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Scalar curvature rigidity and extremality

Definition
Let (M , g) be an oriented Riemannian
manifold, g′ be a competitor metric on M ,

Sc(g′) ≥ Sc(g) and ∧2g′ � ∧2g.

Then:
I g is extremal if Sc(g′) = Sc(g)

I g is rigid if g′ = g Kandinsky, “Circles in a Circle” (1923)

Remark
All results today hold with a more general definition allowing
some topologically modified competitors f : (N , g′)→ (M , g).



Dimension 2 (and what one could hope for...)
Let (M2, g) be a Riemannian manifold with π1(M) = {1}.
I If secg ≥ 0, then g is extremal

I If secg > 0, then g is rigid

Proof.
By Uniformization, competitors are g′ = e2u g, dA′ = e2u dA.
If sec(g′) ≥ sec(g) ≥ 0 and dA′ � dA, then e2u ≥ 1 and

0 =

∫
M

sec(g′) dA′ −
∫
M

sec(g) dA

=

∫
M

(
sec(g′)e2u − sec(g)

)
dA

≥
∫
M

(
sec(g′)− sec(g)

)︸ ︷︷ ︸
≥0

dA

If sec(g′) = sec(g) > 0, then

����sec(g′)e2u = ����sec(g)

e2u = 1
⇒ g′ = g



Llarull: (Sn, ground) is rigid.

Min-Oo, Goette–Semmelmann:
For a Riemannian manifold (M , g) with χ(M) 6= 0,
I If Rg � 0 , then g is extremal.

I If, in addition, Sc(g)
2 g � Ricg � 0 , then g is rigid.

For a Kähler manifold (M , g),
I If Ricg � 0 , then g is extremal.
I If Ricg � 0 , then g is rigid.

Other than on Sn, only examples are symmetric or Kähler!
From Gromov’s “A Dozen Problems, Questions and Conjectures about Positive Scalar Curvature” :



Dimension 4
Finsler–Thorpe trick
(M4, g) has secg ≥ 0 ⇐⇒ ∃ τ : M → R with Rg + τ ∗ � 0

Theorem (B. – Goodman, 2022)
Let (M4, g) be a Riemannian manifold with π1(M) = {1}.
I If secg ≥ 0 and τ : M → R such that Rg + τ ∗ � 0 can be

chosen τ ≥ 0 or τ ≤ 0 , then g is extremal

I If, in addition, Sc(g)
2 g � Ricg � 0, then g is rigid

Corollary
(i) CP2#CP2 has rigid metrics (Cheeger metrics)

(ii) CP2 has an open set of rigid metrics (generic holonomy)

Note: CP2#CP2 does not admit metrics with R � 0 nor Kähler metrics.



CP2

RFS = diag(0, 0, 6, 2, 2, 2)

∗ = diag(1, 1, 1,−1,−1,−1)

so R + τ ∗ � 0 if τ ≡ 1

CP2#CP2

[picture of τ for Cheeger metric]

secg ≥ 0: S4, CP2, S2 × S2, CP2#CP2, CP2#CP2

secg > 0: all have rigid metrics
secg > 0: S4, CP2

secg > 0: all have open sets of rigid metrics

Theorem (B. – Mendes, 2017)
Let (M4, g) be a Riemannian manifold with π1(M) = {1}.
If secg ≥ 0 and τ : M → R such that Rg + τ ∗ � 0 can be
chosen τ ≥ 0 or τ ≤ 0, then either:

M ∼=homeo #kCP2 or M ∼=isom (S2 × S2, gprod)



Local version
Definition
Let (M , g) be a Riemannian manifold
with boundary, g′ be a competitor metric,

Sc(g′) ≥ Sc(g), ∧2g′ � ∧2g,
H∂M(g′) ≥ H∂M(g), g′|∂M = g|∂M .

I g is extremal if Sc(g′) = Sc(g),
H∂M(g′) = H∂M(g)

I g is rigid if g′ = g
Kandinsky, “Upward” (1929)

Theorem (B. – Goodman, 2022)
Let (M4, g) be a Riemannian manifold with convex boundary.
I If secg ≥ 0 and τ : M → R such that Rg + τ ∗ � 0 can be

chosen τ ≥ 0 or τ ≤ 0 , then g is extremal

I If, in addition, Sc(g)
2 g � Ricg � 0, then g is rigid



Example
CP2 \ B ∼= ν(CP1) has rigid metrics (Cheeger metrics)
Note: CP2 \ B does not admit metrics with R � 0 and convex boundary.

Corollary
If (X 4, g) has sec > 0 at p ∈ X , then g is extremal on all
sufficiently small convex neighborhoods of p.

I sec > 0 on p ∈ M ⊂ X ⇒ ∃ τ : M → R with R + τ ∗ � 0

I Shrink M 3 p so that τ |M does not change sign

Upshot:
Cannot increase Sc nor H∂M in convex neighborhoods M of
points with sec > 0 without decreasing areas or changing ∂M .



Outline of Proofs
Fix orientation of (M4, g) so that Rg + τ ∗ � 0 with τ ≤ 0.

Part I: Index Theory
I Globally defined twisted spinor bundle Sg′ ⊗ S+

g → M .
I Twisted Dirac operator Dg′,g : Γ(Sg′ ⊗ S+

g )→ Γ(Sg′ ⊗ S+
g )

Dg′,g(φ⊗ ψ) =
4∑

i=1

(
ei∇

S ′g
ei φ
)
⊗ ψ + (eiφ)⊗

(
∇Sg

ei ψ
)
, Dg′,g =

(
0 D−g′,g

D+
g′,g 0

)
I By the Atiyah–Singer Index Theorem,

indD+
g′,g = ind(d + d∗)|∧+,even

C
TM (Dg,g conjugate to d+d∗ via S⊗S∼=∧∗TM)

= dim ker(d + d∗)|∧+,even
C

TM − dim ker(d + d∗)|∧−,odd
C

TM

= 1 + b+2 (M)−����b1(M) > 0.

S ⊗ S︸ ︷︷ ︸
∧∗
C

∼= (S+ ⊗ S+)︸ ︷︷ ︸
∧+,even
C

⊕ (S− ⊗ S−)︸ ︷︷ ︸
∧−,even
C

⊕ (S+ ⊗ S−)︸ ︷︷ ︸
∧−,odd
C

⊕ (S− ⊗ S+)︸ ︷︷ ︸
∧+,odd
C

I Thus ∃ ξ ∈ Γ(S+
g′ ⊗ S+

g ), ξ 6≡ 0, with D+
g′,gξ = 0.



Outline of Proofs
Fix orientation of (M4, g) so that Rg + τ ∗ � 0 with τ ≤ 0.

Part II: Bochner–Lichnerowicz–Weitzenböck formula
I D2

g′,g = ∇∗∇+ 1
4Sc(g′)− 1

8Sc(g)− 1
4 tr
(
T ∗RgT

)
+L(Rg), where

∧2g′ T−→ ∧2g, L(R) � 0 if R � 0, and L(∗)|S+
g′⊗S

+
g
� 0

I L(Rg) = L(Rg + τ ∗)− τ L(∗) � 0 on S+
g′ ⊗ S+

g .

I Using secg ≥ 0 and ∧2g′ � ∧2g, we have tr
(
T ∗RgT

)
≤ 1

2Sc(g).

I Thus D2
g′,g � ∇∗∇+ 1

4

(
Sc(g′)− Sc(g)

)
, so g is extremal:

0 =

∫
M

〈D2
g′,gξ, ξ〉 ≥

∫
M

‖∇ξ‖2 + 1
4

(
Sc(g′)− Sc(g)

)︸ ︷︷ ︸
≥0

‖ξ‖2.

I Rigidity by same argument from Goette–Semmelmann.



Adaptations to case with boundary
Part I: Index Theory
I By the Atiyah–Patodi–Singer Index Theorem,

indD+
g′,g = 1

2

(
χ(M) + σ(M) + b0(∂M) + b2(∂M)

)
I Using II∂M � 0 and Soul Theorem , obtain indD+

g′,g > 0,
so ∃ ξ ∈ Γ(S+

g′ ⊗ S+
g ), ξ 6≡ 0, with D+

g′,gξ = 0.

Part II: Bochner–Lichnerowicz–Weitzenböck formula
I 0 =

∫
M

〈D2
g′,gξ, ξ〉 ≥

∫
M

‖∇ξ‖2 + 1
4

(
Sc(g′)− Sc(g)

)︸ ︷︷ ︸
≥0

‖ξ‖2

+1
2

∫
∂M

(
H∂M(g′)− H∂M(g)

)︸ ︷︷ ︸
≥0

‖ξ‖2,

thus g is extremal.



Topologically modified competitors

Definition
Let (M , g) be an oriented Riemannian manifold,

C =
{
f : (N , g′) −→ (M , g)

}
be a class of competitors, where dimN = dimM ,
f : N → M are smooth spin maps with deg f 6= 0 ,

Sc(g′) ≥ Sc(g) ◦ f and ∧2g′ � f ∗∧2g.

Then:
I g is C-extremal if Sc(g′) = Sc(g) ◦ f ,∀f ∈ C

I g is C-rigid if g′ = f ∗g, ∀f ∈ C

Similarly for the case of manifolds with boundary.

Kandinsky, “Stars” (1938)



Theorem (B. – Goodman, 2022)
Let (M4, g) be an oriented Riemannian manifold,

C =

{
f : (N , g′)→ (M , g) : 2χ(M) + 3σ(M) >

σ(N)

deg f

}
I If Rg + τ ∗ � 0 with τ ≤ 0, then g is C-extremal

I If, in addition, Sc(g)
2 g � Ricg � 0, then g is C-rigid

Corollary
Assuming N = M is simply-connected and definite, C simplifies to

Cself =

{
f : (M , g′)→ (M , g) : 4 +

(
1

deg f
− 1
)
b2(M) > 0

}
,

hence includes self-maps of any degree if b2(M) ≤ 4

In particular, this applies to CP2 and CP2#CP2.



Theorem (B. – Goodman, 2022)
Let (M4, g) be an oriented Riemannian manifold with boundary,

C =
{
f : (N , g′)→ (M , g) : f |∂N is an oriented isometry onto ∂M and

2χ(M) + 3σ(M) + 2b0(∂M) + 2b2(∂M) > σ(N)

}
I If II∂M � 0 and Rg + τ ∗ � 0 with τ ≤ 0, then g is C-extremal

I If, in addition, Sc(g)
2 g � Ricg � 0, then g is C-rigid

Remark
By the Soul Theorem, if (M4, g) has secg ≥ 0 and II∂M � 0, then the
class C with N = M simplifies to

C =
{
f : (M , g′)→ (M , g) : f |∂M is an oriented isometry onto ∂M

}



Thank you for your attention!







Finsler–Thorpe trick
(M4, g) has secg ≥ 0 ⇐⇒ ∃ τ : M → R with Rg + τ ∗ � 0.

Recall that secg : Gr2(R4)→ R is given by:
secg(σ) = 〈Rg σ, σ〉, Gr2(R4) = {σ ∈ ∧2R4 : 〈∗σ, σ〉 = 0}

Lemma (Finsler, 1936)
Let A,B ∈ Sym2(Rd). The following are equivalent:
(i) 〈Ax , x〉 ≥ 0 for all x ∈ Rd such that 〈Bx , x〉 = 0;

(ii) ∃ τ ∈ R such that A + τB � 0.


