Curvature operators and rational cobordism

Renato G. Bettiol
joint with McFeely Jackson Goodman (UC Berkeley)

Theorem (Lichnerowicz, 1963) If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.

Theorem (Lichnerowicz, 1963)
If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.

Proof.
If $\hat{A}(M) \neq 0$,

Theorem (Lichnerowicz, 1963)
If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.
Proof.
If $\hat{A}(M) \neq 0$, then, by the Atiyah-Singer Index Theorem, the Dirac operator D has nontrivial kernel,

Theorem (Lichnerowicz, 1963)
If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.
Proof.
If $\hat{A}(M) \neq 0$, then, by the Atiyah-Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^{2}=\nabla^{*} \nabla+\frac{\text { scal }}{4}$.

Theorem (Lichnerowicz, 1963)
If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.

Proof.
If $\hat{A}(M) \neq 0$, then, by the Atiyah-Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^{2}=\nabla^{*} \nabla+\frac{\text { scal }}{4}$.
Example (Fermat quartic / Kummer surface) $M^{4}=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0\right\} \subset \mathbb{C} P^{3}$ is spin, and $\hat{A}\left(M^{4}\right) \neq 0$.

Theorem (Lichnerowicz, 1963)
If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.

Proof.
If $\hat{A}(M) \neq 0$, then, by the Atiyah-Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^{2}=\nabla^{*} \nabla+\frac{\text { scal }}{4}$.

Our goal
Prove similar obstructions to other curvature conditions:

Theorem (Lichnerowicz, 1963)
If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.

Proof.
If $\hat{A}(M) \neq 0$, then, by the Atiyah-Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^{2}=\nabla^{*} \nabla+\frac{\text { scal }}{4}$.

Our goal
Prove similar obstructions to other curvature conditions:

- weak enough to be satisfied by lots of manifolds;

Theorem (Lichnerowicz, 1963)
If $(M, \mathrm{~g})$ is a closed Riemannian spin manifold with scal >0, then $\hat{A}(M)=0$.

Proof.
If $\hat{A}(M) \neq 0$, then, by the Atiyah-Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^{2}=\nabla^{*} \nabla+\frac{\text { scal }}{4}$.

Our goal
Prove similar obstructions to other curvature conditions:

- weak enough to be satisfied by lots of manifolds;
- strong enough to restrict their rational cobordism type.

Strategy: twisted spinors

($M^{n}, \mathrm{~g}$) closed spin manifold, $E \rightarrow M$ complex vector bundle

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold,
$E \rightarrow M$ complex vector bundle

> Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold, $E \rightarrow M$ complex vector bundle\rightsquigarrowTwisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold,
$E \rightarrow M$ complex vector bundle
:---
$D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathbb{C}}, \operatorname{Sym}^{p} T M_{\mathbb{C}} \ldots$:
- depends only on rational oriented cobordism class of M

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold,

$E \rightarrow M$ complex vector bundle \rightsquigarrow| Twisted Dirac operator |
| :--- |
| $D_{E}: S \otimes E \rightarrow S \otimes E$ |

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathbb{C}}, \operatorname{Sym}^{p} T M_{\mathbb{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold,

$E \rightarrow M$ complex vector bundle \leadsto| Twisted Dirac operator |
| :--- |
| $D_{E}: S \otimes E \rightarrow S \otimes E$ |

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathbb{C}}, \operatorname{Sym}^{p} T M_{\mathbb{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M
$\hat{A}\left(M^{4}\right)=-\frac{p_{1}}{24}$

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold, $E \rightarrow M$ complex vector bundle\leadstoTwisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathbb{C}}, \operatorname{Sym}^{p} T M_{\mathbb{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M
$\hat{A}\left(M^{4}\right)=-\frac{p_{1}}{24}$
$\hat{A}\left(M^{8}\right)=\frac{7 p_{1}^{2}-4 p_{2}}{5760}$

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold,

Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathbb{C}}, \operatorname{Sym}^{p} T M_{\mathbb{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

$$
\begin{aligned}
& \hat{A}\left(M^{4}\right)=-\frac{p_{1}}{24} \\
& \hat{A}\left(M^{8}\right)=\frac{7 p_{1}^{2}-4 p_{2}}{5760} \\
& \hat{A}\left(M^{12}\right)=\frac{-31 p_{1}^{3}+44 p_{1} p_{2}-16 p_{3}}{967680}
\end{aligned}
$$

Strategy: twisted spinors

(M^{n}, g) closed spin manifold, $E \rightarrow M$ complex vector bundle

Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathrm{C}}, \mathrm{Sym}^{p} T M_{\mathrm{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M
$\hat{A}\left(M^{4}\right)=-\frac{p_{1}}{24}$
$\hat{A}\left(M^{8}\right)=\frac{7 p_{1}^{2}-4 p_{2}}{5760}$
$\hat{A}\left(M^{12}\right)=\frac{-31 p_{1}^{3}+44 p_{1} p_{2}-16 p_{3}}{967680}$

Strategy: twisted spinors

($M^{n}, \mathrm{~g}$) closed spin manifold, $E \rightarrow M$ complex vector bundle

Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathrm{C}}, \operatorname{Sym}^{p} T M_{\mathrm{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

$$
\begin{aligned}
& \hat{A}\left(M^{4}, T M_{\mathrm{C}}\right)=\frac{5 p_{1}}{6} \\
& \hat{A}\left(M^{8}, T M_{\mathbb{C}}\right)=\frac{37 p_{1}^{2}-124 p_{2}}{720} \\
& \hat{A}\left(M^{12}, T M_{\mathbb{C}}\right)=\frac{11 p_{1}^{3}-124 p_{1} p_{2}+656 p_{3}}{80640}
\end{aligned}
$$

Strategy: twisted spinors

($M^{n}, \mathrm{~g}$) closed spin manifold, $E \rightarrow M$ complex vector bundle

Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathrm{C}}, \mathrm{Sym}^{p} T M_{\mathrm{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M
$\hat{A}\left(M^{4}, \wedge^{2} T M_{\mathrm{C}}\right)=\frac{7 p_{1}}{4}$
$\hat{A}\left(M^{8}, \wedge^{2} T M_{\mathrm{C}}\right)=\frac{409 p_{1}^{2}-28 p_{2}}{1440}$
$\hat{A}\left(M^{12}, \wedge^{2} T M_{\mathrm{C}}\right)=\frac{499 p_{1}^{3}+3844 p_{1} p_{2}-27056 p_{3}}{161280}$

Strategy: twisted spinors

($M^{n}, \mathrm{~g}$) closed spin manifold, $E \rightarrow M$ complex vector bundle

Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathrm{C}}, \wedge^{p} T M_{\mathrm{C}}, \operatorname{Sym}^{p} T M_{\mathrm{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

$$
\begin{aligned}
& \hat{A}\left(M^{4}, \operatorname{Sym}^{2} T M_{\mathrm{C}}\right)=\frac{67 p_{1}}{12} \\
& \hat{A}\left(M^{8}, \operatorname{Sym}^{2} T M_{\mathrm{C}}\right)=\frac{701 p_{1}^{2}-1292 p_{2}}{480} \\
& \hat{A}\left(M^{12}, \operatorname{Sym}^{2} T M_{\mathrm{C}}\right)=\frac{20933 p_{1}^{3}-64612 p_{1} p_{2}+58928 p_{3}}{161280}
\end{aligned}
$$

Strategy: twisted spinors

$\left(M^{n}, \mathrm{~g}\right)$ closed spin manifold,

$E \rightarrow M$ complex vector bundle \rightsquigarrow| Twisted Dirac operator |
| :--- |
| $D_{E}: S \otimes E \rightarrow S \otimes E$ |

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathbb{C}}, \operatorname{Sym}^{p} T M_{\mathbb{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M
- $D_{E}^{2}=\nabla^{*} \nabla+\mathcal{R}_{E}$

Strategy: twisted spinors

$\left(M^{n}, g\right)$ closed spin manifold,
\rightsquigarrow Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathrm{C}}, \mathrm{Sym}^{p} T M_{\mathrm{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M
- $D_{E}^{2}=\nabla^{*} \nabla+\mathcal{R}_{E}$
- Bochner technique: $\mathcal{R}_{E} \succ 0 \Longrightarrow \hat{A}(M, E)=0$

Strategy: twisted spinors

($M^{n}, \mathrm{~g}$) closed spin manifold, $E \rightarrow M$ complex vector bundle

Twisted Dirac operator $D_{E}: S \otimes E \rightarrow S \otimes E$

- Atiyah-Singer: index of D_{E}^{+}is $\hat{A}(M, E)=\langle\hat{A}(T M) \operatorname{ch}(E),[M]\rangle$ if E is built from $T M$, e.g., $E=T M_{\mathbb{C}}, \wedge^{p} T M_{\mathrm{C}}, \operatorname{Sym}^{p} T M_{\mathrm{C}} \ldots$:
- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M
- $D_{E}^{2}=\nabla^{*} \nabla+\mathcal{R}_{E}$
- Bochner technique: $\mathcal{R}_{E} \succ 0 \Longrightarrow \hat{A}(M, E)=0$

Challenge

Given $E \rightarrow M$, find "reasonable" sufficient conditions for $\mathcal{R}_{E} \succ 0$.

Curvature operator of $\left(M^{n}, g\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$

Curvature operator of $\left(M^{n}, g\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Note:
If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues;

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Note:
If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues; If $r \in \mathbb{N}$, then $-\Sigma(r,-R)$ is the sum of r largest eigenvalues;

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Note:
If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues; If $r \in \mathbb{N}$, then $-\Sigma(r,-R)$ is the sum of r largest eigenvalues;
The above are concave in R, and $r \mapsto \Sigma(r, R) / r$ is nondecreasing;

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Note:
If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues;
If $r \in \mathbb{N}$, then $-\Sigma(r,-R)$ is the sum of r largest eigenvalues;
The above are concave in R, and $r \mapsto \Sigma(r, R) / r$ is nondecreasing;
Extreme cases: $\Sigma(1, R)=\nu_{1}$, and $\Sigma\left(\binom{n}{2}, R\right)=\frac{\text { scal }}{2}$.

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}$,

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}$,

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\quad \mu=\max$ Ric

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\mu=\max$ Ric
For $p=1: \quad C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\quad \mu=\max$ Ric
For $p=1: \quad C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { sal }}{8}\right\}+\frac{\text { sal }}{8}-\mu$
For $p>1$:

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { sal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\quad \mu=\max$ Ric
For $p=1: \quad C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { sal }}{8}\right\}+\frac{\text { sal }}{8}-\mu$
For $p>1$:

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { sal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\quad \mu=\max$ Ric
For $p=1: \quad C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { sal }}{8}\right\}+\frac{\text { sal }}{8}-\mu$
For $p>1$:

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { sal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\mu=\max$ Ric
For $p=1: \quad C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { sal }}{8}\right\}+\frac{\text { sal }}{8}-\mu$
For $p>1$:

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { sal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\quad \mu=\max$ Ric
For $p=1: \quad C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$
For $p>1$:

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { scal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

"Reasonable" condition
Each $C_{p}(R)$ is a linear combination of ν_{i} 's

Curvature operator of $\left(M^{n}, \mathrm{~g}\right): \quad R: \wedge^{2} T M \rightarrow \wedge^{2} T M$
Eigenvalues: $\quad \nu_{1} \leq \nu_{2} \leq \cdots \leq \nu_{\binom{n}{2}}$
Continuous average
$\Sigma(r, R)=\nu_{1}+\cdots+\nu_{\lfloor r\rfloor}+(r-\lfloor r\rfloor) \nu_{\lfloor r\rfloor+1}, \quad 1 \leq r \leq\binom{ n}{2}$
Define $r_{p}=\frac{n^{2}+(8 p-1) n+8 p(p-1)}{n+8 p(p+1)}, \quad r_{p}^{\prime}=\frac{n+p-2}{p}, \quad$ and $\quad \mu=\max$ Ric
For $p=1: \quad C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$
For $p>1$:

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { scal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

"Reasonable" condition
Each $C_{p}(R)$ is a linear combination of ν_{i} 's (and μ, if $p=1$).

Theorem (B.-Goodman, 2022)
Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle.

Theorem (B.-Goodman, 2022)
Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

$$
C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu
$$

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { scal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

Theorem (B.-Goodman, 2022)
Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

$$
C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu
$$

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { scal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

- For specific $E \subseteq T M^{\otimes p}$, e.g., $E=\wedge^{p} T M$, or $E=\operatorname{Sym}^{p} T M$, we provide weaker necessary conditions;

Theorem (B.-Goodman, 2022)
Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

$$
C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu
$$

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\mathrm{scal}}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

- For specific $E \subseteq T M^{\otimes p}$, e.g., $E=\wedge^{p} T M$, or $E=\operatorname{Sym}^{p} T M$, we provide weaker necessary conditions;
- If $1 \leq q<p$, then $C_{p}(R)>0 \Longrightarrow C_{q}(R)>0$ and scal >0.

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Example
$M=\mathbb{H} P^{2}$

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$,

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathbb{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$, so M does not admit $C_{1}(R)>0$.

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$, so M does not admit $C_{1}(R)>0$.
For $n=8: \quad \operatorname{dim} \wedge^{2} \mathbb{R}^{8}=28$
$C_{1}(R)=\min \left\{3 \Sigma(5, R), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$, so M does not admit $C_{1}(R)>0$.
For $n=8: \quad \operatorname{dim} \wedge^{2} \mathbb{R}^{8}=28$
$C_{1}(R)=\min \left\{3 \Sigma(5, R), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$
In particular, $\mathbb{H} P^{2}$ has no Einstein metric with $\nu_{1}+\cdots+\nu_{5}>0$.

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$, so M does not admit $C_{1}(R)>0$.
For $n=8: \quad \operatorname{dim} \wedge^{2} \mathbb{R}^{8}=28$
$C_{1}(R)=\min \left\{3 \Sigma(5, R), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$
In particular, $\mathbb{H} P^{2}$ has no Einstein metric with $\nu_{1}+\cdots+\nu_{5}>0$.
$M=\mathrm{Ca} P^{2}$

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$, so M does not admit $C_{1}(R)>0$.
For $n=8: \quad \operatorname{dim} \wedge^{2} \mathbb{R}^{8}=28$
$C_{1}(R)=\min \left\{3 \Sigma(5, R), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$
In particular, $\mathbb{H} P^{2}$ has no Einstein metric with $\nu_{1}+\cdots+\nu_{5}>0$.
$M=\mathbb{C a} P^{2}$ has $\hat{A}\left(M, \wedge^{2} T M_{\mathbb{C}}\right) \neq 0$,

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathrm{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$, so M does not admit $C_{1}(R)>0$.
For $n=8: \quad \operatorname{dim} \wedge{ }^{2} \mathbb{R}^{8}=28$
$C_{1}(R)=\min \left\{3 \Sigma(5, R), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$
In particular, $\mathbb{H} P^{2}$ has no Einstein metric with $\nu_{1}+\cdots+\nu_{5}>0$.
$M=\mathrm{Ca} P^{2}$ has $\hat{A}\left(M, \wedge^{2} T M_{\mathbb{C}}\right) \neq 0$, so does not admit $C_{2}(R)>0$.

Theorem (B.-Goodman, 2022)

Let $\left(M^{n}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and $E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathbb{C}}\right)=0$.

Example

$M=\mathbb{H} P^{2}$ has $\hat{A}\left(M, T M_{\mathbb{C}}\right) \neq 0$, so M does not admit $C_{1}(R)>0$.
For $n=8: \quad \operatorname{dim} \wedge^{2} \mathbb{R}^{8}=28$
$C_{1}(R)=\min \left\{3 \Sigma(5, R), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu$
In particular, $\mathbb{H} P^{2}$ has no Einstein metric with $\nu_{1}+\cdots+\nu_{5}>0$.
$M=\mathbb{C a} P^{2}$ has $\hat{A}\left(M, \wedge^{2} T M_{\mathbb{C}}\right) \neq 0$, so does not admit $C_{2}(R)>0$.
For $n=16: \quad \operatorname{dim} \wedge^{2} \mathbb{R}^{16}=120$
$C_{2}(R)=\min \left\{8 \Sigma(8, R), \frac{15}{4} \Sigma(8, R)\right\}+\frac{\text { scal }}{8}+4 \Sigma(8,-R)$

Which manifolds admit $C_{p}(R)>0$?

Which manifolds admit $C_{p}(R)>0$?

Theorem (B.-Goodman, 2022)
(i) Every non-torsion cobordism class in $\Omega_{n}^{\mathrm{SO}}, n \geq 10$, contains a manifold with $C_{1}(R)>0$;

Which manifolds admit $C_{p}(R)>0$?

Theorem (B.-Goodman, 2022)
(i) Every non-torsion cobordism class in $\Omega_{n}^{\mathrm{SO}}, n \geq 10$, contains a manifold with $C_{1}(R)>0$;
i.e., without spin condition, there is no restriction on rational cobordism class!

Which manifolds admit $C_{p}(R)>0$?

Theorem (B.-Goodman, 2022)
(i) Every non-torsion cobordism class in $\Omega_{n}^{\mathrm{SO}}, n \geq 10$, contains a manifold with $C_{1}(R)>0$;
i.e., without spin condition, there is no restriction on rational cobordism class!
(ii) If M^{n} is spin, $n \geq 10$, and $\hat{A}(M)=\hat{A}\left(M, T M_{\mathbb{C}}\right)=0$, then $\#^{\ell} M^{n}$ is spin cobordant to a manifold with $C_{1}(R)>0$;

Which manifolds admit $C_{p}(R)>0$?

Theorem (B.-Goodman, 2022)
(i) Every non-torsion cobordism class in $\Omega_{n}^{\mathrm{SO}}, n \geq 10$, contains a manifold with $C_{1}(R)>0$;
i.e., without spin condition, there is no restriction on rational cobordism class!
(ii) If M^{n} is spin, $n \geq 10$, and $\hat{A}(M)=\hat{A}\left(M, T M_{\mathbb{C}}\right)=0$, then $\#^{\ell} M^{n}$ is spin cobordant to a manifold with $C_{1}(R)>0$; i.e., with spin condition, these are the only restrictions on rational cobordism class!

Which manifolds admit $C_{p}(R)>0$?

Theorem (B.-Goodman, 2022)
(i) Every non-torsion cobordism class in $\Omega_{n}^{S O}, n \geq 10$, contains a manifold with $C_{1}(R)>0$;
i.e., without spin condition, there is no restriction on rational cobordism class!
(ii) If M^{n} is spin, $n \geq 10$, and $\hat{A}(M)=\hat{A}\left(M, T M_{\mathbb{C}}\right)=0$, then $\#^{\ell} M^{n}$ is spin cobordant to a manifold with $C_{1}(R)>0$; i.e., with spin condition, these are the only restrictions on rational cobordism class!
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Thus, $C_{1}(R)>0$ does not restrict any Betti numbers b_{i} nor individual Pontryagin numbers p_{i} in sufficiently large dimension.
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :
\rightarrow Remove $\mathbb{S}^{n-d} \times D^{d} \subset M^{n}$
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :

- Remove $\mathbb{S}^{n-d} \times D^{d} \subset M^{n}$
- Glue in $D^{n-d+1} \times \mathbb{S}^{d-1}$
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :

- Remove $\mathbb{S}^{n-d} \times D^{d} \subset M^{n}$
- Glue in $D^{n-d+1} \times \mathbb{S}^{d-1}$

Result is cobordant to M;
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :

- Remove $\mathbb{S}^{n-d} \times D^{d} \subset M^{n}$
- Glue in $D^{n-d+1} \times \mathbb{S}^{d-1}$

Result is cobordant to M; decreases b_{n-d} if $S^{n-d} \subset M$ is nontrivial in rational homology,
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :

- Remove $\mathbb{S}^{n-d} \times D^{d} \subset M^{n}$
- Glue in $D^{n-d+1} \times \mathbb{S}^{d-1}$

Result is cobordant to M; decreases b_{n-d} if $S^{n-d} \subset M$ is nontrivial in rational homology, increases b_{n-d+1} if $\mathbb{S}^{n-d} \subset M$ is trivial in rational homology.
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :

- Remove $\mathbb{S}^{n-d} \times D^{d} \subset M^{n}$
- Glue in $D^{n-d+1} \times \mathbb{S}^{d-1}$

Result is cobordant to M; decreases b_{n-d} if $S^{n-d} \subset M$ is nontrivial in rational homology, increases b_{n-d+1} if $\mathbb{S}^{n-d} \subset M$ is trivial in rational homology.

Work in progress: push curvature across $\mathrm{BO}\langle k\rangle$-cobordisms, a la Gromov-Lawson;
(iii) $C_{p}(R)>0$ is preserved under surgeries of codimension d if $(d-1)(d-2)>8 p(p+n-2)$.

Surgery of codimension d :

- Remove $\mathbb{S}^{n-d} \times D^{d} \subset M^{n}$
- Glue in $D^{n-d+1} \times \mathbb{S}^{d-1}$

Result is cobordant to M; decreases b_{n-d} if $S^{n-d} \subset M$ is nontrivial in rational homology, increases b_{n-d+1} if $\mathbb{S}^{n-d} \subset M$ is trivial in rational homology.

Work in progress: push curvature across $\mathrm{BO}\langle k\rangle$-cobordisms, a la Gromov-Lawson; e.g., if $N^{n}, n \geq 10$, is 4 -connected and is string-cobordant to $\left(M^{n}, \mathrm{~g}\right)$ with $\mathcal{R}_{T M_{\mathrm{C}}} \succ 0$ then N has it too.

Rational cobordism types

Dimension $n=4 k$,

Rational cobordism types

Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$,

Rational cobordism types

 Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Rational cobordism types

 Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954 $\left(p_{1}, \ldots, p_{p_{p(t)}}\right):$
$\Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism,

Rational cobordism types

Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism,

Rational cobordism types

 Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_{*}^{\mathrm{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\mathbb{C} P^{2}, \mathbb{C} P^{4}, \mathbb{C} P^{6}, \ldots\right]$.

Rational cobordism types

 Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_{*}^{\mathrm{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\mathbb{C} P^{2}, \mathbb{C} P^{4}, \mathbb{C} P^{6}, \ldots\right]$.

So

Rational cobordism types

Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_{*}^{S O} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\mathbb{C} P^{2}, \mathbb{C} P^{4}, \mathbb{C} P^{6}, \ldots\right]$.

So M^{n} is rationally null-cobordant

Rational cobordism types
Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_{*}^{\mathrm{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\mathbb{C} P^{2}, \mathbb{C} P^{4}, \mathbb{C} P^{6}, \ldots\right]$.

So M^{n} is rationally null-cobordant (i.e., $\#^{\ell} M^{n}=\partial W^{n+1}$)

Rational cobordism types

Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_{*}^{\mathrm{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\mathbb{C} P^{2}, \mathbb{C} P^{4}, \mathbb{C} P^{6}, \ldots\right]$.

So M^{n} is rationally null-cobordant (i.e., $\#^{\ell} M^{n}=\partial W^{n+1}$) if and only if all its Pontryagin numbers vanish.

Rational cobordism types
Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_{*}^{S O} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\mathbb{C} P^{2}, \mathbb{C} P^{4}, \mathbb{C} P^{6}, \ldots\right]$.

So M^{n} is rationally null-cobordant (i.e., $\#^{\ell} M^{n}=\partial W^{n+1}$) if and only if all its Pontryagin numbers vanish.

Application 1:
$\hat{A}(M, E)=0$ for many E 's

Rational cobordism types
Dimension $n=4 k$, $p(k)=$ partitions of $k \in \mathbb{N}$, e.g., $p(4)=5$.

Thom, 1954
$\left(p_{l_{1}}, \ldots, p_{l_{p(k)}}\right): \Omega_{4 k}^{\mathrm{Spin}} \otimes \mathbb{Q} \cong \Omega_{4 k}^{\mathrm{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_{*}^{S O} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\mathbb{C} P^{2}, \mathbb{C} P^{4}, \mathbb{C} P^{6}, \ldots\right]$.

So M^{n} is rationally null-cobordant (i.e., $\#^{\ell} M^{n}=\partial W^{n+1}$) if and only if all its Pontryagin numbers vanish.

Application 1:
$\hat{A}(M, E)=0$ for many $E^{\prime} \mathrm{s}$
M is rationally null-cobordant.

Application 1

Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right), k \geq 2$, be a closed Riemannian spin manifold,

Application 1

Theorem (B.-Goodman, 2022)
Let ($M^{4 k}, \mathrm{~g}$), $k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;

Application 1

Theorem (B.-Goodman, 2022)
Let ($M^{4 k}, \mathrm{~g}$), $k \geq 2$, be a closed Riemannian spin manifold, (i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-R i c \succeq 0$;

Application 1

Theorem (B.-Goodman, 2022)
Let ($M^{4 k}, \mathrm{~g}$), $k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8}$ Id - Ric $\succeq 0$;

Application 1

Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, g\right), k \geq 2$, be a closed Riemannian spin manifold, (i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8}$ Id - Ric $\succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Application 1

Theorem (B.-Goodman, 2022)
Let ($M^{4 k}, \mathrm{~g}$), $k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Without spin condition, for all $n \geq 2$:

Application 1

Theorem (B.-Goodman, 2022)
Let ($M^{4 k}, \mathrm{~g}$), $k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Without spin condition, for all $n \geq 2$:
Petersen-Wink, 2021
$\Sigma\left(\left\lceil\frac{n}{2}\right\rceil, R\right)>0$

Application 1

Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Without spin condition, for all $n \geq 2$:
Petersen-Wink, 2021
$\Sigma\left(\left\lceil\frac{n}{2}\right\rceil, R\right)>0 \Longrightarrow M^{n}$ is a rational homology sphere;

Application 1

Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, g\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Without spin condition, for all $n \geq 2$:
Petersen-Wink, 2021
$\Sigma\left(\left\lceil\frac{n}{2}\right\rceil, R\right)>0 \Longrightarrow M^{n}$ is a rational homology sphere; indeed
$\Sigma(n-p, R)>0, p<\frac{n}{2} \Longrightarrow b_{p}(M)=b_{n-p}(M)=0$.

Application 1

Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, g\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Without spin condition, for all $n \geq 2$:
Petersen-Wink, 2021
$\Sigma\left(\left\lceil\frac{n}{2}\right\rceil, R\right)>0 \Longrightarrow M^{n}$ is a rational homology sphere; indeed $\Sigma(n-p, R)>0, p<\frac{n}{2} \Longrightarrow b_{p}(M)=b_{n-p}(M)=0$.

Böhm-Wilking, 2008
$\Sigma(2, R)>0$

Application 1

Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Without spin condition, for all $n \geq 2$:
Petersen-Wink, 2021
$\Sigma\left(\left\lceil\frac{n}{2}\right\rceil, R\right)>0 \Longrightarrow M^{n}$ is a rational homology sphere; indeed
$\Sigma(n-p, R)>0, p<\frac{n}{2} \Longrightarrow b_{p}(M)=b_{n-p}(M)=0$.
Böhm-Wilking, 2008
$\Sigma(2, R)>0 \Longrightarrow M^{n}$ is diffeomorphic to a sphere.

Application 1

Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, g\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, g\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id - Ric $\succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8}$ Id - Ric $\succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Example $\left(\Omega_{8}^{S O}=\mathbb{Z} \oplus \mathbb{Z}\right)$

Application 1

Theorem (B.-Goodman, 2022)
Let ($\left.M^{4 k}, \mathrm{~g}\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Example $\left(\Omega_{8}^{\text {SO }}=\mathbb{Z} \oplus \mathbb{Z}\right)$
$M=\mathbb{H} P^{2}$ is spin and not null-cobordant,

Application 1

Theorem (B.-Goodman, 2022)
Let ($M^{4 k}, \mathrm{~g}$), $k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\mathrm{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\mathrm{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

Example $\left(\Omega_{8}^{\text {SO }}=\mathbb{Z} \oplus \mathbb{Z}\right)$
$M=\mathbb{H} P^{2}$ is spin and not null-cobordant, so it does not admit Einstein metrics with $\Sigma(5, R)>0$.

Application 1

Theorem (B.-Goodman, 2022)
Let ($\left.M^{4 k}, g\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\mathrm{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

$$
\text { Example }\left(\Omega_{8}^{\mathrm{SO}}=\mathbb{Z} \oplus \mathbb{Z}\right)
$$

$M=H P^{2}$ is spin and not null-cobordant, so it does not admit Einstein metrics with $\Sigma(5, R)>0$. (Same for $\#^{\ell} H P^{2}$.)

Application 1

Theorem (B.-Goodman, 2022)
Let ($\left.M^{4 k}, g\right), k \geq 2$, be a closed Riemannian spin manifold,
(i) if $k=2, \Sigma(5, R)>0$, and $\left(M^{8}, \mathrm{~g}\right)$ is Einstein;
(ii) if $k \geq 6$ is even, $\Sigma(2 k+4, R)>0$, and $\frac{\text { scal }}{8}$ Id $-\operatorname{Ric} \succeq 0$;
(iii) if $k \geq 9$ is odd, $\Sigma(2 k+6, R)>0$, and $\frac{\text { scal }}{8} \operatorname{ld}-\operatorname{Ric} \succeq 0$; then $M^{4 k}$ is rationally null-cobordant.

$$
\text { Example }\left(\Omega_{8}^{\mathrm{SO}}=\mathbb{Z} \oplus \mathbb{Z}\right)
$$

$M=\mathbb{H} P^{2}$ is spin and not null-cobordant, so it does not admit Einstein metrics with $\Sigma(5, R)>0$. (Same for $\#^{\ell} H P^{2}$.)
Fubini-Study metric has $\Sigma(r, R)>0$ only for $r \geq 19$.

Application 2: Witten genus

Definition
The Witten genus of $M^{4 k}$ is the formal power series

$$
\varphi_{W}(M)=\hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} T M_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{4 k}
$$

where $\operatorname{Sym}_{t} T M_{\mathbb{C}}=\mathbb{C}+T M_{\mathbb{C}} t+\operatorname{Sym}^{2} T M_{\mathbb{C}} t^{2}+\ldots$

Application 2: Witten genus

Definition
The Witten genus of $M^{4 k}$ is the formal power series

$$
\varphi_{W}(M)=\hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} T M_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{4 k}
$$

where $\operatorname{Sym}_{t} T M_{\mathbb{C}}=\mathbb{C}+T M_{\mathbb{C}} t+\operatorname{Sym}^{2} T M_{\mathbb{C}} t^{2}+\ldots$
Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold. Set $p=\left\lfloor\frac{k}{6}\right\rfloor-1$ if $k \equiv 1 \bmod 6$, and $p=\left\lfloor\frac{k}{6}\right\rfloor$ otherwise.

Application 2: Witten genus

Definition

The Witten genus of $M^{4 k}$ is the formal power series

$$
\varphi_{W}(M)=\hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} T M_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{4 k}
$$

where $\operatorname{Sym}_{t} T M_{\mathbb{C}}=\mathbb{C}+T M_{\mathbb{C}} t+\operatorname{Sym}^{2} T M_{\mathbb{C}} t^{2}+\ldots$
Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, g\right)$ be a closed Riemannian spin manifold. Set $p=\left\lfloor\frac{k}{6}\right\rfloor-1$ if $k \equiv 1 \bmod 6$, and $p=\left\lfloor\frac{k}{6}\right\rfloor$ otherwise. If $p \geq 1, C_{p}(R)>0$, and $p_{1}(T M)=0$, then $\varphi_{w}(M)=0$.

Application 2: Witten genus

Definition

The Witten genus of $M^{4 k}$ is the formal power series

$$
\varphi_{W}(M)=\hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} T M_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{4 k}
$$

where $\operatorname{Sym}_{t} T M_{\mathbb{C}}=\mathbb{C}+T M_{\mathbb{C}} t+\operatorname{Sym}^{2} T M_{\mathbb{C}} t^{2}+\ldots$
Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold. Set $p=\left\lfloor\frac{k}{6}\right\rfloor-1$ if $k \equiv 1 \bmod 6$, and $p=\left\lfloor\frac{k}{6}\right\rfloor$ otherwise. If $p \geq 1, C_{p}(R)>0$, and $p_{1}(T M)=0$, then $\varphi_{W}(M)=0$.

Conjecture (Stolz, 1996)
If (M, g) has Ric $\succ 0$ and $\frac{1}{2} p_{1}(T M)=0$, then $\varphi_{W}(M)=0$.

Application 2: Witten genus

Definition

The Witten genus of $M^{4 k}$ is the formal power series

$$
\varphi_{W}(M)=\hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} T M_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{4 k}
$$

where $\operatorname{Sym}_{t} T M_{\mathbb{C}}=\mathbb{C}+T M_{\mathbb{C}} t+\operatorname{Sym}^{2} T M_{\mathbb{C}} t^{2}+\ldots$
Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, g\right)$ be a closed Riemannian spin manifold. Set $p=\left\lfloor\frac{k}{6}\right\rfloor-1$ if $k \equiv 1 \bmod 6$, and $p=\left\lfloor\frac{k}{6}\right\rfloor$ otherwise. If $p \geq 1, C_{p}(R)>0$, and $p_{1}(T M)=0$, then $\varphi_{W}(M)=0$.

Remark 1
Ric $\succ 0$ does not imply $C_{p}(R)>0$ for p as above.

Application 2: Witten genus

Definition

The Witten genus of $M^{4 k}$ is the formal power series

$$
\varphi_{W}(M)=\hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} T M_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)^{4 k}
$$

where $\operatorname{Sym}_{t} T M_{\mathbb{C}}=\mathbb{C}+T M_{\mathbb{C}} t+\operatorname{Sym}^{2} T M_{\mathbb{C}} t^{2}+\ldots$
Theorem (B.-Goodman, 2022)
Let $\left(M^{4 k}, \mathrm{~g}\right)$ be a closed Riemannian spin manifold. Set $p=\left\lfloor\frac{k}{6}\right\rfloor-1$ if $k \equiv 1 \bmod 6$, and $p=\left\lfloor\frac{k}{6}\right\rfloor$ otherwise. If $p \geq 1, C_{p}(R)>0$, and $p_{1}(T M)=0$, then $\varphi_{W}(M)=0$.

Remark 2
If $24 \leq n<48$ or $n=52$ and $p_{1}(T M)=0$, then $\varphi_{W}(M)=0$
if and only if $\#^{\ell} M$ is cobordant to a manifold with $C_{1}(R)>0$.

Applications to elliptic genus, signature, ...

Applications to elliptic genus, signature, ...

About the proof of:
Theorem (B.-Goodman, 2022)
Let $\left(M^{n}, g\right)$ be a closed Riemannian spin manifold, $n \geq 8$, and
$E \subseteq T M^{\otimes p}$ a parallel subbundle. If $C_{p}(R)>0$, then $\hat{A}\left(M, E_{\mathbb{C}}\right)=0$.

Bochner strategy via Representation Theory

Unitary representation
$\pi: \mathrm{SO}(n) \rightarrow \operatorname{Aut}(E)$

Bochner strategy via Representation Theory

Unitary representation
$\pi: \operatorname{SO}(n) \rightarrow \operatorname{Aut}(E)$
$\pi: \operatorname{Spin}(n) \rightarrow \operatorname{Aut}(E)$

Bochner strategy via Representation Theory

| $\begin{array}{l}\text { Unitary representation } \\ \pi: \operatorname{SO}(n) \rightarrow \operatorname{Aut}(E) \\ \pi: \operatorname{Spin}(n) \rightarrow \operatorname{Aut}(E)\end{array}$ |
| :--- |\rightsquigarrow| $E_{\pi} \rightarrow M$ associated bundle |
| :---: |
| $E_{\pi}=\mathrm{Fr} \times_{\pi} E$ |

Bochner strategy via Representation Theory

Unitary representation $\pi: \operatorname{SO}(n) \rightarrow \operatorname{Aut}(E)$ $\pi: \operatorname{Spin}(n) \rightarrow \operatorname{Aut}(E)$

$$
\Delta=\nabla^{*} \nabla+t K(R, \pi)
$$

Bochner strategy via Representation Theory

Unitary representation $\pi: \operatorname{SO}(n) \rightarrow \operatorname{Aut}(E)$ $\pi: \operatorname{Spin}(n) \rightarrow \operatorname{Aut}(E)$

$$
\Delta=\nabla^{*} \nabla+t K(R, \pi), \quad K(R, \pi)=-\sum_{a} \mathrm{~d} \pi\left(R\left(X_{a}\right)\right) \circ \mathrm{d} \pi\left(X_{a}\right)
$$

Bochner strategy via Representation Theory

Unitary representation
$\pi: \mathrm{SO}(n) \rightarrow \operatorname{Aut}(E)$
$\pi: \operatorname{Spin}(n) \rightarrow \operatorname{Aut}(E)$

$$
\Delta=\nabla^{*} \nabla+t K(R, \pi), \quad K(R, \pi)=-\sum_{a} \mathrm{~d} \pi\left(R\left(X_{a}\right)\right) \circ \mathrm{d} \pi\left(X_{a}\right)
$$

Highest weight of π	E_{π}	t	$K(R, \pi)$
ε_{1}	$T M_{\mathbb{C}}$	± 2	Ric
$\varepsilon_{1}+\cdots+\varepsilon_{p,} \quad p<n / 2$	$\wedge^{p} T M_{\mathbb{C}}$	2	\cdots
$p \varepsilon_{1}$	$\operatorname{Sym}_{0}^{p} T M_{\mathbb{C}}$	-2	\cdots
$\frac{1}{2} \varepsilon_{1}+\cdots \pm \frac{1}{2} \varepsilon_{n / 2}$	$S^{ \pm}$	2	$\frac{\operatorname{scal}}{8}$ Id

Bochner strategy via Representation Theory

Unitary representation
$\pi: \mathrm{SO}(n) \rightarrow \operatorname{Aut}(E)$
$E_{\pi} \rightarrow M$ associated bundle $E_{\pi}=\operatorname{Fr} \times_{\pi} E$

$E_{\pi} \rightarrow M$ associated bundle
$E_{\pi}=\operatorname{Fr} \times_{\pi} E$

$$
\Delta=\nabla^{*} \nabla+t K(R, \pi), \quad K(R, \pi)=-\sum_{a} \mathrm{~d} \pi\left(R\left(X_{a}\right)\right) \circ \mathrm{d} \pi\left(X_{a}\right)
$$

Highest weight of π	E_{π}	t	$K(R, \pi)$
ε_{1}	$T M_{\mathbb{C}}$	± 2	Ric
$\varepsilon_{1}+\cdots+\varepsilon_{p}, \quad p<n / 2$	$\wedge^{p} T M_{\mathbb{C}}$	2	\ldots
$p \varepsilon_{1}$	$\operatorname{Sym}_{0}^{p} T M_{\mathbb{C}}$	-2	\ldots
$\frac{1}{2} \varepsilon_{1}+\cdots \pm \frac{1}{2} \varepsilon_{n / 2}$	$S^{ \pm}$	2	$\frac{\text { scal }}{8} I d$

Theorem (B.-Goodman, 2022)
If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.

Theorem (B.-Goodman, 2022)

If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R) \operatorname{Id}$ where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.

Theorem (B.-Goodman, 2022)
If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.

Generalizes result of Petersen-Wink in case $\lambda=\varepsilon_{1}+\cdots+\varepsilon_{p}$, where $r=n-p$,

Theorem (B.-Goodman, 2022)

If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.

Generalizes result of Petersen-Wink in case $\lambda=\varepsilon_{1}+\cdots+\varepsilon_{p}$, where $r=n-p$, so $\Sigma(r, R)>0 \Longrightarrow b_{p}(M)=b_{n-p}(M)=0$.

Theorem (B.-Goodman, 2022)

If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.

Lemma
The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies
$D_{\pi}^{2}=\nabla^{*} \nabla+K\left(R, \pi_{s} \otimes \pi\right)+\frac{\text { scal }}{8} \mathrm{Id}-K(R, \pi)$

Theorem (B.-Goodman, 2022)

If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.

Lemma
The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies
$D_{\pi}^{2}=\nabla^{*} \nabla+\underbrace{K\left(R, \pi_{s} \otimes \pi\right)+\frac{\text { scal }}{8} \operatorname{ld}-K(R, \pi)}_{\mathcal{R}_{\pi}}$.

Theorem (B.-Goodman, 2022)
If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.
Lemma
The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies
$D_{\pi}^{2}=\nabla^{*} \nabla+\underbrace{K\left(R, \pi_{s} \otimes \pi\right)+\frac{\text { scal }}{8} \operatorname{ld}-K(R, \pi)}_{\mathcal{R}_{\pi}}$.

$$
C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu
$$

$$
C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { scal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)
$$

Theorem (B.-Goodman, 2022)
If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.
Lemma
The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies
$D_{\pi}^{2}=\nabla^{*} \nabla+\underbrace{K\left(R, \pi_{s} \otimes \pi\right)+\frac{\text { scal }}{8} \operatorname{ld}-K(R, \pi)}_{\mathcal{R}_{\pi}}$.

$$
C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu
$$

$C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { scal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)$
$C_{p}(R)>0 \Longrightarrow \mathcal{R}_{\pi} \succ 0$, for any $E_{\pi} \subseteq T M_{\mathbb{C}}^{\otimes p}$.

Theorem (B.-Goodman, 2022)
If the highest weight of π is λ, then $K(R, \pi) \succeq\|\lambda\|^{2} \Sigma(r, R)$ Id where $r=\frac{\langle\lambda, \lambda+2 \rho\rangle}{\|\lambda\|^{2}}$ and ρ is the half-sum of positive roots.
Lemma
The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies
$D_{\pi}^{2}=\nabla^{*} \nabla+\underbrace{K\left(R, \pi_{s} \otimes \pi\right)+\frac{\text { scal }}{8} \operatorname{ld}-K(R, \pi)}_{\mathcal{R}_{\pi}}$.

$$
C_{1}(R)=\min \left\{\left(\frac{n}{8}+2\right) \Sigma\left(r_{1}, R\right), \frac{\text { scal }}{8}\right\}+\frac{\text { scal }}{8}-\mu
$$

$C_{p}(R)=\min \left\{\left(\frac{n}{8}+p^{2}+p\right) \Sigma\left(r_{p}, R\right), \frac{n(n-1)}{8 r_{p}} \Sigma\left(r_{p}, R\right)\right\}+\frac{\text { scal }}{8}+p^{2} \Sigma\left(r_{p}^{\prime},-R\right)$
$C_{p}(R)>0 \Longrightarrow \mathcal{R}_{\pi} \succ 0 \Longrightarrow \hat{A}\left(M, E_{\pi}\right)=0$, for any $E_{\pi} \subseteq T M_{\mathbb{C}}^{\otimes p}$.

Thank you for your attention!

