(\pi) \\
& \frac{\partial^{2} f}{\partial a \partial s}(a, 0)=\frac{d}{d a} \dot{R}_{a}(\pi)
\end{aligned}
$$

With our boundary conditions,

$$
\begin{aligned}
R_{a}(\theta) & =\frac{\cos \left(\frac{2 a}{\sqrt{a^{2}+b^{2}}} \theta\right)}{\dot{R}_{a}(\pi)=0}
\end{aligned} \Longleftrightarrow \frac{2 a}{\sqrt{a^{2}+b^{2}}}=m \in \mathbb{Z}, ~\left(\frac{2 a}{\sqrt{a^{2}+b^{2}}}=1 .\right.
$$

Upshot

$$
\frac{\partial f}{\partial s}\left(\frac{b}{\sqrt{3}}, 0\right)=0 \quad \frac{\partial^{2} f}{\partial a \partial s}\left(\frac{b}{\sqrt{3}}, 0\right)>0
$$

Thus:

- Local bifurcation at $a=\frac{b}{\sqrt{3}}$, by Crandall-Rabinowitz (Part 2)
- This is the only bifurcation branch, hence honcompect by Rabinowitz (Part 2)
- Branch persists for all $0<a<\frac{b}{\sqrt{3}}$ as it cannot cross $a=b$ by Brendle's proof of Lawson conjecture

