

Facts in general domension
$$M>2$$
:
Bornet-Myers: SEC $\geqslant 1 \implies diam(M) \in \pi = diam(S^{*})$
 $\implies \pi_{1}(M)$ is finite
Synge: SEC>0, M over $\implies \pi_{1}(M) = \begin{cases} 1 & \text{if } M \text{ is orientable} \\ \mathbb{Z}_{2} & \text{if } M \text{ is orientable} \end{cases}$
 $M \text{ odd} \implies M$ is orientable.
 $M^{3} \implies S^{3}$ for the M is a second of the second $M \text{ odd} M$ is orientable.
 $M^{3} \implies D \implies D \implies Q \implies Q \implies Q$.
 $M^{3} \implies D^{3} \implies M^{2} \wedge S^{2}$ of the second back.
 $M \text{ orientable}$ is complete ($\pi_{3}M \text{ odd} \text{ orientable}$.
 $M^{3} \implies D \implies Q \implies Q \implies Q \implies Q \implies Q$.
 $M^{3} \implies D^{3} \implies S^{4} \ Cp^{2}$. (Conjecturely thus list is complete!)
 $M \text{ orientable}$ is $S^{4} \ Cp^{2}$. (Conjecturely thus list is complete!)
 $M \text{ of the orientable}$ $M^{2m}, \text{ sec > 0$? (Some of my work explores the ...)
 $\frac{dian M \ge 5}{2??}$
 $M \text{ of the orientable}$ $M^{2m}, \text{ sec > 0}$, have $\chi(M) > 0$? (Krean if dia M eq)
 $M \text{ othereworks } G, 7, 12, 13, 24$ $M \text{ obs they exist in Method dimensions to ?}$
 (m) (m) (m)

So what to do?
So what to do?
and Some Symmetry program: Classify manifolds u/ sec >0 and
(2000-...) large symmetry group.
Indusers:
• History-Kleiner Thin; If M4 has sec >0 and continues symmetries,
then M²=5⁴ or CP².
• Classification of homogeneous opeace W/ sec >0 (aboungenet) 0).
• New example in about M=7: exertic
$$T_4S^4$$
 w/ cohomogenety 1.
Take Alexadriv Geometry, critical point theory for distance functions, ...
9) New tools from Optimization / Real Alexadric Geometry
• Effective bounds on topolog of 4-manifolds w/ Ses = A
 $\chi(M) = \int R_R^{(R)} dV$. $G(M) = \int R_3(R) dV$ contained
 $M_1 = \int R_R^{(R)} dV$. $G(M) = \int R_3(R) dV$ contained
 M_2 examples in difference of the one of the one of the second of the sec