Scalar curvature rigidity and extremality in dimension 4

Renato G. Bettiol

Scalar curvature rigidity and extremality

Definition

Let (M, g) be an oriented Riemannian manifold, g^{\prime} be a competitor metric on M,

$$
\mathrm{Sc}\left(\mathrm{~g}^{\prime}\right) \geq \mathrm{Sc}(\mathrm{~g}) \quad \text { and } \quad \wedge^{2} \mathrm{~g}^{\prime} \succeq \wedge^{2} \mathrm{~g} .
$$

Then:

- g is extremal if $\mathrm{Sc}\left(\mathrm{g}^{\prime}\right)=\mathrm{Sc}(\mathrm{g})$
- g is rigid if $\mathrm{g}^{\prime}=\mathrm{g}$

Kandinsky, "Circles in a Circle" (1923)

Remark
All results today hold with a more general definition allowing some topologically modified competitors $f:\left(N, g^{\prime}\right) \rightarrow(M, g)$.

Dimension 2 (and what one could hope for...)

Let $\left(M^{2}, \mathrm{~g}\right)$ be a Riemannian manifold with $\pi_{1}(M)=\{1\}$.

- If $\sec _{\mathrm{g}} \geq 0$, then g is \qquad extremal
- If $\sec _{g}>0$, then g is rigid

Proof.

By Uniformization, competitors are $\mathrm{g}^{\prime}=e^{2 u} \mathrm{~g}, \mathrm{~d} A^{\prime}=e^{2 u} \mathrm{~d} A$. If $\sec \left(\mathrm{g}^{\prime}\right) \geq \sec (\mathrm{g}) \geq 0$ and $\mathrm{d} A^{\prime} \succeq \mathrm{d} A$, then $e^{2 u} \geq 1$ and

$$
\begin{array}{rl|r}
0 & =\int_{M} \sec \left(\mathrm{~g}^{\prime}\right) \mathrm{d} A^{\prime}-\int_{M} \sec (\mathrm{~g}) \mathrm{d} A & \text { If } \sec \left(\mathrm{g}^{\prime}\right)=\sec (\mathrm{g})>0, \text { then } \\
& =\int_{M}\left(\sec \left(\mathrm{~g}^{\prime}\right) e^{2 u}-\sec (\mathrm{g})\right) \mathrm{d} A & \sec \left(\mathrm{~g}^{\prime}\right) e^{2 u}=\sec (\mathrm{g}) \\
& \geq \int_{M} \underbrace{\left(\sec \left(\mathrm{~g}^{\prime}\right)-\sec (\mathrm{g})\right)}_{\geq 0} \mathrm{~d} A & \Rightarrow \mathrm{~g}^{2 u}=1
\end{array}
$$

Llarull: $\left(S^{n}, g_{\text {round }}\right)$ is rigid.

Min-Oo, Goette-Semmelmann:
For a Riemannian manifold (M, g) with $\chi(M) \neq 0$,

- If $R_{\mathrm{g}} \succeq 0$, then g is extremal.
- If, in addition, $\frac{\mathrm{Sc}(\mathrm{g})}{2} \mathrm{~g} \succ \mathrm{Ric}_{\mathrm{g}} \succ 0 \quad$, then g is rigid.

For a Kähler manifold ($M, \mathrm{~g}$),

- If $\quad \mathrm{Ric}_{\mathrm{g}} \succeq 0$, then g is extremal.
- If $\operatorname{Ric}_{\mathrm{g}} \succ 0$, then g is rigid.

Other than on S^{n}, only examples are symmetric or Kähler!
From Gromov's "A Dozen Problems, Questions and Conjectures about Positive Scalar Curvature":
C. Problem. Find verifiable criteria for extremality and rigidity, decide which manifolds admit extremal/rigid metrics and describe particular classes of extremal/rigid manifolds.

For instance,
do all closed manifolds which admits metrics with $S c \geq 0$ also admit (length)
extremal metrics?

Dimension 4

Finsler-Thorpe trick
$\left(M^{4}, \mathrm{~g}\right)$ has $\sec _{\mathrm{g}} \geq 0 \Longleftrightarrow \exists \tau: M \rightarrow \mathbb{R}$ with $R_{\mathrm{g}}+\tau * \succeq 0$
Theorem (B. - Goodman, 2022)
Let $\left(M^{4}, \mathrm{~g}\right)$ be a Riemannian manifold with $\pi_{1}(M)=\{1\}$.

- If $\sec _{\mathrm{g}} \geq 0$ and $\tau: M \rightarrow \mathbb{R}$ such that $R_{\mathrm{g}}+\tau * \succeq 0$ can be chosen $\tau \geq 0$ or $\tau \leq 0$, then g is extremal
- If, in addition, $\frac{\mathrm{Sc}(\mathrm{g})}{2} \mathrm{~g} \succ \mathrm{Ric}_{\mathrm{g}} \succ 0$, then g is rigid

Corollary

(i) $\mathbb{C} P^{2} \# \mathbb{C} P^{2}$ has rigid metrics (Cheeger metrics)
(ii) $\mathbb{C} P^{2}$ has an open set of rigid metrics (generic holonomy)

Note: $\mathbb{C} P^{2} \# \mathbb{C} P^{2}$ does not admit metrics with $R \succeq 0$ nor Kähler metrics.

$$
\begin{aligned}
& R_{\mathrm{FS}}=\operatorname{diag}(0,0,6,2,2,2) \\
& *=\operatorname{diag}(1,1,1,-1,-1,-1)
\end{aligned}
$$

$$
\text { so } R+\tau * \succ 0 \text { if } \tau \equiv 1
$$

$$
\sec _{\mathrm{g}} \geq 0: S^{4}, \mathbb{C} P^{2}, S^{2} \times S^{2}, \mathbb{C} P^{2} \# \overline{\mathbb{C} P^{2}}, \mathbb{C} P^{2} \# \mathbb{C} P^{2}
$$

all have rigid metrics

$$
\sec _{\mathrm{g}}>0: \overline{S^{4}, \mathbb{C} P^{2}}
$$

all have open sets of rigid metrics
Theorem (B. - Mendes, 2017)
Let $\left(M^{4}, \mathrm{~g}\right)$ be a Riemannian manifold with $\pi_{1}(M)=\{1\}$. If $\sec _{\mathrm{g}} \geq 0$ and $\tau: M \rightarrow \mathbb{R}$ such that $R_{\mathrm{g}}+\tau * \succeq 0$ can be chosen $\tau \geq 0$ or $\tau \leq 0$, then either:

$$
M \cong_{\text {homeo }} \#^{k} \overline{\mathbb{C}} P^{2} \quad \text { or } M \cong_{\text {isom }}\left(S^{2} \times S^{2}, \mathrm{~g}_{\text {prod }}\right)
$$

Local version

Definition

Let (M, g) be a Riemannian manifold with boundary, g^{\prime} be a competitor metric,

$$
\begin{aligned}
\mathrm{Sc}\left(\mathrm{~g}^{\prime}\right) & \geq \mathrm{Sc}(\mathrm{~g}), & \wedge^{2} \mathrm{~g}^{\prime} & \succeq \wedge^{2} \mathrm{~g}, \\
H_{\partial M}\left(\mathrm{~g}^{\prime}\right) & \geq H_{\partial M}(\mathrm{~g}), & \left.\mathrm{g}^{\prime}\right|_{\partial M} & =\left.\mathrm{g}\right|_{\partial M} .
\end{aligned}
$$

- g is extremal if $\mathrm{Sc}\left(\mathrm{g}^{\prime}\right)=\mathrm{Sc}(\mathrm{g})$,

$$
H_{\partial m}\left(g^{\prime}\right)=H_{\partial m}(g)
$$

- g is rigid if $\mathrm{g}^{\prime}=\mathrm{g}$

Theorem (B. - Goodman, 2022)

Kandinsky, "Upward" (1929)

Let $\left(M^{4}, \mathrm{~g}\right)$ be a Riemannian manifold with convex boundary.

- If $\sec _{\mathrm{g}} \geq 0$ and $\tau: M \rightarrow \mathbb{R}$ such that $R_{\mathrm{g}}+\tau * \succeq 0$ can be chosen $\tau \geq 0$ or $\tau \leq 0$, then g is extremal
- If, in addition, $\frac{\mathrm{Sc}(\mathrm{g})}{2} \mathrm{~g} \succ \mathrm{Ric}_{\mathrm{g}} \succ 0$, then g is rigid

Example

 $\mathbb{C} P^{2} \backslash B \cong \nu\left(\mathbb{C} P^{1}\right)$ has rigid metrics (Cheeger metrics)Note: $\mathbb{C} P^{2} \backslash B$ does not admit metrics with $R \succeq 0$ and convex boundary.
Corollary
If $\left(X^{4}, \mathrm{~g}\right)$ has sec >0 at $p \in X$, then g is extremal on all sufficiently small convex neighborhoods of p.

- sec >0 on $p \in M \subset X \Rightarrow \exists \tau: M \rightarrow \mathbb{R}$ with $R+\tau * \succ 0$
- Shrink $M \ni \rho$ so that $\left.\tau\right|_{M}$ does not change sign

Upshot:
Cannot increase Sc nor $H_{\partial M}$ in convex neighborhoods M of points with sec >0 without decreasing areas or changing ∂M.

Outline of Proofs

Fix orientation of $\left(M^{4}, \mathrm{~g}\right)$ so that $R_{\mathrm{g}}+\tau * \succeq 0$ with $\tau \leq 0$.
Part I: Index Theory

- Globally defined twisted spinor bundle $S_{\mathrm{g}^{\prime}} \otimes S_{\mathrm{g}}^{+} \rightarrow M$.
- Twisted Dirac operator $D_{\mathrm{g}^{\prime}, \mathrm{g}}: \Gamma\left(S_{\mathrm{g}^{\prime}} \otimes S_{\mathrm{g}}^{+}\right) \rightarrow \Gamma\left(S_{\mathrm{g}^{\prime}} \otimes S_{\mathrm{g}}^{+}\right)$
$D_{\mathrm{g}^{\prime}, g}(\phi \otimes \psi)=\sum_{i=1}^{4}\left(e_{i} \nabla_{e_{i}}^{S_{\bar{g}}^{\prime}} \phi\right) \otimes \psi+\left(e_{i} \phi\right) \otimes\left(\nabla_{e_{i}}^{S_{g}} \psi\right), \quad D_{\mathrm{g}^{\prime}, \mathrm{g}}=\left(\begin{array}{cc}0 & D_{\mathrm{g}^{\prime}, g}^{-} \\ D_{\mathrm{g}^{\prime}, g}^{+} & 0\end{array}\right)$
- By the Atiyah-Singer Index Theorem,

$$
\text { ind } \begin{aligned}
D_{\mathrm{g}^{\prime}, \mathrm{g}}^{+} & =\left.\operatorname{ind}\left(\mathrm{d}+\mathrm{d}^{*}\right)\right|_{\wedge_{\mathrm{C}}^{+, \text {even }} T M} \quad\left(D_{\mathrm{g}, \mathrm{~g}} \text { conjugate to } d+d^{*} \text { via } S \otimes S \cong \wedge^{*} T M\right) \\
& =\left.\operatorname{dim} \operatorname{ker}\left(\mathrm{d}+\mathrm{d}^{*}\right)\right|_{\wedge_{\mathrm{C}}^{+, \text {even }} T M}-\left.\operatorname{dim} \operatorname{ker}\left(\mathrm{d}+\mathrm{d}^{*}\right)\right|_{\wedge_{\mathrm{C}}^{-, \text {odd }} T M} \\
& =1+b_{2}^{+}(M)-b_{1}(A A)>0 . \\
\underbrace{S \otimes S}_{\wedge_{\mathrm{C}}^{*}} & \cong \underbrace{\left(S^{+} \otimes S^{+}\right)}_{\wedge_{\mathrm{C}}^{+, \text {even }}} \oplus \underbrace{\left(S^{-} \otimes S^{-}\right)}_{\wedge_{\mathrm{C}}^{-, \text {even }}} \oplus \underbrace{\left(S^{+} \otimes S^{-}\right)}_{\wedge_{\mathrm{C}}^{-, \text {odd }}} \oplus \underbrace{\left(S^{-} \otimes S^{+}\right)}_{\wedge_{\mathrm{C}}^{+, \text {odd }}}
\end{aligned}
$$

- Thus $\exists \xi \in \Gamma\left(S_{\mathrm{g}^{\prime}}^{+} \otimes S_{\mathrm{g}}^{+}\right), \xi \not \equiv 0$, with $D_{\mathrm{g}^{\prime}, g}^{+} \xi=0$.

Outline of Proofs

Fix orientation of $\left(M^{4}, \mathrm{~g}\right)$ so that $R_{\mathrm{g}}+\tau * \succeq 0$ with $\tau \leq 0$.
Part II: Bochner-Lichnerowicz-Weitzenböck formula

- $D_{\mathrm{g}^{\prime}, \mathrm{g}}^{2}=\nabla^{*} \nabla+\frac{1}{4} \mathrm{Sc}\left(\mathrm{g}^{\prime}\right)-\frac{1}{8} \mathrm{Sc}(\mathrm{g})-\frac{1}{4} \operatorname{tr}\left(T^{*} R_{\mathrm{g}} T\right)+\mathcal{L}\left(R_{\mathrm{g}}\right)$, where

$$
\xrightarrow{\wedge^{2} \mathrm{~g}^{\prime} \xrightarrow{T} \wedge^{2} \mathrm{~g}, \quad \mathcal{L}(R) \succeq 0 \text { if } R \succeq 0, \quad \text { and }\left.\mathcal{L}(*)\right|_{S_{g^{+}} \otimes S_{\mathrm{B}}^{+}} \succeq 0}
$$

- Using sec ${ }_{\mathrm{g}} \geq 0$ and $\wedge^{2} \mathrm{~g}^{\prime} \succeq \wedge^{2} \mathrm{~g}$, we have $\operatorname{tr}\left(T^{*} R_{\mathrm{g}} T\right) \leq \frac{1}{2} \mathrm{Sc}(\mathrm{g})$.
- Thus $D_{\mathrm{g}^{\prime}, \mathrm{g}}^{2} \succeq \nabla^{*} \nabla+\frac{1}{4}\left(\mathrm{Sc}\left(\mathrm{g}^{\prime}\right)-\mathrm{Sc}(\mathrm{g})\right)$, so g is extremal:

$$
0=\int_{M}\left\langle D_{g^{\prime}, g}^{2} \xi, \xi\right\rangle \geq \int_{M}\|\nabla \xi\|^{2}+\frac{1}{4} \underbrace{\left(\mathrm{Sc}\left(\mathrm{~g}^{\prime}\right)-\mathrm{Sc}(\mathrm{~g})\right)}_{\geq 0}\|\xi\|^{2} .
$$

- Rigidity by same argument from Goette-Semmelmann.

Adaptations to case with boundary

Part I: Index Theory

- By the Atiyah-Patodi-Singer Index Theorem,

$$
\text { ind } D_{\mathrm{g}^{\prime}, \mathrm{g}}^{+}=\underline{\frac{1}{2}\left(\chi(M)+\sigma(M)+b_{0}(\partial M)+b_{2}(\partial M)\right)}
$$

- Using $\mathbb{I}_{\partial M} \succeq 0$ and Soul Theorem_, obtain ind $D_{\mathrm{g}^{\prime}, \mathrm{g}}^{+}>0$, so $\exists \xi \in \Gamma\left(S_{\mathrm{g}^{\prime}}^{+} \otimes S_{\mathrm{g}}^{+}\right), \xi \not \equiv 0$, with $D_{\mathrm{g}^{\prime}, \mathrm{g}}^{+} \xi=0$.

Part II: Bochner-Lichnerowicz-Weitzenböck formula

$$
\begin{aligned}
-0=\int_{M}\left\langle D_{g^{\prime}, g}^{2} \xi, \xi\right\rangle \geq & \int_{M}\|\nabla \xi\|^{2}+\frac{1}{4} \underbrace{\left(S c\left(g^{\prime}\right)-S c(g)\right)}_{\geq 0}\|\xi\|^{2} \\
& +\frac{1}{2} \int_{\partial M} \underbrace{\left(H_{\partial M}\left(\mathrm{~g}^{\prime}\right)-H_{\partial M}(\mathrm{~g})\right)}_{\geq 0}\|\xi\|^{2},
\end{aligned}
$$

thus g is extremal.

Topologically modified competitors

Definition

Let (M, g) be an oriented Riemannian manifold,

$$
\mathcal{C}=\left\{f:\left(N, g^{\prime}\right) \longrightarrow(M, g)\right\}
$$

be a class of competitors, where $\operatorname{dim} N=\operatorname{dim} M$, $f: N \rightarrow M$ are smooth spin maps with $\underline{\operatorname{deg} f \neq 0, ~}$

$$
\mathrm{Sc}\left(\mathrm{~g}^{\prime}\right) \geq \mathrm{Sc}(\mathrm{~g}) \circ f \quad \text { and } \quad \wedge^{2} \mathrm{~g}^{\prime} \succeq f^{*} \wedge^{2} \mathrm{~g} .
$$

Then:

- g is \mathcal{C}-extremal if $\mathrm{Sc}\left(\mathrm{g}^{\prime}\right)=\mathrm{Sc}(\mathrm{g}) \circ f, \forall f \in \mathcal{C}$
- g is \mathcal{C}-rigid if $\mathrm{g}^{\prime}=f^{*} \mathrm{~g}, \forall f \in \mathcal{C}$

Similarly for the case of manifolds with boundary.

Theorem (B. - Goodman, 2022)

Let $\left(M^{4}, \mathrm{~g}\right)$ be an oriented Riemannian manifold,

$$
\mathcal{C}=\left\{f:\left(N, g^{\prime}\right) \rightarrow(M, g): 2 \chi(M)+3 \sigma(M)>\frac{\sigma(N)}{\operatorname{deg} f}\right\}
$$

- If $R_{\mathrm{g}}+\tau * \succeq 0$ with $\tau \leq 0$, then g is \qquad
- If, in addition, $\frac{\mathrm{Sc}(\mathrm{g})}{2} \mathrm{~g} \succ \mathrm{Ric}_{\mathrm{g}} \succ 0$, then g is \mathcal{C}-rigid

Corollary

Assuming $N=M$ is simply-connected and definite, \mathcal{C} simplifies to

$$
\mathcal{C}^{\text {self }}=\left\{f:\left(M, g^{\prime}\right) \rightarrow(M, g): 4+\left(\frac{1}{\operatorname{deg} f}-1\right) b_{2}(M)>0\right\},
$$

hence includes self-maps of any degree if $\quad b_{2}(M) \leq 4$
In particular, this applies to $\mathbb{C} P^{2}$ and $\mathbb{C} P^{2} \# \mathbb{C} P^{2}$.

Theorem (B. - Goodman, 2022)

Let $\left(M^{4}, \mathrm{~g}\right)$ be an oriented Riemannian manifold with boundary,
$\mathcal{C}=\left\{f:\left(N, g^{\prime}\right) \rightarrow(M, g): \begin{array}{l}\left.f\right|_{\partial N} \text { is an oriented isometry onto } \partial M \text { and } \\ 2 \chi(M)+3 \sigma(M)+2 b_{0}(\partial M)+2 b_{2}(\partial M)>\sigma(N)\end{array}\right\}$

- If $\mathbb{I}_{\partial M} \succeq 0$ and $R_{\mathrm{g}}+\tau * \succeq 0$ with $\tau \leq 0$, then g is $\mathcal{\mathcal { C }}$-extremal
- If, in addition, $\frac{\mathrm{Sc}(\mathrm{g})}{2} \mathrm{~g} \succ \mathrm{Ric}_{\mathrm{g}} \succ 0$, then g is \mathcal{C}-rigid

Remark

By the Soul Theorem, if $\left(M^{4}, \mathrm{~g}\right)$ has $\sec _{\mathrm{g}} \geq 0$ and $\mathbb{I}_{\partial M} \succeq 0$, then the class \mathcal{C} with $N=M$ simplifies to

$$
\mathcal{C}=\left\{f:\left(M, g^{\prime}\right) \rightarrow(M, g):\left.f\right|_{\partial M} \text { is an oriented isometry onto } \partial M\right\}
$$

Thank you for your attention!

Finsler-Thorpe trick
$\left(M^{4}, \mathrm{~g}\right)$ has $\sec _{\mathrm{g}} \geq 0 \Longleftrightarrow \exists \tau: M \rightarrow \mathbb{R}$ with $R_{\mathrm{g}}+\tau * \succeq 0$.

Recall that $\sec _{\mathrm{g}}: \mathrm{Gr}_{2}\left(\mathbb{R}^{4}\right) \rightarrow \mathbb{R}$ is given by: $\sec _{\mathrm{g}}(\sigma)=\left\langle R_{\mathrm{g}} \sigma, \sigma\right\rangle, \quad \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right)=\left\{\sigma \in \wedge^{2} \mathbb{R}^{4}:\langle * \sigma, \sigma\rangle=0\right\}$

Lemma (Finsler, 1936)
Let $A, B \in \operatorname{Sym}^{2}\left(\mathbb{R}^{d}\right)$. The following are equivalent:
(i) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{d}$ such that $\langle B x, x\rangle=0$;
(ii) $\exists \tau \in \mathbb{R}$ such that $A+\tau B \succeq 0$.

