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Proof.
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Dirac operator D has nontrivial kernel, but D? = V*V + =,
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Our goal
Prove similar obstructions to other curvature conditions:
» weak enough to be satisfied by lots of manifolds;
» strong enough to restrict their rational cobordism type.
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Strategy: twisted spinors

(M", g) closed spin manifold,
E — M complex vector bundle

Twisted Dirac operator
De: S®E —-S®E

> Atiyah-Singer: index of D is A(M, E) = (A(TM) ch(E), [M])
if E is built from TM, e.g., E = TMg, AP TM¢, Sym? TMc...:

» depends only on rational oriented cobordism class of M

» rational linear combination of Pontryagin numbers of M

> D2 =V*V +Re

» Bochner technique: =

Challenge
Given E — M, find “reasonable” sufficient

~

AM,E)=0

conditions for Rg >~ 0.
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» If 1 < q < p, then C,(R) > 0= C,(R) > 0 and scal > 0.
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M = CaP? has A(M, N2 TMg) # 0, so does not admit G,(R) > 0.

For n=16: dimA?R' =120
G(R) =min{8%(8,R), 2 £(8,R)} + 2 +4%(8,—R)
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Theorem (B.—Goodman, 2022)

(i) Every non-torsion cobordism class in Q3°, n > 10, contains a
manifold with C;(R) > 0;
i.e., without spin condition, there is no restriction on
rational cobordism class!

(ii) If M is spin, n > 10, and A(M) = A(M, TMg) = 0, then
#tM" is spin cobordant to a manifold with C;(R) > 0;
i.e., with spin condition, these are the only restrictions on
rational cobordism class!

(iii) Cp(R) > 0 is preserved under surgeries of codimension d if
(d—1)(d —2) >8p(p+n—2).

Thus, G(R) > 0 does not restrict any Betti numbers b; nor
individual Pontryagin numbers p; in sufficiently large dimension.
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(d —1)(d —2) >8p(p+n—2).

Surgery of codimension d:
» Remove $" ¢ x DY Cc M"

» Glue in D"—9+1 % gd-1

Result is cobordant to M:;
decreases b,_,4 if "9 C M is
nontrivial in rational homology,
increases b,_q1 if "¢ C M is
trivial in rational homology.

““Who did “ou say ¢id your b ass surgery?”

Work in progress: push curvature across BO(k)-cobordisms, a la
Gromov-Lawson; e.g., if N", n > 10, is 4-connected and is
string-cobordant to (M", g) with Rypm. > 0 then N has it too.



Rational cobordism types

Dimension n = 4k,



Rational cobordism types

Dimension n = 4k,
p(k) = partitions of k € IN,



Rational cobordism types

Dimension n = 4k,
p(k) = partitions of k € IN,

e.g., p(4) =b5.




. . ]
Rational cobordism types | |
=g
Dimension n = 4k, 1_ 15. : ’
p(k) = partitions of k € IN, — T ’
e.g., p(4) =5. I el R TR 5
I_ g-' Zr! IE. 1 E 7
l_ 3 z-rl 2E i 1 d 1 E 11
Thom, 1954

(P - - ,p,p(k)): Q3% ® Q — QP is an isomorphism,



. . ]
Rational cobordism types | |
=g
Dimension n = 4k, 1_ 15. : ’
p(k) = partitions of k € IN, — T ’
e.g., p(4) =5. I el R TR 5
I_ g-' Zr! IE. 1 E 7
l_ 3 z-rl 2E i 1 d 1 E 11
Thom, 1954

(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,



Rational cobordism types | |
] E ’7
Dimension n = 4k, 1_ : : )
p(k) = partitions of k € IN, 1 ’
e.g, p(4) =5. N Gl [N 5
I_ ;-' Zr! 15. 1 E 7
l_ 3 3-'" 2F i 1 d 1 E 11

Thom, 1954

(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,
and 050 © Q = Q[CP?, CP*,CPS, .|,



Rational cobordism types | |
] E ’7
Dimension n = 4k, 1_ : : )
p(k) = partitions of k € IN, 1 ’
e.g, p(4) =5. N Gl [N 5
I_ ;-' Zr! 15. 1 E 7
l_ 3 3-'" 2F i 1 d 1 E 11

Thom, 1954

(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,
and 050 © Q = Q[CP?, CP*,CPS, .|,
So



. . ]

Rational cobordism types | |
] E ’7

Dimension n = 4k, 1_ 15. : )
p(k) = partitions of k € IN, — T ’
e.g., p(4) =5. C LTS 5
1_ ;-' Zr! 15. 1 E 7

l_ 3 2-'" 2E i 1 d 1 E 11

Thom, 1954
(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,

and Q50 @ Q = Q[CP2, CP*,CPS, .. .].

So M" is rationally null-cobordant



Rational cobordism types | |
-] E ’7
Dimension n = 4k, 1_ 15. : )
p(k) = partitions of k € IN, — T ’
e.g., p(4) =5. C LTS 5
1_ ;-' ZE- # 15. 1 E 7
l_ 3 z-rl 2E i 1 d 1 E 11

Thom, 1954

(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,
and Q° © Q = Q[CP2, CP*,CPS,. .|,
So M" is rationally null-cobordant (i.e., #‘M" = dWn+1)



Rational cobordism types | |
B

Dimension n = 4k, l- lﬂ' B 2
p(k) = partitions of k € IN, I_ ]E.. : 3
e.g.,p(4):5- | 2 N 5

1_ i IE 1 i 7

- ~FR
3 F i d 1 E

Thom, 1954
(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,

and Q50 @ Q = Q[CP2, CP*,CPS, .. .].

So M" is rationally null-cobordant (i.e., #‘M" = 9W"*1) if and
only if all its Pontryagin numbers vanish.



Rational cobordism types | |
B

Dimension n = 4k, 1_ 15. : ’
p(k) = partitions of k € IN, — = ’
e.g., p(4) =5. I el T I 5
1_ ;-' ZE-F la. 1 E 7
l_ 3 3-" 2E f 1 F 1 E 11
Thom, 1954

(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,
and Q° © Q = Q[CP2, CP*,CPS,. .|,
So M" is rationally null-cobordant (i.e., #‘M" = W"*1) if and

only if all its Pontryagin numbers vanish.

Application 1:

A(M,E) =0 for many E's




Rational cobordism types | |
B

Dimension n = 4k, l- lﬂ' B 2
p(k) = partitions of k € IN, I_ ]E.. : 3
e.g., p(4) =5. I il [ i

e R T T 7

_3 cre|rr|f lg

Thom, 1954
(Phs -5 Piyy): QP9 Q =~ 00 @ Q — QP is an isomorphism,

and Q50 © Q = Q[CP2, CP*, CPS, ... ].
So M" is rationally null-cobordant (i.e., #‘M" = W"*1) if and

only if all its Pontryagin numbers vanish.

Application 1:
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Let (M* . g), k > 2, be a closed Riemannian spin manifold,
(i) ifk=2, (5 R) >0, and (M8, g) is Einstein;

(i) ifk > 6 is even, £(2k +4,R) > 0, and *2' Id — Ric = 0;

(iii) if k > 9 is odd, ¥(2k + 6,R) > 0, and *2' |d — Ric = 0;

then M** is rationally null-cobordant.

Without spin condition, for all n > 2:

Petersen—Wink, 2021

Y([5],R) >0 = M" is a rational homology sphere; indeed
Y(n—p,R)>0, p<§ = by(M) = b,_p(M)=0.

Bohm-Wilking, 2008
Y(2,R) >0 = M" is diffeomorphic to a sphere.
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Let (M*< g), k > 2, be a closed Riemannian spin manifold,
(i) ifk =2, (5 R) >0, and (M8, g) is Einstein;

(ii) ifk > 6 is even, £(2k +4,R) > 0, and *2' |d — Ric = 0;

(i) if k > 9 is odd, ¥(2k 4 6, R) > 0, and *2 Id — Ric = 0;

then M** s ratienally null-cobordant.

Example (° = Z @ 7)
M = HP? is spin and not null-cobordant, so it does not admit
Einstein metrics with £(5, R) > 0. (Same for #‘HP?.)

Fubini-Study metric has X(r, R) > 0 only for r > 19.
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If (M, g) has Ric = 0 and p;(TM) = 0, then o (M) = 0.
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Definition
The Witten genus of M*< is the formal power series
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Definition
The Witten genus of M* is the formal power series
QDW(M) = A\ (M, ® Squz TM@) H(]. — qf)‘”‘,
=1 =1

where Sym, TM¢g = C + TM¢ t + Sym? TMg t> + . ..

Theorem (B.—Goodman, 2022)
)

Let (M* . g) be a closed Riemannian spin manifold.
Setp=|&] —1ifk=1 mod 6, and p = |£| otherwise.
Ifp>1, C,(R) >0, and p1(TM) = 0, then pw (M) = 0.

Remark 2
If 24 < n <48 or n =52 and p;(TM) = 0, then oy (M) =0
if and only if #‘M is cobordant to a manifold with C;(R) > 0.
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About the proof of:

Theorem (B.—~Goodman, 2022)
Let (M",g) be a closed Riemannian spin manifold, n > 8, and
E C TM®P a parallel subbundle. If C,(R) > 0, then A(M, E¢) = 0.
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If the highest weight of w is A\, then K(R, =) = ||\ X(r, R)Id

where r = <AI|A/\H22’)> and p is the half-sum of positive roots.

Lemma
The twisted Dirac operator D, on S ® E, satisfies
D? = V*V + K(R Ts @) + Sca' Ild—K(R, ).

J/

-

R

Cu(R) = min{(g +2)5(r, R), 52!} + 52l

Co(R) = min{(g + P2+ p)E(rp, R), 25 (1, R)} +350 + p*L(r,, —R)

C(R)>0 = R, >0 — A(M,E,)=0, for any E, C TMZ".




Thank you for your attention!




