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Theorem (Lichnerowicz, 1963)
If (M , g) is a closed Riemannian spin manifold with scal > 0,
then Â(M) = 0.

Proof.
If Â(M) 6= 0, then, by the Atiyah–Singer Index Theorem, the
Dirac operator D has nontrivial kernel, but D2 = ∇∗∇+ scal

4 .

Example (Fermat quartic / Kummer surface)
M4 =

{
x4
0 + x4

1 + x4
2 + x4

3 = 0
}
⊂ CP3 is spin, and Â(M4) 6= 0.Our goal

Prove similar obstructions to other curvature conditions:
I weak enough to be satisfied by lots of manifolds;
I strong enough to restrict their rational cobordism type.
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Our goal
Prove similar obstructions to other curvature conditions:

I weak enough to be satisfied by lots of manifolds;
I strong enough to restrict their rational cobordism type.



Theorem (Lichnerowicz, 1963)
If (M , g) is a closed Riemannian spin manifold with scal > 0,
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Strategy: twisted spinors

(Mn, g) closed spin manifold,
E → M complex vector bundle

 
Twisted Dirac operator
DE : S ⊗ E → S ⊗ E

I Atiyah–Singer: index of D+
E is Â(M ,E ) = 〈Â(TM) ch(E ), [M]〉

if E is built from TM , e.g., E = TMC, ∧pTMC, Symp TMC...:
I depends only on rational oriented cobordism class of M
I rational linear combination of Pontryagin numbers of M

Â(M4) = −p1
24

Â(M8) =
7p2

1−4p2
5760

Â(M12) =
−31p3

1+44p1p2−16p3
967680

...



Strategy: twisted spinors

(Mn, g) closed spin manifold,
E → M complex vector bundle

 
Twisted Dirac operator
DE : S ⊗ E → S ⊗ E

I Atiyah–Singer: index of D+
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Â(M4) = −p1
24
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(Mn, g) closed spin manifold,
E → M complex vector bundle

 
Twisted Dirac operator
DE : S ⊗ E → S ⊗ E

I Atiyah–Singer: index of D+
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Strategy: twisted spinors

(Mn, g) closed spin manifold,
E → M complex vector bundle

 
Twisted Dirac operator
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I D2
E = ∇∗∇+RE

I Bochner technique: RE � 0 =⇒ Â(M ,E ) = 0

Challenge
Given E → M , find “reasonable” sufficient conditions for RE � 0.
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Curvature operator of (Mn, g): R : ∧2 TM → ∧2TM

Eigenvalues: ν1 ≤ ν2 ≤ · · · ≤ ν(n
2)

Continuous average
Σ(r ,R) = ν1 + · · ·+ νbrc + (r − brc)νbrc+1, 1 ≤ r ≤

(
n
2

)

Note:
If r ∈ N, then Σ(r ,R) is the sum of r smallest eigenvalues;
If r ∈ N, then −Σ(r ,−R) is the sum of r largest eigenvalues;
The above are concave in R , and r 7→ Σ(r ,R)/r is nondecreasing;
Extreme cases: Σ(1,R) = ν1, and Σ

((
n
2

)
,R
)

= scal
2 .

Define rp = n2+(8p−1)n+8p(p−1)
n+8p(p+1) , r ′p = n+p−2

p
, and µ = max Ric

For p = 1: C1(R) = min
{(

n
8 + 2

)
Σ(r1,R), scal8

}
+ scal

8 − µ

For p > 1:

Cp(R) = min
{(

n
8 + p2 + p

)
Σ(rp,R), n(n−1)

8rp
Σ(rp,R)

}
+ scal

8 + p2Σ(r ′p,−R)

“Reasonable” condition

Each Cp(R) is a linear combination of νi ’s (and µ, if p = 1).
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Theorem (B.–Goodman, 2022)
Let (Mn, g) be a closed Riemannian spin manifold, n ≥ 8, and
E ⊆ TM⊗p a parallel subbundle.

If Cp(R) > 0, then Â(M ,EC) = 0.

C1(R) = min
{(

n
8 + 2

)
Σ(r1,R), scal8

}
+ scal

8 − µ

Cp(R) = min
{(

n
8 + p2 + p

)
Σ(rp,R), n(n−1)

8rp
Σ(rp,R)

}
+ scal

8 + p2Σ(r ′p,−R)

I For specific E ⊆ TM⊗p, e.g., E = ∧pTM , or E = Symp TM ,
we provide weaker necessary conditions;

I If 1 ≤ q < p, then Cp(R) > 0 =⇒ Cq(R) > 0 and scal > 0.
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Let (Mn, g) be a closed Riemannian spin manifold, n ≥ 8, and
E ⊆ TM⊗p a parallel subbundle. If Cp(R) > 0, then Â(M ,EC) = 0.

Example
M = HP2 has Â(M ,TMC) 6= 0, so M does not admit C1(R) > 0.

For n = 8: dim∧2R8 = 28
C1(R) = min

{
3Σ(5,R), scal8

}
+ scal

8 − µ
In particular, HP2 has no Einstein metric with ν1 + · · ·+ ν5 > 0.

M = CaP2 has Â(M ,∧2TMC) 6= 0, so does not admit C2(R) > 0.

For n = 16: dim∧2R16 = 120
C2(R) = min

{
8Σ(8,R), 15

4 Σ(8,R)
}

+ scal
8 + 4Σ(8,−R)
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M = CaP2 has Â(M ,∧2TMC) 6= 0, so does not admit C2(R) > 0.

For n = 16: dim∧2R16 = 120
C2(R) = min

{
8Σ(8,R), 15

4 Σ(8,R)
}

+ scal
8 + 4Σ(8,−R)



Theorem (B.–Goodman, 2022)
Let (Mn, g) be a closed Riemannian spin manifold, n ≥ 8, and
E ⊆ TM⊗p a parallel subbundle. If Cp(R) > 0, then Â(M ,EC) = 0.
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M = HP2 has Â(M ,TMC) 6= 0, so M does not admit C1(R) > 0.

For n = 8: dim∧2R8 = 28
C1(R) = min

{
3Σ(5,R), scal8

}
+ scal

8 − µ
In particular, HP2 has no Einstein metric with ν1 + · · ·+ ν5 > 0.
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Which manifolds admit Cp(R) > 0?

Theorem (B.–Goodman, 2022)
(i) Every non-torsion cobordism class in ΩSO

n , n ≥ 10, contains a
manifold with C1(R) > 0;
i.e., without spin condition, there is no restriction on
rational cobordism class!

(ii) If Mn is spin, n ≥ 10, and Â(M) = Â(M ,TMC) = 0, then
#`Mn is spin cobordant to a manifold with C1(R) > 0;
i.e., with spin condition, these are the only restrictions on
rational cobordism class!

(iii) Cp(R) > 0 is preserved under surgeries of codimension d if
(d − 1)(d − 2) > 8p(p + n − 2).

Thus, C1(R) > 0 does not restrict any Betti numbers bi nor
individual Pontryagin numbers pi in sufficiently large dimension.
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(iii) Cp(R) > 0 is preserved under surgeries of codimension d if
(d − 1)(d − 2) > 8p(p + n − 2).

Surgery of codimension d :
I Remove Sn−d × Dd ⊂ Mn

I Glue in Dn−d+1 × Sd−1

Result is cobordant to M ;
decreases bn−d if Sn−d ⊂ M is
nontrivial in rational homology,
increases bn−d+1 if Sn−d ⊂ M is
trivial in rational homology.

Work in progress: push curvature across BO〈k〉-cobordisms, a la
Gromov–Lawson; e.g., if Nn, n ≥ 10, is 4-connected and is
string-cobordant to (Mn, g) with RTMC

� 0 then N has it too.
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Rational cobordism types
Dimension n = 4k ,

p(k) = partitions of k ∈ N,
e.g., p(4) = 5.

Thom, 1954
(pI1 , . . . , pIp(k)) :

ΩSpin
4k ⊗Q ∼=

ΩSO
4k ⊗Q −→ Qp(k) is an isomorphism,

and ΩSO
∗ ⊗Q ∼= Q[CP2,CP4,CP6, . . . ].

So Mn is rationally null-cobordant (i.e., #`Mn = ∂W n+1) if and
only if all its Pontryagin numbers vanish.

Application 1:
Â(M ,E ) = 0 for many E ’s  M is rationally null-cobordant.
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Application 1
Theorem (B.–Goodman, 2022)
Let (M4k , g), k ≥ 2, be a closed Riemannian spin manifold,

(i) if k = 2, Σ(5,R) > 0, and (M8, g) is Einstein;
(ii) if k ≥ 6 is even, Σ(2k + 4,R) > 0, and scal

8 Id−Ric � 0;
(iii) if k ≥ 9 is odd, Σ(2k + 6,R) > 0, and scal

8 Id−Ric � 0;
then M4k is rationally null-cobordant.

Without spin condition, for all n ≥ 2:

Petersen–Wink, 2021
Σ(dn2e,R) > 0 =⇒ Mn is a rational homology sphere; indeed
Σ(n − p,R) > 0, p < n

2 =⇒ bp(M) = bn−p(M) = 0.

Böhm–Wilking, 2008
Σ(2,R) > 0 =⇒ Mn is diffeomorphic to a sphere.
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Application 2: Witten genus
Definition
The Witten genus of M4k is the formal power series

ϕW (M) = Â

(
M ,

∞⊗̀
=1

Symq` TMC

)
∞∏̀
=1

(1− q`)4k ,

where Symt TMC = C+ TMC t + Sym2 TMC t
2 + . . .

Theorem (B.–Goodman, 2022)
Let (M4k , g) be a closed Riemannian spin manifold.
Set p = bk6c − 1 if k ≡ 1 mod 6, and p = bk6c otherwise.
If p ≥ 1, Cp(R) > 0, and p1(TM) = 0, then ϕW (M) = 0.

Conjecture (Stolz, 1996)
If (M , g) has Ric � 0 and 1

2p1(TM) = 0, then ϕW (M) = 0.
Remark 1
Ric � 0 does not imply Cp(R) > 0 for p as above.
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Theorem (B.–Goodman, 2022)
Let (M4k , g) be a closed Riemannian spin manifold.
Set p = bk6c − 1 if k ≡ 1 mod 6, and p = bk6c otherwise.
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Remark 2
If 24 ≤ n < 48 or n = 52 and p1(TM) = 0, then ϕW (M) = 0
if and only if #`M is cobordant to a manifold with C1(R) > 0.



Applications to elliptic genus, signature, . . .

About the proof of:

Theorem (B.–Goodman, 2022)
Let (Mn, g) be a closed Riemannian spin manifold, n ≥ 8, and
E ⊆ TM⊗p a parallel subbundle. If Cp(R) > 0, then Â(M ,EC) = 0.
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Bochner strategy via Representation Theory
Unitary representation
π : SO(n)→ Aut(E )

π : Spin(n)→ Aut(E )
 

Eπ → M associated bundle
Eπ = Fr×π E

∆ = ∇∗∇+ t K (R , π), K (R , π) = −
∑
a

dπ(R(Xa)) ◦ dπ(Xa)

Highest weight of π Eπ t K (R , π)
ε1 TMC ±2 Ric
ε1 + · · ·+ εp, p < n/2 ∧pTMC 2 . . .
p ε1 Symp

0 TMC −2 . . .
1
2ε1 + · · · ± 1

2εn/2 S± 2 scal
8 Id

Theorem (B.–Goodman, 2022)
If the highest weight of π is λ, then K (R , π) � ‖λ‖2 Σ(r ,R) Id
where r = 〈λ,λ+2ρ〉

‖λ‖2 and ρ is the half-sum of positive roots.
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Lemma
The twisted Dirac operator Dπ on S ⊗ Eπ satisfies
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Cp(R) > 0 =⇒ Rπ � 0 =⇒ Â(M ,Eπ) = 0, for any Eπ ⊆ TM⊗pC .
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If the highest weight of π is λ, then K (R , π) � ‖λ‖2 Σ(r ,R) Id
where r = 〈λ,λ+2ρ〉

‖λ‖2 and ρ is the half-sum of positive roots.

Generalizes result of Petersen–Wink in case λ = ε1 + · · ·+ εp, where
r = n − p, so Σ(r ,R) > 0 =⇒ bp(M) = bn−p(M) = 0.

Lemma
The twisted Dirac operator Dπ on S ⊗ Eπ satisfies
D2
π = ∇∗∇+ K (R , πS ⊗ π) + scal

8 Id−K (R , π)︸ ︷︷ ︸
Rπ

.

C1(R) = min
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n
8 + 2
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8 − µ

Cp(R) = min
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8 + p2 + p

)
Σ(rp,R), n(n−1)

8rp
Σ(rp,R)

}
+ scal

8 + p2Σ(r ′p,−R)

Cp(R) > 0 =⇒ Rπ � 0

=⇒ Â(M ,Eπ) = 0
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Thank you for your attention!


