Curvature operators and rational cobordism

Renato G. Bettiol

joint with McFeely Jackson Goodman (UC Berkeley)

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

Proof. If $\hat{A}(M) \neq 0$,

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

Proof.

If $\hat{A}(M) \neq 0$, then, by the Atiyah–Singer Index Theorem, the Dirac operator D has nontrivial kernel,

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

Proof.

If $\hat{A}(M) \neq 0$, then, by the Atiyah–Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^2 = \nabla^* \nabla + \frac{\text{scal}}{4}$.

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

Proof.

If $\hat{A}(M) \neq 0$, then, by the Atiyah–Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^2 = \nabla^* \nabla + \frac{\text{scal}}{4}$.

Example (Fermat quartic / Kummer surface) $M^4 = \{x_0^4 + x_1^4 + x_2^4 + x_3^4 = 0\} \subset \mathbb{C}P^3 \text{ is spin, and } \hat{A}(M^4) \neq 0.$

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

Proof.

If $\hat{A}(M) \neq 0$, then, by the Atiyah–Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^2 = \nabla^* \nabla + \frac{\text{scal}}{4}$.

Our goal

Prove similar obstructions to other curvature conditions:

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

Proof.

If $\hat{A}(M) \neq 0$, then, by the Atiyah–Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^2 = \nabla^* \nabla + \frac{\text{scal}}{4}$.

Our goal

Prove similar obstructions to other curvature conditions:

weak enough to be satisfied by lots of manifolds;

If (M, g) is a closed Riemannian spin manifold with scal > 0, then $\hat{A}(M) = 0$.

Proof.

If $\hat{A}(M) \neq 0$, then, by the Atiyah–Singer Index Theorem, the Dirac operator D has nontrivial kernel, but $D^2 = \nabla^* \nabla + \frac{\text{scal}}{4}$.

Our goal

Prove similar obstructions to other curvature conditions:

- weak enough to be satisfied by lots of manifolds;
- **strong enough** to restrict their rational cobordism type.

 (M^n, g) closed spin manifold, $E \rightarrow M$ complex vector bundle

 (M^n, g) closed spin manifold, $E \rightarrow M$ complex vector bundle

 $\xrightarrow{} \quad \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} \begin{array}{c} \mathsf{Tw} \\ D_E \end{array}$

 $\stackrel{\text{wisted Dirac operator}}{D_E \colon S \otimes E \to S \otimes E }$

Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

- ▶ Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}$, $\wedge^p TM_{\mathbb{C}}$, Sym^{*p*} $TM_{\mathbb{C}}$...:
 - depends only on rational oriented cobordism class of M

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

- Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}, \wedge^p TM_{\mathbb{C}}, \operatorname{Sym}^p TM_{\mathbb{C}}...$:
 - depends only on rational oriented cobordism class of M
 - rational linear combination of Pontryagin numbers of M

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

• Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}, \wedge^p TM_{\mathbb{C}}, \operatorname{Sym}^p TM_{\mathbb{C}}...$:

- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

$$\hat{A}(M^4) = -\frac{p_1}{24}$$

- Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}, \wedge^p TM_{\mathbb{C}}, \operatorname{Sym}^p TM_{\mathbb{C}}...$:
 - depends only on rational oriented cobordism class of M
 - rational linear combination of Pontryagin numbers of M

$$\hat{A}(M^4) = -rac{p_1}{24}$$

 $\hat{A}(M^8) = rac{7
ho_1^2 - 4
ho_2}{5760}$

- Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}, \wedge^p TM_{\mathbb{C}}, \operatorname{Sym}^p TM_{\mathbb{C}}...$:
 - depends only on rational oriented cobordism class of M
 - rational linear combination of Pontryagin numbers of M

$$\begin{aligned} \hat{A}(M^4) &= -\frac{p_1}{24} \\ \hat{A}(M^8) &= \frac{7p_1^2 - 4p_2}{5760} \\ \hat{A}(M^{12}) &= \frac{-31p_1^3 + 44p_1p_2 - 16p_3}{967680} \end{aligned}$$

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

▶ Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}$, $\wedge^p TM_{\mathbb{C}}$, Sym^{*p*} $TM_{\mathbb{C}}$...:

- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

$$\hat{A}(M^4) = -\frac{p_1}{24}$$
$$\hat{A}(M^8) = \frac{7p_1^2 - 4p_2}{5760}$$
$$\hat{A}(M^{12}) = \frac{-31p_1^3 + 44p_1p_2 - 16p_3}{967680}$$

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

▶ Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}$, $\wedge^p TM_{\mathbb{C}}$, Sym^{*p*} $TM_{\mathbb{C}}$...:

- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

$$\hat{A}(M^4, TM_{\mathbb{C}}) = \frac{5p_1}{6}$$
$$\hat{A}(M^8, TM_{\mathbb{C}}) = \frac{37p_1^2 - 124p_2}{720}$$
$$\hat{A}(M^{12}, TM_{\mathbb{C}}) = \frac{11p_1^3 - 124p_1p_2 + 656p_3}{80640}$$

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

▶ Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}$, $\wedge^p TM_{\mathbb{C}}$, Sym^{*p*} $TM_{\mathbb{C}}$...:

- depends only on rational oriented cobordism class of M
- rational linear combination of Pontryagin numbers of M

$$\hat{A}(M^4, \wedge^2 TM_{\mathbb{C}}) = rac{7p_1}{4}$$

 $\hat{A}(M^8, \wedge^2 TM_{\mathbb{C}}) = rac{409p_1^2 - 28p_2}{1440}$
 $\hat{A}(M^{12}, \wedge^2 TM_{\mathbb{C}}) = rac{499p_1^3 + 3844p_1p_2 - 27056p_3}{161280}$

- ▶ Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}$, $\wedge^p TM_{\mathbb{C}}$, Sym^{*p*} $TM_{\mathbb{C}}$...:
 - depends only on rational oriented cobordism class of M
 - rational linear combination of Pontryagin numbers of M

$$\hat{A}(M^4, \operatorname{Sym}^2 TM_{\mathbb{C}}) = rac{67p_1}{12}$$

 $\hat{A}(M^8, \operatorname{Sym}^2 TM_{\mathbb{C}}) = rac{701p_1^2 - 1292p_2}{480}$
 $\hat{A}(M^{12}, \operatorname{Sym}^2 TM_{\mathbb{C}}) = rac{20933p_1^3 - 64612p_1p_2 + 58928p_3}{161280}$

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

- Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}, \wedge^p TM_{\mathbb{C}}, \operatorname{Sym}^p TM_{\mathbb{C}}...$:
 - depends only on rational oriented cobordism class of M
 - rational linear combination of Pontryagin numbers of M

$$\blacktriangleright D_E^2 = \nabla^* \nabla + \mathcal{R}_E$$

 $\begin{array}{c} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{c} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

- ▶ Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}$, $\wedge^p TM_{\mathbb{C}}$, Sym^{*p*} $TM_{\mathbb{C}}$...:
 - depends only on rational oriented cobordism class of M
 - rational linear combination of Pontryagin numbers of M

$$\blacktriangleright D_E^2 = \nabla^* \nabla + \mathcal{R}_E$$

Bochner technique:
$$\mathcal{R}_E \succ 0 \implies \hat{A}(M, E) = 0$$

 $\begin{array}{l} (M^n, \mathrm{g}) \text{ closed spin manifold,} \\ E \to M \text{ complex vector bundle} \end{array} \xrightarrow{\sim} & \begin{array}{l} \text{Twisted Dirac operator} \\ D_E \colon S \otimes E \to S \otimes E \end{array}$

- Atiyah–Singer: index of D_E^+ is $\hat{A}(M, E) = \langle \hat{A}(TM) \operatorname{ch}(E), [M] \rangle$ if *E* is built from *TM*, e.g., $E = TM_{\mathbb{C}}$, $\wedge^p TM_{\mathbb{C}}$, Sym^{*p*} $TM_{\mathbb{C}}$...:
 - depends only on rational oriented cobordism class of M
 - rational linear combination of Pontryagin numbers of M

$$\blacktriangleright D_E^2 = \nabla^* \nabla + \mathcal{R}_E$$

Bochner technique: $\mathcal{R}_E \succ 0 \implies \hat{A}(M, E) = 0$

Challenge

Given $E \to M$, find "reasonable" sufficient conditions for $\mathcal{R}_E \succ 0$.

Curvature operator of (M^n, g) : $R: \wedge^2 TM \to \wedge^2 TM$

$$\Sigma(r,R) =
u_1 + \dots +
u_{\lfloor r
floor} + (r - \lfloor r
floor)
u_{\lfloor r
floor+1}, \quad 1 \leq r \leq \binom{n}{2}$$

Continuous average $\Sigma(r, R) = \nu_1 + \dots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Note:

If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues;

Continuous average $\Sigma(r, R) = \nu_1 + \dots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Note:

If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues; If $r \in \mathbb{N}$, then $-\Sigma(r, -R)$ is the sum of r largest eigenvalues;

Continuous average $\Sigma(r, R) = \nu_1 + \dots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Note:

If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues; If $r \in \mathbb{N}$, then $-\Sigma(r, -R)$ is the sum of r largest eigenvalues; The above are concave in R, and $r \mapsto \Sigma(r, R)/r$ is nondecreasing;

Continuous average $\Sigma(r, R) = \nu_1 + \dots + \nu_{|r|} + (r - |r|)\nu_{|r|+1}, \quad 1 \le r \le \binom{n}{2}$

Note:

If $r \in \mathbb{N}$, then $\Sigma(r, R)$ is the sum of r smallest eigenvalues; If $r \in \mathbb{N}$, then $-\Sigma(r, -R)$ is the sum of r largest eigenvalues; The above are concave in R, and $r \mapsto \Sigma(r, R)/r$ is nondecreasing; Extreme cases: $\Sigma(1, R) = \nu_1$, and $\Sigma(\binom{n}{2}, R) = \frac{\text{scal}}{2}$.

Continuous average

$$\Sigma(r,R) =
u_1 + \dots +
u_{\lfloor r
floor} + (r - \lfloor r
floor)
u_{\lfloor r
floor+1}, \quad 1 \leq r \leq \binom{n}{2}$$

Define $r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$,

$$\Sigma(r,R) =
u_1 + \dots +
u_{\lfloor r
floor} + (r - \lfloor r
floor)
u_{\lfloor r
floor+1}, \quad 1 \leq r \leq \binom{n}{2}$$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$,

$$\Sigma(r,R) =
u_1 + \dots +
u_{\lfloor r
floor} + (r - \lfloor r
floor)
u_{\lfloor r
floor+1}, \quad 1 \leq r \leq \binom{n}{2}$$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \text{Ric}$

$$\Sigma(r,R) =
u_1 + \dots +
u_{\lfloor r
floor} + (r - \lfloor r
floor)
u_{\lfloor r
floor+1}, \quad 1 \leq r \leq \binom{n}{2}$$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \operatorname{Ric}$
For $p = 1$: $C_1(R) = \min\left\{ \left(\frac{n}{8} + 2\right) \Sigma(r_1, R), \frac{\operatorname{scal}}{8} \right\} + \frac{\operatorname{scal}}{8} - \mu$

Continuous average

 $\Sigma(r,R) = \nu_1 + \cdots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \operatorname{Ric}$
For $p = 1$: $C_1(R) = \min\left\{\left(\frac{n}{8} + 2\right)\Sigma(r_1, R), \frac{\operatorname{scal}}{8}\right\} + \frac{\operatorname{scal}}{8} - \mu$
For $p > 1$:

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\mathrm{scal}}{8} + p^2\Sigma(r'_p, -R)$$
Continuous average

 $\Sigma(r,R) = \nu_1 + \cdots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \operatorname{Ric}$
For $p = 1$:
For $p > 1$:
For $p > 1$:

$$C_{p}(R) = \min\left\{\left(\frac{n}{8} + p^{2} + p\right)\Sigma(r_{p}, R), \frac{n(n-1)}{8r_{p}}\Sigma(r_{p}, R)\right\} + \frac{\mathrm{scal}}{8} + p^{2}\Sigma(r_{p}, -R)$$

Continuous average

$$\Sigma(r,R) =
u_1 + \dots +
u_{\lfloor r
floor} + (r - \lfloor r
floor)
u_{\lfloor r
floor+1}, \quad 1 \leq r \leq \binom{n}{2}$$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \operatorname{Ric}$
For $p = 1$: $C_1(R) = \min\left\{ \left(\frac{n}{8} + 2\right) \Sigma(r_1, R), \frac{\operatorname{scal}}{8} \right\} + \frac{\operatorname{scal}}{8} - \mu$
For $p > 1$:

$$C_{p}(R) = \min\left\{\left(\frac{n}{8} + p^{2} + p\right)\Sigma(r_{p}, R), \frac{n(n-1)}{8r_{p}}\Sigma(r_{p}, R)\right\} + \frac{\mathrm{scal}}{8} + p^{2}\Sigma(r_{p}', -R)$$

Continuous average

 $\Sigma(r,R) = \nu_1 + \cdots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \operatorname{Ric}$
For $p = 1$: $C_1(R) = \min\left\{\left(\frac{n}{8} + 2\right)\Sigma(r_1, R), \frac{\operatorname{scal}}{8}\right\} + \frac{\operatorname{scal}}{8} - \mu$
For $p > 1$:

$$C_{p}(R) = \min\left\{\left(\frac{n}{8} + p^{2} + p\right)\Sigma(r_{p}, R), \frac{n(n-1)}{8r_{p}}\Sigma(r_{p}, R)\right\} + \frac{\mathrm{scal}}{8} + p^{2}\Sigma(r_{p}', -R)$$

Continuous average

 $\Sigma(r,R) = \nu_1 + \cdots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \operatorname{Ric}$
For $p = 1$: $C_1(R) = \min\left\{ \left(\frac{n}{8} + 2\right) \Sigma(r_1, R), \frac{\operatorname{scal}}{8} \right\} + \frac{\operatorname{scal}}{8} - \mu$
For $p > 1$:

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\mathrm{scal}}{8} + p^2\Sigma(r'_p, -R)$$

"Reasonable" condition Each $C_p(R)$ is a linear combination of ν_i 's

Continuous average

 $\Sigma(r,R) = \nu_1 + \cdots + \nu_{\lfloor r \rfloor} + (r - \lfloor r \rfloor)\nu_{\lfloor r \rfloor + 1}, \quad 1 \le r \le \binom{n}{2}$

Define
$$r_p = \frac{n^2 + (8p-1)n + 8p(p-1)}{n + 8p(p+1)}$$
, $r'_p = \frac{n+p-2}{p}$, and $\mu = \max \operatorname{Ric}$
For $p = 1$: $C_1(R) = \min\left\{ \left(\frac{n}{8} + 2\right) \Sigma(r_1, R), \frac{\operatorname{scal}}{8} \right\} + \frac{\operatorname{scal}}{8} - \mu$
For $p > 1$:

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\mathrm{scal}}{8} + p^2\Sigma(r'_p, -R)$$

"Reasonable" condition Each $C_p(R)$ is a linear combination of ν_i 's (and μ , if p = 1). Theorem (B.–Goodman, 2022) Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle.

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

$$C_1(R) = \min\left\{\left(\frac{n}{8} + 2\right)\Sigma(r_1, R), \frac{\text{scal}}{8}\right\} + \frac{\text{scal}}{8} - \mu$$

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\mathrm{scal}}{8} + p^2\Sigma(r'_p, -R)$$

$$C_1(R) = \min\left\{\left(rac{n}{8} + 2
ight)\Sigma(r_1, R), rac{\mathrm{scal}}{8}
ight\} + rac{\mathrm{scal}}{8} - \mu$$

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\mathrm{scal}}{8} + p^2\Sigma(r'_p, -R)$$

For specific $E \subseteq TM^{\otimes p}$, e.g., $E = \wedge^{p}TM$, or $E = \text{Sym}^{p}TM$, we provide *weaker* necessary conditions;

$$C_1(R) = \min\left\{\left(rac{n}{8} + 2
ight)\Sigma(r_1, R), rac{\mathrm{scal}}{8}
ight\} + rac{\mathrm{scal}}{8} - \mu$$

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\mathrm{scal}}{8} + p^2\Sigma(r'_p, -R)$$

For specific $E \subseteq TM^{\otimes p}$, e.g., $E = \wedge^{p}TM$, or $E = \text{Sym}^{p}TM$, we provide *weaker* necessary conditions;

▶ If
$$1 \le q < p$$
, then $C_p(R) > 0 \Longrightarrow C_q(R) > 0$ and scal > 0.

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example $M = \mathbb{H}P^2$

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example $M = \mathbb{H}P^2$ has $\hat{A}(M, TM_{\mathbb{C}}) \neq 0$,

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example

 $M = \mathbb{H}P^2$ has $\hat{A}(M, TM_{\mathbb{C}}) \neq 0$, so M does not admit $C_1(R) > 0$.

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example

 $M = \mathbb{H}P^2$ has $\hat{A}(M, TM_{\mathbb{C}}) \neq 0$, so M does not admit $C_1(R) > 0$.

For
$$n = 8$$
: dim $\wedge^2 \mathbb{R}^8 = 28$
 $C_1(R) = \min\left\{3\Sigma(5, R), \frac{\text{scal}}{8}\right\} + \frac{\text{scal}}{8} - \mu$

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example

 $M = \mathbb{H}P^2$ has $\hat{A}(M, TM_{\mathbb{C}}) \neq 0$, so M does not admit $C_1(R) > 0$. For n = 8: dim $\wedge^2 \mathbb{R}^8 = 28$

 $C_1(R) = \min\left\{3\Sigma(5, R), \frac{\text{scal}}{8}\right\} + \frac{\text{scal}}{8} - \mu$ In particular, $\mathbb{H}P^2$ has no Einstein metric with $\nu_1 + \cdots + \nu_5 > 0$.

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example

 $M = \mathbb{H}P^2$ has $\hat{A}(M, TM_{\mathbb{C}}) \neq 0$, so M does not admit $C_1(R) > 0$.

For n = 8: dim $\wedge^2 \mathbb{R}^8 = 28$ $C_1(R) = \min\left\{3\Sigma(5, R), \frac{\text{scal}}{8}\right\} + \frac{\text{scal}}{8} - \mu$ In particular, $\mathbb{H}P^2$ has no Einstein metric with $\nu_1 + \dots + \nu_5 > 0$.

 $M = \mathbb{C}aP^2$

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example

 $M=\mathbb{H}P^2$ has $\hat{A}(M, TM_{\mathbb{C}})
eq 0$, so M does not admit $C_1(R)>0.$

For n = 8: dim $\wedge^2 \mathbb{R}^8 = 28$ $C_1(R) = \min\left\{3\Sigma(5, R), \frac{\text{scal}}{8}\right\} + \frac{\text{scal}}{8} - \mu$ In particular, $\mathbb{H}P^2$ has no Einstein metric with $\nu_1 + \dots + \nu_5 > 0$.

 $M=\mathbb{C}\mathrm{a}P^2$ has $\hat{A}(M,\wedge^2TM_{\mathbb{C}})
eq 0$,

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example

 $M = \mathbb{H}P^2$ has $\hat{A}(M, TM_{\mathbb{C}}) \neq 0$, so M does not admit $C_1(R) > 0$. For n = 8: dim $\wedge^2 \mathbb{R}^8 = 28$

 $C_1(R) = \min\{3\Sigma(5, R), \frac{\text{scal}}{8}\} + \frac{\text{scal}}{8} - \mu$ In particular, $\mathbb{H}P^2$ has no Einstein metric with $\nu_1 + \cdots + \nu_5 > 0$.

 $M = \mathbb{C}aP^2$ has $\hat{A}(M, \wedge^2 TM_{\mathbb{C}}) \neq 0$, so does not admit $C_2(R) > 0$.

Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.

Example

$$\begin{split} M &= \mathbb{H}P^2 \text{ has } \hat{A}(M, TM_{\mathbb{C}}) \neq 0 \text{, so } M \text{ does not admit } C_1(R) > 0. \\ \text{For } n &= 8: \quad \dim \wedge^2 \mathbb{R}^8 = 28 \\ C_1(R) &= \min\left\{3\Sigma(5, R), \frac{\text{scal}}{8}\right\} + \frac{\text{scal}}{8} - \mu \\ \text{In particular, } \mathbb{H}P^2 \text{ has no Einstein metric with } \nu_1 + \dots + \nu_5 > 0. \end{split}$$

$$\begin{split} &M = \mathbb{C}aP^2 \text{ has } \hat{A}(M, \wedge^2 TM_{\mathbb{C}}) \neq 0 \text{, so does not admit } C_2(R) > 0 \\ &\text{For } n = 16: \quad \dim \wedge^2 \mathbb{R}^{16} = 120 \\ &C_2(R) = \min \left\{ 8 \,\Sigma(8, R), \frac{15}{4} \,\Sigma(8, R) \right\} + \frac{\mathrm{scal}}{8} + 4 \,\Sigma(8, -R) \end{split}$$

Theorem (B.–Goodman, 2022)

(i) Every non-torsion cobordism class in Ω_n^{SO} , $n \ge 10$, contains a manifold with $C_1(R) > 0$;

Theorem (B.–Goodman, 2022)

(i) Every non-torsion cobordism class in Ω_n^{SO}, n ≥ 10, contains a manifold with C₁(R) > 0;
 i.e., without spin condition, there is no restriction on rational cobordism class!

Theorem (B.–Goodman, 2022)

- (i) Every non-torsion cobordism class in Ω^{SO}_n, n ≥ 10, contains a manifold with C₁(R) > 0;
 i.e., without spin condition, there is no restriction on rational cobordism class!
- (ii) If M^n is spin, $n \ge 10$, and $\hat{A}(M) = \hat{A}(M, TM_{\mathbb{C}}) = 0$, then $\#^{\ell}M^n$ is spin cobordant to a manifold with $C_1(R) > 0$;

Theorem (B.–Goodman, 2022)

- (i) Every non-torsion cobordism class in Ω^{SO}_n, n ≥ 10, contains a manifold with C₁(R) > 0;
 i.e., without spin condition, there is no restriction on rational cobordism class!
- (ii) If M^n is spin, $n \ge 10$, and $\hat{A}(M) = \hat{A}(M, TM_{\mathbb{C}}) = 0$, then $\#^{\ell}M^n$ is spin cobordant to a manifold with $C_1(R) > 0$; i.e., with spin condition, these are the only restrictions on rational cobordism class!

Theorem (B.–Goodman, 2022)

(i) Every non-torsion cobordism class in Ω_n^{SO} , $n \ge 10$, contains a manifold with $C_1(R) > 0$;

i.e., without spin condition, there is **no restriction** *on rational cobordism class!*

- (ii) If M^n is spin, $n \ge 10$, and $\hat{A}(M) = \hat{A}(M, TM_{\mathbb{C}}) = 0$, then $\#^{\ell}M^n$ is spin cobordant to a manifold with $C_1(R) > 0$; i.e., with spin condition, these are the only restrictions on rational cobordism class!
- (iii) $C_p(R) > 0$ is preserved under surgeries of codimension d if (d-1)(d-2) > 8p(p+n-2).

Thus, $C_1(R) > 0$ does not restrict any Betti numbers b_i nor individual Pontryagin numbers p_i in sufficiently large dimension.

Surgery of codimension *d*:

Surgery of codimension *d*:

▶ Remove $\mathbb{S}^{n-d} \times D^d \subset M^n$

Surgery of codimension *d*:

- ▶ Remove $\mathbb{S}^{n-d} \times D^d \subset M^n$
- ▶ Glue in $D^{n-d+1} \times S^{d-1}$

Surgery of codimension *d*:

- ▶ Remove $\mathbb{S}^{n-d} \times D^d \subset M^n$
- ▶ Glue in $D^{n-d+1} \times S^{d-1}$

Result is cobordant to M;

Surgery of codimension *d*:

▶ Remove $\mathbb{S}^{n-d} \times D^d \subset M^n$

• Glue in
$$D^{n-d+1} imes \mathbb{S}^{d-1}$$

Result is cobordant to M; decreases b_{n-d} if $\mathbb{S}^{n-d} \subset M$ is nontrivial in rational homology,

Surgery of codimension *d*:

▶ Remove $\mathbb{S}^{n-d} \times D^d \subset M^n$

• Glue in
$$D^{n-d+1} imes \mathbb{S}^{d-1}$$

Result is cobordant to M; decreases b_{n-d} if $\mathbb{S}^{n-d} \subset M$ is nontrivial in rational homology, increases b_{n-d+1} if $\mathbb{S}^{n-d} \subset M$ is trivial in rational homology.

Surgery of codimension *d*:

▶ Remove $\mathbb{S}^{n-d} \times D^d \subset M^n$

• Glue in
$$D^{n-d+1} imes \mathbb{S}^{d-1}$$

Result is cobordant to M; decreases b_{n-d} if $\mathbb{S}^{n-d} \subset M$ is nontrivial in rational homology, increases b_{n-d+1} if $\mathbb{S}^{n-d} \subset M$ is trivial in rational homology.

Work in progress: push curvature across $BO\langle k \rangle$ -cobordisms, a la Gromov–Lawson;

Surgery of codimension *d*:

▶ Remove $\mathbb{S}^{n-d} \times D^d \subset M^n$

• Glue in
$$D^{n-d+1} imes \mathbb{S}^{d-1}$$

Result is cobordant to M; decreases b_{n-d} if $\mathbb{S}^{n-d} \subset M$ is nontrivial in rational homology, increases b_{n-d+1} if $\mathbb{S}^{n-d} \subset M$ is trivial in rational homology.

Work in progress: push curvature across $BO\langle k \rangle$ -cobordisms, a la Gromov–Lawson; e.g., if N^n , $n \ge 10$, is 4-connected and is string-cobordant to (M^n, g) with $\mathcal{R}_{TM_C} \succ 0$ then N has it too.
Dimension n = 4k,

Dimension n = 4k, p(k) =partitions of $k \in \mathbb{N}$,

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{I_1}, \ldots, p_{I_{p(k)}})$:

 $\Omega^{SO}_{4k} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism,

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{l_1}, \ldots, p_{l_{p(k)}})$: $\Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism,

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{I_1}, \ldots, p_{I_{p(k)}})$: $\Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_*^{\text{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots].$

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{l_1}, \ldots, p_{l_{p(k)}})$: $\Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_*^{\text{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots].$

So

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{l_1}, \ldots, p_{l_{p(k)}})$: $\Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_*^{\text{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots].$

So M^n is rationally null-cobordant

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{l_1}, \ldots, p_{l_{p(k)}})$: $\Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_*^{\text{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots].$

So M^n is rationally null-cobordant (i.e., $\#^{\ell}M^n = \partial W^{n+1}$)

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{l_1}, \ldots, p_{l_{p(k)}}): \Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_*^{\text{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots].$

So M^n is rationally null-cobordant (i.e., $\#^{\ell}M^n = \partial W^{n+1}$) if and only if all its Pontryagin numbers vanish.

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{I_1}, \ldots, p_{I_{p(k)}})$: $\Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_*^{\text{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots].$

So M^n is rationally null-cobordant (i.e., $\#^{\ell}M^n = \partial W^{n+1}$) if and only if all its Pontryagin numbers vanish.

 $\frac{\text{Application 1:}}{\hat{A}(M, E) = 0 \text{ for many } E's}$

Dimension n = 4k, $p(k) = \text{partitions of } k \in \mathbb{N}$, e.g., p(4) = 5.

Thom, 1954 $(p_{I_1}, \ldots, p_{I_{p(k)}})$: $\Omega_{4k}^{\text{Spin}} \otimes \mathbb{Q} \cong \Omega_{4k}^{\text{SO}} \otimes \mathbb{Q} \longrightarrow \mathbb{Q}^{p(k)}$ is an isomorphism, and $\Omega_*^{\text{SO}} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{C}P^2, \mathbb{C}P^4, \mathbb{C}P^6, \ldots].$

So M^n is rationally null-cobordant (i.e., $\#^{\ell}M^n = \partial W^{n+1}$) if and only if all its Pontryagin numbers vanish.

Application 1: $\hat{A}(M, E) = 0$ for many E's

M is rationally null-cobordant.

Theorem (B.–Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold,

Theorem (B.–Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein;

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{Id} - \text{Ric} \succeq 0$;

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$;

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Without spin condition, for all $n \ge 2$:

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Without spin condition, for all $n \ge 2$:

Petersen–Wink, 2021 $\Sigma(\lceil \frac{n}{2} \rceil, R) > 0$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Without spin condition, for all $n \ge 2$:

Petersen-Wink, 2021

 $\Sigma(\lceil \frac{n}{2} \rceil, R) > 0 \implies M^n$ is a rational homology sphere;

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Without spin condition, for all $n \ge 2$:

Petersen-Wink, 2021

 $\Sigma(\lceil \frac{n}{2} \rceil, R) > 0 \implies M^n$ is a rational homology sphere; indeed $\Sigma(n-p, R) > 0, \ p < \frac{n}{2} \implies b_p(M) = b_{n-p}(M) = 0.$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Without spin condition, for all $n \ge 2$:

Petersen-Wink, 2021

 $\Sigma(\lceil \frac{n}{2} \rceil, R) > 0 \implies M^n$ is a rational homology sphere; indeed $\Sigma(n-p, R) > 0, \ p < \frac{n}{2} \implies b_p(M) = b_{n-p}(M) = 0.$

Böhm–Wilking, 2008 $\Sigma(2, R) > 0$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Without spin condition, for all $n \ge 2$:

Petersen-Wink, 2021

 $\Sigma(\lceil \frac{n}{2} \rceil, R) > 0 \implies M^n$ is a rational homology sphere; indeed $\Sigma(n-p, R) > 0, \ p < \frac{n}{2} \implies b_p(M) = b_{n-p}(M) = 0.$

Böhm–Wilking, 2008 $\Sigma(2, R) > 0 \implies M^n$ is diffeomorphic to a sphere.

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Example $(\Omega_8^{SO} = \mathbb{Z} \oplus \mathbb{Z})$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Example $(\Omega_8^{SO} = \mathbb{Z} \oplus \mathbb{Z})$ $M = \mathbb{H}P^2$ is spin and not null-cobordant,

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Example $(\Omega_8^{SO} = \mathbb{Z} \oplus \mathbb{Z})$ $M = \mathbb{H}P^2$ is spin and not null-cobordant, so it does not admit Einstein metrics with $\Sigma(5, R) > 0$.

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Example $(\Omega_8^{SO} = \mathbb{Z} \oplus \mathbb{Z})$ $M = \mathbb{H}P^2$ is spin and not null-cobordant, so it does not admit Einstein metrics with $\Sigma(5, R) > 0$. (Same for $\#^{\ell}\mathbb{H}P^2$.)

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) , $k \ge 2$, be a closed Riemannian spin manifold, (i) if k = 2, $\Sigma(5, R) > 0$, and (M^8, g) is Einstein; (ii) if $k \ge 6$ is even, $\Sigma(2k + 4, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; (iii) if $k \ge 9$ is odd, $\Sigma(2k + 6, R) > 0$, and $\frac{\text{scal}}{8} \text{ Id} - \text{Ric} \succeq 0$; then M^{4k} is rationally null-cobordant.

Example $(\Omega_8^{SO} = \mathbb{Z} \oplus \mathbb{Z})$ $M = \mathbb{H}P^2$ is spin and not null-cobordant, so it does not admit Einstein metrics with $\Sigma(5, R) > 0$. (Same for $\#^{\ell}\mathbb{H}P^2$.)

Fubini–Study metric has $\Sigma(r, R) > 0$ only for $r \ge 19$.

Definition

The Witten genus of M^{4k} is the formal power series

$$\varphi_W(M) = \hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} TM_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty} (1-q^{\ell})^{4k},$$

where $\operatorname{Sym}_t TM_{\mathbb{C}} = \mathbb{C} + TM_{\mathbb{C}} t + \operatorname{Sym}^2 TM_{\mathbb{C}} t^2 + \dots$

Definition

The Witten genus of M^{4k} is the formal power series

$$\varphi_W(M) = \hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} TM_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty} (1-q^{\ell})^{4k},$$

where $\operatorname{Sym}_t TM_{\mathbb{C}} = \mathbb{C} + TM_{\mathbb{C}} t + \operatorname{Sym}^2 TM_{\mathbb{C}} t^2 + \dots$

Theorem (B.–Goodman, 2022) Let (M^{4k}, g) be a closed Riemannian spin manifold. Set $p = \lfloor \frac{k}{6} \rfloor - 1$ if $k \equiv 1 \mod 6$, and $p = \lfloor \frac{k}{6} \rfloor$ otherwise.

Definition

The Witten genus of M^{4k} is the formal power series

$$\varphi_W(M) = \hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} TM_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty} (1-q^{\ell})^{4k},$$

where $\operatorname{Sym}_t TM_{\mathbb{C}} = \mathbb{C} + TM_{\mathbb{C}} t + \operatorname{Sym}^2 TM_{\mathbb{C}} t^2 + \dots$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) be a closed Riemannian spin manifold. Set $p = \lfloor \frac{k}{6} \rfloor - 1$ if $k \equiv 1 \mod 6$, and $p = \lfloor \frac{k}{6} \rfloor$ otherwise. If $p \ge 1$, $C_p(R) > 0$, and $p_1(TM) = 0$, then $\varphi_W(M) = 0$.

Definition

The Witten genus of M^{4k} is the formal power series

$$\varphi_W(M) = \hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} TM_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty} (1-q^{\ell})^{4k},$$

where $\operatorname{Sym}_t TM_{\mathbb{C}} = \mathbb{C} + TM_{\mathbb{C}} t + \operatorname{Sym}^2 TM_{\mathbb{C}} t^2 + \dots$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) be a closed Riemannian spin manifold. Set $p = \lfloor \frac{k}{6} \rfloor - 1$ if $k \equiv 1 \mod 6$, and $p = \lfloor \frac{k}{6} \rfloor$ otherwise. If $p \ge 1$, $C_p(R) > 0$, and $p_1(TM) = 0$, then $\varphi_W(M) = 0$.

Conjecture (Stolz, 1996) If (M, g) has Ric $\succ 0$ and $\frac{1}{2}p_1(TM) = 0$, then $\varphi_W(M) = 0$.

Definition

The Witten genus of M^{4k} is the formal power series

$$\varphi_W(M) = \hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} TM_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty} (1-q^{\ell})^{4k},$$

where $\operatorname{Sym}_t TM_{\mathbb{C}} = \mathbb{C} + TM_{\mathbb{C}} t + \operatorname{Sym}^2 TM_{\mathbb{C}} t^2 + \dots$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) be a closed Riemannian spin manifold. Set $p = \lfloor \frac{k}{6} \rfloor - 1$ if $k \equiv 1 \mod 6$, and $p = \lfloor \frac{k}{6} \rfloor$ otherwise. If $p \ge 1$, $C_p(R) > 0$, and $p_1(TM) = 0$, then $\varphi_W(M) = 0$.

Remark 1

Ric \succ 0 does not imply $C_p(R) > 0$ for p as above.

Definition

The Witten genus of M^{4k} is the formal power series

$$\varphi_W(M) = \hat{A}\left(M, \bigotimes_{\ell=1}^{\infty} \operatorname{Sym}_{q^{\ell}} TM_{\mathbb{C}}\right) \prod_{\ell=1}^{\infty} (1-q^{\ell})^{4k},$$

where $\operatorname{Sym}_t TM_{\mathbb{C}} = \mathbb{C} + TM_{\mathbb{C}} t + \operatorname{Sym}^2 TM_{\mathbb{C}} t^2 + \dots$

Theorem (B.-Goodman, 2022) Let (M^{4k}, g) be a closed Riemannian spin manifold. Set $p = \lfloor \frac{k}{6} \rfloor - 1$ if $k \equiv 1 \mod 6$, and $p = \lfloor \frac{k}{6} \rfloor$ otherwise. If $p \ge 1$, $C_p(R) > 0$, and $p_1(TM) = 0$, then $\varphi_W(M) = 0$.

Remark 2

If $24 \le n < 48$ or n = 52 and $p_1(TM) = 0$, then $\varphi_W(M) = 0$ if and only if $\#^{\ell}M$ is cobordant to a manifold with $C_1(R) > 0$. Applications to elliptic genus, signature, ...

Applications to elliptic genus, signature, ...

About the proof of:

Theorem (B.–Goodman, 2022) Let (M^n, g) be a closed Riemannian spin manifold, $n \ge 8$, and $E \subseteq TM^{\otimes p}$ a parallel subbundle. If $C_p(R) > 0$, then $\hat{A}(M, E_{\mathbb{C}}) = 0$.
Unitary representation $\pi: SO(n) \rightarrow Aut(E)$

Unitary representation $\pi: SO(n) \rightarrow Aut(E)$ $\pi: Spin(n) \rightarrow Aut(E)$

Unitary representation

$$\pi: SO(n) \rightarrow Aut(E)$$

 $\pi: Spin(n) \rightarrow Aut(E)$

$$\sim \rightarrow$$

$$E_{\pi}
ightarrow M$$
 associated bundle
 $E_{\pi} = \operatorname{Fr} imes_{\pi} E$

 $\sim \rightarrow$

Unitary representation

$$\pi: SO(n) \rightarrow Aut(E)$$

 $\pi: Spin(n) \rightarrow Aut(E)$

$$egin{array}{lll} E_{\pi} o M ext{ associated bundle} \ E_{\pi} = \mathrm{Fr} imes_{\pi} E \end{array}$$

 $\Delta =
abla^*
abla + t \, K(R,\pi)$,

Unitary representation

$$\pi: \operatorname{SO}(n) \to \operatorname{Aut}(E)$$

 $\pi: \operatorname{Spin}(n) \to \operatorname{Aut}(E)$
 $\rightsquigarrow \qquad E_{\pi} \to M \text{ associated bundle}$
 $E_{\pi} = \operatorname{Fr} \times_{\pi} E$

 $\Delta = \nabla^* \nabla + t \, K(R, \pi), \quad K(R, \pi) = -\sum_{a} \mathrm{d}\pi(R(X_a)) \circ \mathrm{d}\pi(X_a)$

Unitary representation

$$\pi: \operatorname{SO}(n) \to \operatorname{Aut}(E)$$

 $\pi: \operatorname{Spin}(n) \to \operatorname{Aut}(E)$
 $\rightsquigarrow \qquad \begin{array}{c} E_{\pi} \to M \text{ associated bundle} \\ E_{\pi} = \operatorname{Fr} \times_{\pi} E \end{array}$

 $\Delta = \nabla^* \nabla + t \, K(R, \pi), \quad K(R, \pi) = -\sum_{a} \mathrm{d}\pi(R(X_a)) \circ \mathrm{d}\pi(X_a)$

Highest weight of π	E_{π}	t	$K(R,\pi)$
ε_1	$TM_{\mathbb{C}}$	±2	Ric
$\varepsilon_1 + \cdots + \varepsilon_p, p < n/2$	$\wedge^{p}TM_{\mathbb{C}}$	2	
$p \varepsilon_1$	$\operatorname{Sym}_0^p TM_{\mathbb{C}}$	-2	
$\frac{1}{2}\varepsilon_1 + \cdots \pm \frac{1}{2}\varepsilon_{n/2}$	S^{\pm}	2	$\frac{\text{scal}}{8}$ Id

Jnitary representation
$$\pi: SO(n) \rightarrow Aut(E)$$

 $\pi: Spin(n) \rightarrow Aut(E)$ \rightsquigarrow $E_{\pi} \rightarrow M$ associated bundle
 $E_{\pi} = Fr \times_{\pi} E$

 $\Delta = \nabla^* \nabla + t \, K(R, \pi), \quad K(R, \pi) = -\sum_{a} \mathrm{d}\pi(R(X_a)) \circ \mathrm{d}\pi(X_a)$

Highest weight of π	E_{π}	t	$K(R,\pi)$
ε_1	$TM_{\mathbb{C}}$	±2	Ric
$\varepsilon_1 + \cdots + \varepsilon_p, p < n/2$	$\wedge^{p}TM_{\mathbb{C}}$	2	
$p \varepsilon_1$	$\operatorname{Sym}_0^p TM_{\mathbb{C}}$	-2	
$\frac{1}{2}\varepsilon_1 + \cdots \pm \frac{1}{2}\varepsilon_{n/2}$	S^{\pm}	2	$\frac{\text{scal}}{8}$ Id

Theorem (B.–Goodman, 2022)

τ τ

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda+2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

Generalizes result of Petersen–Wink in case $\lambda = \varepsilon_1 + \cdots + \varepsilon_p$, where r = n - p,

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

Generalizes result of Petersen–Wink in case $\lambda = \varepsilon_1 + \cdots + \varepsilon_p$, where r = n - p, so $\Sigma(r, R) > 0 \implies b_p(M) = b_{n-p}(M) = 0$.

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

Lemma

The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies $D_{\pi}^2 = \nabla^* \nabla + K(R, \pi_S \otimes \pi) + \frac{\text{scal}}{8} \text{Id} - K(R, \pi)$

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

Lemma

The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies $D_{\pi}^{2} = \nabla^{*}\nabla + \underbrace{K(R, \pi_{S} \otimes \pi) + \frac{\text{scal}}{8} \text{Id} - K(R, \pi)}_{\mathcal{R}_{\pi}}.$

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

Lemma

The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies $D_{\pi}^{2} = \nabla^{*}\nabla + \underbrace{K(R, \pi_{S} \otimes \pi) + \frac{\text{scal}}{8} \text{Id} - K(R, \pi)}_{\mathcal{R}_{\pi}}.$

$$C_1(R) = \min\left\{\left(\frac{n}{8} + 2\right)\Sigma(r_1, R), \frac{\mathrm{scal}}{8}\right\} + \frac{\mathrm{scal}}{8} - \mu$$

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\operatorname{scal}}{8} + p^2\Sigma(r'_p, -R)$$

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

Lemma

The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies $D_{\pi}^{2} = \nabla^{*}\nabla + \underbrace{K(R, \pi_{S} \otimes \pi) + \frac{\text{scal}}{8} \text{Id} - K(R, \pi)}_{\mathcal{R}_{\pi}}.$

$$C_1(R) = \min\left\{\left(\frac{n}{8}+2\right)\Sigma(r_1, R), \frac{\mathrm{scal}}{8}\right\} + \frac{\mathrm{scal}}{8} - \mu$$

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\operatorname{scal}}{8} + p^2\Sigma(r'_p, -R)$$

 $\mathcal{C}_{
ho}(R)>0 \implies \mathcal{R}_{\pi}\succ 0$, for any $\mathcal{E}_{\pi}\subseteq TM_{\mathbb{C}}^{\otimes p}$.

If the highest weight of π is λ , then $K(R, \pi) \succeq \|\lambda\|^2 \Sigma(r, R)$ Id where $r = \frac{\langle \lambda, \lambda + 2\rho \rangle}{\|\lambda\|^2}$ and ρ is the half-sum of positive roots.

Lemma

The twisted Dirac operator D_{π} on $S \otimes E_{\pi}$ satisfies $D_{\pi}^{2} = \nabla^{*}\nabla + \underbrace{K(R, \pi_{S} \otimes \pi) + \frac{\text{scal}}{8} \text{Id} - K(R, \pi)}_{\mathcal{R}_{\pi}}.$

$$C_1(R) = \min\left\{\left(\frac{n}{8}+2\right)\Sigma(r_1, R), \frac{\mathrm{scal}}{8}\right\} + \frac{\mathrm{scal}}{8} - \mu$$

$$C_p(R) = \min\left\{\left(\frac{n}{8} + p^2 + p\right)\Sigma(r_p, R), \frac{n(n-1)}{8r_p}\Sigma(r_p, R)\right\} + \frac{\text{scal}}{8} + p^2\Sigma(r'_p, -R)$$

 $\mathcal{C}_p(R) > 0 \implies \mathcal{R}_\pi \succ 0 \implies \hat{A}(M, E_\pi) = 0$, for any $E_\pi \subseteq TM_{\mathbb{C}}^{\otimes p}$.

Thank you for your attention!