Grad student colloquium: Positive curvature
CONY GC 2022
$\operatorname{dim} M=2 \quad$ Surfaces
\sim This is 1 of 2 main areas of research in which I work.

Angle defect: $\operatorname{def}(T)=\alpha+\beta+\gamma-\pi$
(Gauss) curvature: $K(x)=\lim _{\substack{T \rightarrow x \\ T \rightarrow 0}} \frac{\operatorname{def}(T)}{\text { ocrea }(T)} \quad\binom{$ can also define with }{ some derivatives... }
Thus, $\int_{T} K(x) d A=\operatorname{def}(T)$.
Evener characteristic: $X(M)=|V|-|E|+|T|$

$$
\begin{aligned}
& \text { Pf: } \int_{M} K d A=\sum_{T} \int_{T} K d A=\sum_{T} \operatorname{def}(T) \\
& =2 \pi|v|-\pi|T| \\
& \begin{aligned}
2|E|=3|T| & =2 \pi|V|-\pi|T| \\
& =2 \pi|V|-2 \pi|E|+2 \pi|T|=2 \pi X(M) .
\end{aligned}
\end{aligned}
$$

Classification of (orientable) closed surfaces:

s^{2}
$x>0$
$k>0$

$x=0$
$k=0$

$$
\sum_{x<0} x(M)=2-2 g
$$

$$
K<0
$$ \# of hades

Thm (Uniformization). Every closed surface admits a metric with constant Gauss curvature $K \equiv C$. (only one you "see" in \mathbb{R}^{3} is S^{2} !)
Curvature in higher dimensions:

$\Sigma=\exp (\sigma)$ surface tangent to 2-plone σ. $\sec (\sigma)=K(x), \quad x \in \Sigma$.
"Sectional curvature"

Facts in general dimension $n \geqslant 2$:
Bonnet-Myers: $\operatorname{Sec} \geqslant 1 \Longrightarrow \operatorname{diam}(M) \leqslant \pi=\operatorname{diam}\left(S^{n}\right)$
$\Longrightarrow \pi_{1}(M)$ is finite.

Synge: $\sec >0, \quad n$ even $\Longrightarrow \pi_{1}(M)= \begin{cases}1 & \text { if } M \text { is orientable } \\ \mathbb{Z}_{2} & \text { if } M \text { is non-orientable }\end{cases}$ $n \operatorname{lod} \Longrightarrow M$ is orientable.

$$
\operatorname{dim} M=3
$$

- Thu (Hamitton, 1982). If M^{3} has $\sec >0$ and $\pi_{1} M=1$, then Rica flow evolves it to constant curvature, hence $M^{3} \xlongequal[\text { differ }]{\cong} S^{3}$.

$$
\operatorname{dim} M=4 \stackrel{? ?}{\rightleftarrows} \text { A lot of my research lately }
$$

- Known examples $\left(\pi_{1} M=1\right): S^{4} \cdot \mathbb{C P}^{2}$. (Conjecturally this list is complete!)
- Hopf Question 1: Does $S^{2} \times S^{2}$ admit $\sec >0$? (Some of my work explores this...) $\operatorname{dim} M \geq 5 ? ? ?$
- Hope Question 2: Does $M^{2 n}, \sec >0$, have $X(M)>0$? ((known if $\operatorname{dim} M=4$)
- Other than $S^{n}, \mathbb{C} P^{n}, H P^{n}, \mathrm{CaP}^{2}$, only know examples $w / \sec >0$ in dimensions 6, 7, 12, 13, 24 Do they exist in

So what to do?

1) Grove symmetry program: Classify manifolds w/sec>0 and

Landmarks: large symmetry group.

- Hsiang-Kleiner The: If M^{4} has $\sec >0$ and continues symmetries, then $M^{4} \cong S^{4}$ or $\mathbb{C P}$.
- Classification of homogeneous spaces w/ see >0 (chhomgenenity 0).
- New example in dim M=7: exotic $T_{1} S^{4} \quad w /$ cohomogerenety 1.

Toads: Alexadiov Geometry, critical point theory for distance functions,...

- Effective bounds on topology of 4 -manifolds $\omega / \delta \leq \sec \leq \Delta$

$$
X(M)=\int_{M} p_{x}(R) d V, \quad Z(M)=\int_{M} P_{z}(R) d V
$$

Key: Domain of P_{x}, P_{σ}

$$
\text { if } \delta \leq \sec \leq \Delta \text { hos }
$$

nice convex alfebro-geometric

\rightarrow Find $\mathrm{min} / \mathrm{max}$ of integrands, hence bounds on $X(M)$ and $3(M)$.

- Ongoing / Future work: 1) search for topological obstructions to $\sec >0$ and related curvature conditions in higher dimensions using those tools.

2) try to construct new examples!

Issue): . Cover algebro-geometric structure is less (obviously) nice

- Computations ore harder.

