Scalar curvature rigidity and extremality in dimension 4

Renato G. Bettiol

Scalar curvature rigidity and extremality

Definition

Let (M, g) be an oriented Riemannian manifold, g' be a *competitor metric* on M,

 $\mathsf{Sc}(g') \ge \mathsf{Sc}(g) \text{ and } \wedge^2 g' \succeq \wedge^2 g.$

Then:

- g is extremal if Sc(g') = Sc(g)
- g is *rigid* if g' = g

Kandinsky, "Circles in a Circle" (1923)

Remark

All results today hold with a more general definition allowing some topologically modified competitors $f: (N, g') \rightarrow (M, g)$.

Dimension 2 (and what one could hope for...) Let (M^2, g) be a Riemannian manifold with $\pi_1(M) = \{1\}$.

- \blacktriangleright If sec_g \geq 0, then ${\rm g}$ is _____extremal____
- \blacktriangleright If sec_g > 0, then ${\rm g}$ is _____rigid

Proof.

By Uniformization, competitors are $g' = e^{2u} g$, $dA' = e^{2u} dA$. If $sec(g') \ge sec(g) \ge 0$ and $dA' \succeq dA$, then $e^{2u} \ge 1$ and

$$0 = \int_{M} \sec(g') dA' - \int_{M} \sec(g) dA$$

$$= \int_{M} (\sec(g')e^{2u} - \sec(g)) dA$$

$$\geq \int_{M} \underbrace{(\sec(g') - \sec(g))}_{\geq 0} dA$$

$$= \int_{M} \underbrace{(\sec(g') - \sec(g))}_{\geq 0} dA$$

$$= \int_{M} \underbrace{(\sec(g') - \sec(g))}_{\geq 0} dA$$

Larull: (S^n, g_{round}) is rigid.

Min-Oo, Goette-Semmelmann:

For a Riemannian manifold (M,g) with $\chi(M) \neq 0$,

• If
$$R_{
m g} \succeq 0$$
 , then g is extremal.

▶ If, in addition, $\frac{Sc(g)}{2}g \succ Ric_g \succ 0$, then g is rigid.

For a Kähler manifold (M, g),

▶ If
$$\operatorname{Ric}_{g} \succeq 0$$
, then g is extremal.

• If
$$\operatorname{Ric}_{g} \succ 0$$
 , then g is rigid.

Other than on Sⁿ, only examples are symmetric or Kähler!

From Gromov's "A Dozen Problems, Questions and Conjectures about Positive Scalar Curvature":

For instance,

do all closed manifolds which admits metrics with $Sc \geq 0$ also admit (length) extremal metrics?

Dimension 4

Finsler-Thorpe trick (M^4, g) has $\sec_g \ge 0$ $\exists \tau \colon M \to \mathbb{R}$ with $R_g + \tau * \succeq 0$

Theorem (B. - Goodman, 2022)
Let (M⁴, g) be a Riemannian manifold with π₁(M) = {1}.
If sec_g ≥ 0 and τ: M → ℝ such that R_g + τ * ≿ 0 can be chosen τ ≥ 0 or τ ≤ 0, then g is ______
If, in addition, Sc(g)/2 p > Ric_g > 0, then g is ______

Corollary

(i) $\mathbb{C}P^2 \# \mathbb{C}P^2$ has <u>rigid metrics (Cheeger metrics)</u> (ii) $\mathbb{C}P^2$ has <u>an open set of rigid metrics (generic holonomy)</u> Note: $\mathbb{C}P^2 \# \mathbb{C}P^2$ does not admit metrics with $R \succeq 0$ nor Kähler metrics.

$\mathbb{C}P^2$	$\mathbb{C}P^2 \# \mathbb{C}P^2$
$\textit{R}_{\rm FS} = {\sf diag}(0,0,6,2,2,2)$	
* = diag(1, 1, 1, -1, -1, -1)	[picture of $ au$ for Cheeger metric]
so $R + \tau * \succ 0$ if $\tau \equiv 1$	
$sec_{\mathrm{g}} \geq 0$: S^4 , $\mathbb{C}P^2$, $S^2 imes S^2$, $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$, $\mathbb{C}P^2 \# \mathbb{C}P^2$	
all have rigid metrics	
${ m sec}_{ m g}>$ 0: $\overline{S^4}$, ${\mathbb C}P^2$	
all have open sets of rigid metrics	
Theorem (B. – Mendes, 2017)	
Let (M^4, g) be a Riemannian manifold with $\pi_1(M) = \{1\}$.	
If ${\sf sec}_{ m g} \geq 0$ and $ au \colon {\it M} o {\mathbb R}$ such that ${\it R}_{ m g} + au st \succeq 0$ can be	
chosen $ au \geq$ 0 or $ au \leq$ 0, then either:	
$M\cong_{homeo}\#^k\mathbb{C}P^2$ or $M\cong_{isom}(S^2 imes S^2,\mathrm{g}_{prod})$	

Local version

Definition

Let (M, g) be a Riemannian manifold with boundary, g' be a *competitor metric*,

 $Sc(g') \ge Sc(g), \qquad \wedge^2 g' \succeq \wedge^2 g,$ $H_{\partial M}(g') > H_{\partial M}(g), \quad g'|_{\partial M} = g|_{\partial M}.$

• g is *extremal* if
$$Sc(g') = Sc(g), H_{\partial M}(g') = H_{\partial M}(g)$$

• g is *rigid* if g' = g

Kandinsky, "Upward" (1929)

Theorem (B. – Goodman, 2022) Let (M^4, g) be a Riemannian manifold with convex boundary. ▶ If $\sec_{g} \geq 0$ and $\tau: M \to \mathbb{R}$ such that $R_{g} + \tau * \succeq 0$ can be chosen $\tau \geq 0$ or $\tau \leq 0$, then g is <u>extremal</u> ▶ If, in addition, $\frac{Sc(g)}{2}g \succ Ric_g \succ 0$, then g is rigid

Example

 $\mathbb{C}P^2 \setminus B \cong \nu(\mathbb{C}P^1)$ has rigid metrics (Cheeger metrics) Note: $\mathbb{C}P^2 \setminus B$ does not admit metrics with $R \succeq 0$ and convex boundary. Corollary

If (X^4, g) has sec > 0 at $p \in X$, then g is extremal on all sufficiently small convex neighborhoods of p.

▶ sec > 0 on
$$p \in M \subset X \Rightarrow \exists \tau \colon M \to \mathbb{R}$$
 with $R + \tau * \succ 0$

Shrink
$$M \ni p$$
 so that $\tau|_M$ does not change sign

Upshot:

Cannot increase Sc nor $H_{\partial M}$ in convex neighborhoods M of points with sec > 0 without decreasing areas or changing ∂M .

Outline of Proofs Fix orientation of (M^4, g) so that $R_g + \tau * \succeq 0$ with $\tau \le 0$.

Part I: Index Theory

- Globally defined twisted spinor bundle $S_{g'} \otimes S_{g}^+ \to M$.
- ► Twisted Dirac operator $D_{g',g}$: $\Gamma(S_{g'} \otimes S_{g}^{+}) \rightarrow \Gamma(S_{g'} \otimes S_{g}^{+})$

$$D_{\mathbf{g}',\mathbf{g}}(\phi \otimes \psi) = \sum_{i=1}^{4} \left(e_i \nabla_{e_i}^{\mathbf{S}'_{\mathbf{g}}} \phi \right) \otimes \psi + \left(e_i \phi \right) \otimes \left(\nabla_{e_i}^{\mathbf{S}_{\mathbf{g}}} \psi \right), \quad D_{\mathbf{g}',\mathbf{g}} = \begin{pmatrix} 0 & D_{\mathbf{g}',\mathbf{g}}^{-} \\ D_{\mathbf{g}',\mathbf{g}}^{+} & 0 \end{pmatrix}$$

By the Atiyah–Singer Index Theorem,

$$\begin{aligned} \operatorname{ind} D_{g',g}^{+} &= \operatorname{ind}(d + d^{*})|_{\wedge_{\mathbb{C}}^{+,\operatorname{even}}TM} \quad (D_{g,g} \text{ conjugate to } d + d^{*} \text{ via } S \otimes S \cong \wedge^{*}TM) \\ &= \dim \operatorname{ker}(d + d^{*})|_{\wedge_{\mathbb{C}}^{+,\operatorname{even}}TM} - \dim \operatorname{ker}(d + d^{*})|_{\wedge_{\mathbb{C}}^{-,\operatorname{odd}}TM} \\ &= 1 + b_{2}^{+}(M) - b_{1}(M) > 0. \end{aligned}$$

Outline of Proofs

Fix orientation of (M^4, g) so that $R_g + \tau * \succeq 0$ with $\tau \leq 0$.

Part II: Bochner–Lichnerowicz–Weitzenböck formula

► $D_{\mathbf{g}',\mathbf{g}}^2 = \nabla^* \nabla + \frac{1}{4} \mathsf{Sc}(\mathbf{g}') - \frac{1}{8} \mathsf{Sc}(\mathbf{g}) - \frac{1}{4} \operatorname{tr}(T^* R_{\mathbf{g}} T) + \mathcal{L}(R_{\mathbf{g}}), \text{ where}$ $\wedge^2 \mathbf{g}' \xrightarrow{T} \wedge^2 \mathbf{g}, \quad \mathcal{L}(R) \succeq 0 \text{ if } R \succeq 0, \text{ and } \mathcal{L}(*)|_{\mathcal{S}_{\mathbf{g}'}^+ \otimes \mathcal{S}_{\mathbf{g}}^+} \succeq 0$

►
$$\mathcal{L}(R_{\rm g}) = \underline{\mathcal{L}(R_{\rm g} + \tau *) - \tau \mathcal{L}(*) \succeq 0}$$
 on $S_{\rm g'}^+ \otimes S_{\rm g}^+$.

▶ Using sec_g ≥ 0 and $\wedge^2 g' \succeq \wedge^2 g$, we have tr $(T^*R_gT) \leq \frac{1}{2}Sc(g)$.

► Thus $D_{\mathbf{g}',\mathbf{g}}^2 \succeq \nabla^* \nabla + \frac{1}{4} \left(\mathsf{Sc}(\mathbf{g}') - \mathsf{Sc}(\mathbf{g}) \right)$, so g is extremal: $0 = \int_M \langle D_{\mathbf{g}',\mathbf{g}}^2 \xi, \xi \rangle \ge \int_M \|\nabla \xi\|^2 + \frac{1}{4} \underbrace{\left(\mathsf{Sc}(\mathbf{g}') - \mathsf{Sc}(\mathbf{g}) \right)}_{\ge 0} \|\xi\|^2.$

Rigidity by same argument from Goette–Semmelmann.

Adaptations to case with boundary

Part I: Index Theory

▶ By the Atiyah–Patodi–Singer Index Theorem,

ind
$$D_{\mathbf{g}',\mathbf{g}}^+ = \underline{\frac{1}{2}} (\chi(M) + \sigma(M) + b_0(\partial M) + b_2(\partial M))$$

► Using $\mathbb{I}_{\partial M} \succeq 0$ and <u>Soul Theorem</u>, obtain ind $D_{g',g}^+ > 0$, so $\exists \xi \in \Gamma(S_{g'}^+ \otimes S_g^+), \xi \not\equiv 0$, with $D_{g',g}^+ \xi = 0$.

Part II: Bochner–Lichnerowicz–Weitzenböck formula $\bullet \ 0 = \int_{M} \langle D_{g',g}^{2}\xi,\xi\rangle \geq \int_{M} \|\nabla\xi\|^{2} + \frac{1}{4} \underbrace{\left(\operatorname{Sc}(g') - \operatorname{Sc}(g)\right)}_{\geq 0} \|\xi\|^{2} + \frac{1}{2} \int_{\partial M} \underbrace{\left(\underline{H_{\partial M}(g') - H_{\partial M}(g)}_{\geq 0}\right)}_{\geq 0} \|\xi\|^{2},$ thus g is extremal.

Topologically modified competitors

Definition

Let (M, g) be an oriented Riemannian manifold,

$$\mathcal{C} = \left\{ f : (N, g') \longrightarrow (M, g) \right\}$$

be a class of competitors, where $\underline{\dim N} = \underline{\dim M}$, $f: N \to M$ are smooth spin maps with $\underline{\deg f \neq 0}$,

$$\mathsf{Sc}(g') \ge \mathsf{Sc}(g) \circ f$$
 and $\wedge^2 g' \succeq f^* \wedge^2 g$.

Then:

- g is C-extremal if $Sc(g') = Sc(g) \circ f, \forall f \in C$
- g is C-*rigid* if $g' = f^*g, \forall f \in C$

Similarly for the case of manifolds with boundary.

Kandinsky, "Stars" (1938)

Theorem (B. – Goodman, 2022) Let (M^4, g) be an oriented Riemannian manifold,

$$\mathcal{C} = \left\{ f : (\mathbf{N}, \mathbf{g}') \to (\mathbf{M}, \mathbf{g}) : 2\chi(\mathbf{M}) + 3\sigma(\mathbf{M}) > \frac{\sigma(\mathbf{N})}{\deg f} \right\}$$

▶ If, in addition,
$$\frac{Sc(g)}{2}g \succ Ric_g \succ 0$$
, then g is *C*-rigid

Corollary

Assuming N = M is simply-connected and definite, C simplifies to

$$\mathcal{C}^{\mathrm{self}} = \left\{ f \colon (M, \mathrm{g}') \to (M, \mathrm{g}) : 4 + \left(\frac{1}{\deg f} - 1\right) b_2(M) > 0 \right\},$$

hence includes self-maps of any degree if $b_2(M) \leq 4$

In particular, this applies to $\mathbb{C}P^2$ and $\mathbb{C}P^2 \# \mathbb{C}P^2$.

Theorem (B. – Goodman, 2022) Let (M^4 , g) be an oriented Riemannian manifold with boundary, $C = \left\{ f: (N, g') \rightarrow (M, g): \begin{array}{l} f|_{\partial N} \text{ is an oriented isometry onto } \partial M \text{ and} \\ 2\chi(M) + 3\sigma(M) + 2b_0(\partial M) + 2b_2(\partial M) > \sigma(N) \end{array} \right\}$ $\blacktriangleright If II_{\partial M} \succeq 0 \text{ and } R_g + \tau * \succeq 0 \text{ with } \tau \leq 0, \text{ then g is } \underline{C\text{-extremal}}$ $\blacktriangleright If, \text{ in addition, } \frac{\operatorname{Sc}(g)}{2}g \succ \operatorname{Ric}_g \succ 0, \text{ then g is } \underline{C\text{-rigid}}$

Remark

By the Soul Theorem, if (M^4, g) has $\sec_g \ge 0$ and $\mathbb{I}_{\partial M} \succeq 0$, then the class \mathcal{C} with N = M simplifies to

 $\mathcal{C} = \left\{ f \colon (M, \mathrm{g}') \to (M, \mathrm{g}) \colon f|_{\partial M} \text{ is an oriented isometry onto } \partial M \right\}$

Thank you for your attention!

Finsler-Thorpe trick (M^4 , g) has sec_g $\geq 0 \iff \exists \tau \colon M \to \mathbb{R}$ with $R_g + \tau * \succeq 0$.

Recall that $\operatorname{sec}_{g} \colon \operatorname{Gr}_{2}(\mathbb{R}^{4}) \to \mathbb{R}$ is given by: $\operatorname{sec}_{g}(\sigma) = \langle R_{g} \sigma, \sigma \rangle, \quad \operatorname{Gr}_{2}(\mathbb{R}^{4}) = \{ \sigma \in \wedge^{2} \mathbb{R}^{4} : \langle * \sigma, \sigma \rangle = 0 \}$

Lemma (Finsler, 1936) Let $A, B \in \text{Sym}^2(\mathbb{R}^d)$. The following are equivalent: (i) $\langle Ax, x \rangle \geq 0$ for all $x \in \mathbb{R}^d$ such that $\langle Bx, x \rangle = 0$; (ii) $\exists \tau \in \mathbb{R}$ such that $A + \tau B \succeq 0$.