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These notes have been prepared for a series of lectures given at the College on

Di�erential Geometry at Trieste in the Fall of ����� The lectures center around To�

ponogov�s triangle comparison theorem� critical point theory and applications� In the

short amount of time available not all the aspects can be covered� We focus on those

applications which seem to be most important and at the same time most suitable

for an exposition� Some basic knowledge in geometry will be assumed� It has been

provided by K� Grove in the �rst series of these lectures� Nevertheless we try to keep

the lectures selfcontained and independent as much as possible� For the result about

the sum of Betti numbers in section 	�
 a lemma from algebraic topology is needed� A

proof for this result has been provided in the appendix�

I am indebted to U� Abresch for many helpful conversations and also for writing

and typing the appendix�
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� Review of notation and some tools

��� Covariant derivatives

We consider a complete Riemannian manifold M with tangent bundle TM and Rie�

mannian metric h � i and corresponding covariant derivative r of Levi Civita� which

is the unique torsion free connection for which h � i is parallel� i�e� for any vector �elds
X� Y� Z on M we have

rXY � rYX � �X� Y � ���

and

X hY� Zi � hrXY � Zi� hY� rXZ i � ���

The last two equations are equivalent to the Levi Civita equation

� hrXY � Zi � X hY� Zi� Y hZ�Xi � Z hX� Y i

�



� hZ� �X� Y �i� hY� �Z�X�i � hX� �Y� Z�i �	�

If �M is an arbitrary manifold and f � �M � M a di�erentiable map� f� � T �M �
TM denotes the di�erential of f � r naturally extends to a covariant derivative for

vector �elds along f � For any vector �eld A on �M and any vector �eld Y along f �

i�e� Y � �M � TM satis�es � �Y � f where � � TM �M denotes the projection� the

covariant derivative rAY is well de�ned� Due to the fact that �rAY �p depends only
on Ap and the values of Y in a neighbourhood of the point p� this extension is uniquely

determined by requiring the chain rule rv�Xf� � rf�vX for any tangentvector v � T �M

and any vector �eld X on M �

In a similar way the corresponding covariant derivative for tensor �elds carries over

to a covariant derivative for tensor�elds along a map� As a consequence one obtains

for example the Cartan structural equations for the Levi Civita connection�

rAf�B � rBf�A � f��A�B� � 
 ���

R�f�A� f�B�Y � rArBY � rBrAY � r�A�B�Y � �
�

where R is the curvature tensor of r� A� B are vector �elds on �M and Y is a vector

�eld along the map f �

For a curve c � I �M the parameter vector �eld on I with respect to the parameter

t will be denoted by �
�t

or Dt � �c�t� � c� �
�t
jt is the the tangent vector of c at t� The

covariant derivative rDtY for a vector �eld Y along c is abbreviated by Y � � A parallel

vector �eld Y along c is characterized by the linear di�erential equation Y � � 
�

a geodesic curve by the non�linear second order equation �c � � 
� For consistency

reasons we avoid the often found notation r�c �c resp� r�cY for the expressions rDt �c

resp� rDtY when Y is a vector �eld along c� The inconsistency of such notation

becomes apparent when c is a singular curve for example a constant curve and Y a

non�constant vector �eld along c� If X is a vector �eld on M� r�cX � rDtXc �chain

rule� is well de�ned�

The exponential map exp � TM �M is determined by the initial value problem for

geodesics� If v � TpM � then exp�v� � c��� where c is the geodesic with initial condition

c�
� � p and �c � v � The restriction of exp to the tangent space TpM at p is denoted

by expp � Notice that for complete manifolds the exponential map is de�ned on all of

TM by the Hopf�Rinow theorem�

For a function f �M � IR and a vector �eld X onM � Xf denotes the derivative

of f in direction X � The gradient of f is de�ned via the equation

hgradf �Xi � Xf ���

	



and the Hessian Hessf of f by

Hessf �X� � rXgradf � ���

Hessf is a selfadjoint endomorphism �eld� i�e�hrXgradf � Y i � hrY gradf �Xi�
Important functions on a Riemannian manifold are distance functions or local dis�

tance functions from some point in M or from a submanifold of M � A local distance

function is a function in an open subset U of M considered as a Riemannian subman�

ifold� If p � U � M and r�q� � distM�p� q�� rU�q� � distU�q� p� then rU�q� � r�q��

rU may be di�erentiable in points where r fails to be di�erentiable� A typical example

arises as follows� Let c � ��� ���M be an injective geodesic segment with initial point

p � c��� and without conjugate points� Then there is a neighborhood U of c���� ���

where rU is di�erentiable� However r is not di�erentiable in any point of the cut locus

of p� For explicit examples look at geodesics on a cylinder�

On the set of points where a �local� distance function is di�erentiable it satis�es

jjgradf jj � �� The gradient lines of any function with this property are geodesics

parametrized by arc length� since
D
rgradf gradf �X

E
� hHessf gradf �Xi �

hHessf X� gradf i � hrXgradf � gradf i � �
�
X hgradf � gradf i � 
 for any vector �eld

X on M and hence rgradf gradf � 
� Therefore the level surfaces of such a function

are equidistant� They are referred to as a family of parallel surfaces�

��� Jacobi �elds

Jacobi �elds J along a geodesic arise naturally as variational vector �elds in one pa�

rameter families of geodesic lines and are characterized by the linear second order

di�erential equation

J �� �R�J� �c� �c � 
� ���

If V is a geodesic variation of c� i�e� V � I � ���� �� � M is di�erentiable and

V �t� 
� � c�t� and t �� V �t� s� is a geodesic for all s � ���� ��� then J�t� � V� �
�s
jt�� is a

Jacobi �eld along c�

J ���t� � rDtrDtV�Ds jt�� � rDtrDsV�Dt jt�� �rDtV� �Ds� Dt�� �z �
��

jt��

� rDtrDsV�Dt jt�� �rDsrDtV�Dt� �z �
��

jt��

� �R�V�Ds� V�Dt�V�Dt jt�� � �R�J� �c� �c t�

�



Therefore the Jacobi equation is the linearization of the geodesic equation along c�

Notice that V can be written in the following way� If p is the curve p�s� � V �
� s� and

Y the vector �eld along p given by Y �s� � V�Dt j��s � then V �t� s� � exp tY �s�� The

initial conditions of the Jacobi �eld in terms of p and Y are J�
� � �p�
�� J ��
� � Y ��
��

Y �
� is the initial vector of the geodesic c� Any tangent vector u to TM can be written

as the tangent vector u � �Y j� of a curve s �� Y js �TM � Y is a vector �eld along

the base curve p�s� � � � Y js � If Y and V are de�ned as above� we �nd exp� u �
�dexp � Y j� � V�Dsj��� � J���� Therefore the di�erential of the exponential map is

completely determined by Jacobi �elds�

For example� the Jacobi �eld with initial conditions J�
� � 
� J ��
� � w along the

geodesic exp tv is obtained from the variation V �t� s� � exp t�v � sw�� Here p�s� is

the constant curve� Y �s� � v � sw � J�t� � exp� jtvtw � J��� � expp �jvw � This shows
that the di�erential of the restriction expjTpM is determined by Jacobi �elds on M

with these initial conditions�

��� Interpretation of curvature in terms of the distance func�

tion

Consider two geodesics c� � c� emanating from a point p in M � c���� � exp �v � c���� �

exp �w � v �w � TpM and the distance L��� � dist�co���� c����� in a neighborhood of

zero� Then the fourth order Taylor formula for L� is given by

L���� � ��jjv � wjj� � �

�
�� hR�v� w�w� vi�O���� � ���

When v �� w this implies for � � 
 �

L��� � �jjv � wjj � �

�

hR�v� w�w� vi
jjv � wjj �	 �O���� � ��
�

For linearly independent vectors v� w satisfying jjvjj � jjwjj � � this can be rewritten

as

L��� � �jjv � wjj
�
�� �

��
K�v� w��� � hv� wi���

�
�O���� � ����

where K�v� w� ist the sectional curvature of the plane spanned by v and w � Therefore

L grows faster than linear if K � 
 and slower than linear if K � 
 in a neighborhood

of 
�

To prove ��� we consider the variation

V ��� t� � exp�t exp��c�
�� � c�����
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Figure �� interpretation of sectional curvature
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Figure �� setup for the proof of ���

for small values of � and t� �
� ��� The parameter tangent �elds along V are E � V�D�

and T � V�Dt � The parameter curves a� � t �� V ��� t� are geodesics connecting the

points c���� and c����� T is the tangent �eld of the geodesics and t �� Ej��t is a Jacobi
�eld along a� and Ej��� � �c����� Ej��� � �c�����

Notice that jj �a��t�jj is the length of a� so that

L��� � jj �a��t�jj � jjT jj��t ����

which is constant in t for � �xed� The derivatives of H � L� up to the fourth order
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are given by

H ���� � � hrD�T � T i j��t
H ����� � �

�D
r�

D�
T� T

E
� hrD�T �rD�T i

�
j��t

H ������ � �
�D
r	

D�
T� T

E
� 	

D
r�

D�
T�rD�T

E�
j��t

HIV ��� � �
�D
r�

D�
T� T

E
� � hr	

D�T�rD�T i� 	
D
r�

D�
T�r�

D�
T
E�
j��t �

We will now evaluate these derivatives at �
� t� in order to �nd the coe�cients for the

Taylor formula� The equation rD�T � rDtE and rDtT � 
 will be used frequently

during this calculation� Also notice that T j��t � 
� since V �
� t� � p� We have

rD�E j��� � 
� rD�E j��� � 
 ��	�

since Ej��� � �c���� and Ej��� � �c���� � From the Jacobi property of E we obtain

rDtrDtE � �R�E� T �T � ����

so that

rDtrDtE j��t � 
 � ��
�

Hence t �� Ej��t is a linear vector�eld along the constant curve a� � Since Ej��� �
�c��
� � v � Ej��� � �c��
� � w it follows

Ej
��t� � v � t�w � v� � ����

With this information we can already evaluate H ��
� and H ���
��

H ��
� � � hrD�T � T i j��t � 
 ����

H ���
� � �
D
r�

D�
T� T

E
j��t � � hrD�T �rD�T i j��t

� � hrDtE�rDtEi j��t
� �jjv � wjj� ����

from ����� Next we show that

rD�Ej��t � 
 ����

rDtrD�Ej��t � 
 ��
�

rD�rD�T j��t � 
 � ����

��
� is a consequence of ���� and ���� follows from ��
� since

rD�rD�T � rD�rDtE � R�E� T �E � rDtrD�E �

�



In view of the equations ��	� above it su�ces to show rDtrDtrD�E j��t � 
 for the

proof of ����� For this observe

rDtrDtrD�E � rDt�R�T�E�E� �R�T�E�rD�T � rD��R�T�E�T � �

The right hand side vanishes at �
� t� since rDtT � 
 and T j��t � 
� This su�ces to

�nd H ����
��

H ����
� � � hrD�rD�T �rD�T i j��t
� � hrD�rDtE�rD�T i j��t
� � hR�E� T �E�rD�T i j��t � � hrDtrD�E �rD�T i j��t
� 
 ����

from ��
�� From ���� we get

HIV �
� � � hrD�rD�rD�T � rD�T i j��t� ��	�

Furthermore

rD�rD�rD�T j��t � rD�rD�rDtEj��t
� �rD�R�E� T �E �rD�rDtrD�E�j��t
� R�E�rDtE�Ej��t �rD�rDtrD�Ej��t � ����

Using �������	������ and the symmetries of R we �nd

HIV �
� � � hR�v� w�v� wi� hrD�rDtrD�E � rD�T i j��t �

Since this must also be constant in t� the second term on the right hand side is constant

in t� Now

hrD�rDtrD�E�rD�T i j��t � D�Dt hrD�E�rD�T i j��t
� DtD� hrD�E�rD�T i j��t

by using ��
� and ����� Therefore

D� hrD�E � rD�T i j��t � hrD�rD�E � rD�T i j��t � hrD�E � rD�rD�T i j��t
must be linear in t� But rD�rD�E j��� � rD�rD� �c��
� � 
� rD�rD�E j��� �
rD�rD� �c��
� � 
 and rD�rD�T j��t � 
� so that D� hrD�E � rD�T i j��t � 
 since it

vanishes at t � 
 and at t � �� This proves

HIV �
� � � hR�v� w�v� wi � ��
�

�



Equation ��� now follows from ����� ����� ���� and ��
�� We leave it to the reader to

verify

HV �
� � �
 h�rv�wR��v� w�v� wi � ����

If HV �
� � 
 for all choices of v and w � then M must be a locally symmetric space�

since ���� can be used to show that the operator R �c � R���� �c� �c is parallel for any

geodesic c�

��� The levels of a distance function

In this section we will see that Jacobi �elds determine the second fundamental tensor

S of the level surfaces of a �local� distance function f � This will be used to establish

the Riccati equation for S and a Riccati inequality�

We have a natural unit normal vector �eld N � gradf along the level surfaces of

f � The second fundamental tensor S of the levels with respect to N is the restriction

of the Hessian of f to the tangent spaces of the levels � Su � Hessf u � ruN for

tangent vectors u to the levels� The derivative S � � rNS in the normal direction is

de�ned by S �Y � �rNS �Y � rN �SY � � S�rNY � for any vector �eld Y tangent to

the levels of f � Notice that S �Y is again tangent to the levels�

Let M� be a �xed level� M� � f��f
g after changing f by a constant� The other

levels are then given by Mt � f��ftg� For small values of t the levels M� and Mt

are di�eomorphic via the di�eomorphism Et�p� � exp�t N�p��� The di�erential of

EtjMo can be desribed in terms of Jacobi �elds� Let s �� p�s� be a curve in Mo with

tangent vector v � �p�
�� Then Et �v � J�t� where J is the Jacobi �eld along the

geodesic t �� Et�p�
�� of the geodesic variation V �t� s� � Et � p�s�� J�t� � V�Dsjt�� � Its
initial conditions are J�
� � �p�
� � v � J ��
� � rDs�N � p�j� � r�p
��N � Sv � compare

section ����

The geodesic 	�t� � V �t� s� is an integral curve of N � so that V�Dtjt�s � �	�t� �

N � V �t� s�� With this information we obtain J ��t� � rDtV�Ds jt�� � rDsV�Dt jt�� �
rDsN � V jt�� � rV�DsN jt�� � SJ�t�� The second fundamental tensor of the levels now

is determined by

SJ � J � � ����

Covariant di�erentiation of this equation leads to the important Riccati equation for

S � Since ���� is an equation along the geodesic c�t��V�t�
� it reads more precisely

ScJ � J � � This is useful to remember for the chain rule in rDtSc � r�cS � rNcS �

�S ��c for the computation of J �� � rDt�ScJ� � S �J � SJ � � S �J � S�J � Using the

�



Jacobi equation J �� �R�J�N�N � 
 we obtain the Riccati equation

S � � �RN � S� ����

where RN denotes the curvature operator RNX � R�X�N�N in direction N �

If there is a lower bound 
 for the sectional curvature K of M � then the Riccati

equation leads to a Riccati inequality along the gradient lines c of f � Let Y be a

parallel unit vector �eld along c tangent to the levels� i�e� hY� �ci � 
� Then by ����

hSY� Y i� � �hR�Y�N�N� Y i �
D
S�Y� Y

E
� �K�Y�N�� jjSY jj� �

From the assumption 
 	 K�Y�N� and the Schwarz inequality we obtain the Riccati

inequality

hSY� Y i� 	 �
� hSY� Y i� ����

along c�

��� Data in the constant curvature model spaces

Constant curvature model spaces are important in comparison theory because the

geometric quantities in these spaces can be calculated explicitly�

Mn
� denotes the n�dimensional hyperbolic space IHn

� of curvature 
 if 
 � 
� the

euclidian space IRn if 
 � 
 and the standard sphere Sn
� of radius �p

�
if 
 � 
�

Since hR�v� u�u� vi � 
 for any pair of orthonormal vectors u� v�TpMn
� � we have Ru ��

R����� u�u � 
 
 Idp on the orthogonal complement of u in TpM
n
� � Therefore the Jacobi

equation and the Riccati equation are rather simple�

Jacobi �elds along a geodesic c � IR�Mn
� orthogonal to �c are given by f 
Y � where

Y is a parallel vector �eld along c and f � IR� IR is a solution of the ��dimensional

Jacobi equation

f �� � 
f � 
 �	
�

Let sn� and cs� be the solutions of �	
� with initial conditions sn� �
� � 
� sn�
��
� � �

and cs� �
� � �� cs�
��
� � 
� i�e�

sn��t� � �p
�
sin

p

t

cs��t� � cos
p

 t

��� for 
 � 


sn��t� � t

cs��t� � �

��� for 
 � 
 �	��

�




sn��t� � �p
j�j sinh

q
j
j t

cs��t� � cosh
q
j
j t

����� for 
 � 


Furthermore let

ct� �t� � cs� �t��sn� �t� for sn� �t� �� 
 �	��

The derivatives of these functions are given by

sn�
� � cs� � cs�

� � �
 sn� � ct�
� � �
� ct�

� � �		�

Furthermore the following elementary equations hold�

� � cs�
� � 
 sn�

� �	��

sn��a � b� � sn��a�cs��b� � cs��a�sn��b� �	
�

cs��a � b� � cs��a�cs��b�� 
 sn��a�sn��b� � �	��

A basis for the Jacobi �elds orthogonal to �c is given by fsn� 
 Y� cs� 
 Y g where Y

varies over a basis of parallel vector �elds orthogonal to �c �

Notice that the second fundamental tensor of the �local� distance spheres at distance

r from a �xed point p in any manifold is determined by equation ����� where J is a

Jacobi �eld with initial value J�
� � 
 along a normal geodesic emanating from p� i�e�

in Mn
� by

J�r� � sn� �r�Y �r�

with Y parallel along c and hY� �ci � 
� Hence

Sc
r�Y �r� �
sn�

��r�
sn� �r�

Y �r� � ct� �r�Y �r� � �	��

Therefore the principal curvatures of distance spheres in Mn
� are equal to ct� �r��

The length of the great circles in the distance spheres is �� sn� �r�� In any manifold

the Hessian of the distance function from a point has a zero eigenvalue in the radial

direction� For Karcher�s new proof of Toponogov�s theorem it is convenient to rescale

the distance function f from the point p in Mn
� so that all the eigenvalues are equal�

This is achieved by taking md� � f � where

md��r� �
Z r

�
sn� �t�dt �

	
�
�
�
��� cs��r�� for 
 �� 


�
�
r� for 
 � 


�	��

Notice the identity

cs� � 
md� � � � �	��

��



From the formula

Hess�md��f�v � �md�
��f�Hessf�v� � �md�

���f� hgradf� vi gradf
� �sn��f�Hessf�v� � �cs��f� hgradf� vi gradf ��
�

it follows that the eigenvalues of Hess�md� � f� at a point q with f�q� � r are equal

to cs� � f�q� � cs� �r�� Using md� � the law of cosines in Mn
� becomes

md� �c� � md� �a� b� � sn� �a�sn� �b���� cos 	� ����

where a� b� c are the lengths of the edges of a geodesic triangle in M� and 	 is the

angle opposite to the edge corresponding to c� Notice that this is a uni�ed formula for

the three classical cases 
 � 
�
 � 
�
 � 
�

c� � a� � b� � �ab cos 	 ����

cos�
p

 c� � cos�

p

 a� cos�

p

 b� � sin�

p

 a� sin�

p

 b� cos 	 ��	�

cosh�
q
j
j c� � cosh�

q
j
j a� cosh�

q
j
j b�� sinh�

q
j
j a� sinh�

q
j
j b� cos 	 ����

��� The Riccati comparison argument

A lower curvature bound 
 in M leads to an important estimate for the principal

curvatures in distance spheres and hence for the tangential eigenvalues of the Hessian

of the distance function f from a point� For the modi�ed distance function md� � f

this yields an estimate for all the eigenvalues� This estimate is the key for Karchers

proof of Toponogov�s theorem and the main reason for introducing md� � The basic

comparison argument is contained in �i� of the following elementary Lemma and its

Corollary� cf� �K��

Lemma ��� Suppose g � G are di�erentiable functions on some interval satisfying the

Riccati inequalities

g� 	 �
� g� ��
�

G� � �
�G� � ����

i� If g�r�� � G�r��� then g�r� � G�r� for r 	 r� �

ii� If g�r�� 	 G�r��� then g�r� 	 G�r� for r � r� �

��



Proof� From the two Riccati inequalities ��
� and ���� we get

��g �G� 
 e
R

g�G��� 	 


from which i� and ii� follow immediately� �

The statement ii� is useful for estimates involving upper curvature bounds �K�� We

are interested mainly in i��

Corollary ��� If g � �
� a� � IR �suppose a 	 �p
�
if 
 � 
� satis�es g� 	 �
 � g�

and limr�� g�r� ��� then

g�r� 	 ct� �r� �

Proof� If there is a point r���
� a� for which g�r�� � ct� �r��� we can choose � � 
 so

that g�r�� � ct� �r����� G�r� � ct� �r��� satis�es the Riccati equation G� � �
�G�

on ��� r��� so that g�r� � G�r� on ��� r��� Then g��� � limr�� g�r� � limr��G�r� �

��� contradicting g��� ��� �

Consider now a normal geodesic segment c with initial point p which does not

meet the conjugate locus of p� In a neighborhood U of c we may consider the local

distance function f�q� � distU�p� q�� The principal curvatures of the local distance

sphere f���r� at the point q are denoted by ���q�� ���� �n���q�� From the corollary and

���� we get the estimate

�i�q� 	 ct� �f�q�� �

�i�q� are the eigenvalues of Hessf jq corresponding to eigenvectors tangent to the
distance sphere� whereas the radial eigenvalue is zero� The hessean of md� � f satis�es

the corresponding equation ��
� and therefore has eigenvalues sn� �f�q�� 
 �i�q�� i �
�� ���� n � � in directions tangent to the level r and the eigenvalue cs� �f�q�� for the

radial direction gradf jq � This proves the operator inequality

Hess�md� � f� 	 �cs� � f� 
 Id � ����

Along c this estimate remains true up to the �rst conjugate point of c� which in the

case 
 � 
 appears at a distance not farther away than �p
�
� For M � M�

� equality

holds in �����

If f is replaced by g � f � 
 where 
 is a constant� we have Hess g � Hessf so

that the tangential eigenvalues of Hess�md� � g�jq according to formula ��
� are given
by sn� �g�q���i�q� and the radial eigenvalue is cs� �g�q��� The estimate for �i�q� above

�	



leads to �sn� � g��i 	 �sn� � g�ct� �g � 
� � cs� � g �
sn� 
��
sn� 
g��� � For small values of 


and 
 � g � 
 � �p
�
in the case 
 � 
 the Hessian of md� � g satis�es consequently

Hess�md� � g� 	 �cs� � g �
sn� �
�

sn� �g � 
�
� 
 Id � ����

In the case 
 � 
 this estimate along c holds up to the �rst conjugate point�

� The Toponogov Theorem

The Toponogov comparison theorem appears to be one of the most powerful tools

in Riemannian geometry� It is a global generalization of the �rst Rauch comparison

theorem� The ideas trace back to A�D� Alexandrow who �rst proved the theorem for

convex surfaces� Toponogov�s proof of the theorem was technical and contained some

di�culties which were resolved in �GKM�� Since then the proof had been simpli�ed

considerably by various geometers� compare also �CE�� In this lecture series we shall

use an interesting new proof given by Karcher �K�� In contrast to the previous technique

the Rauch comparison theorem is not used at all� It uses the estimate for the Hessian

given in ���� resp����� and �ts nicely into our discussion of distance functions� This

does not mean� that our approach is necessarily shorter or more geometric than the

other viable arguments given before� We certainly encourage the student also to go

through some alternate proof of Toponogov�s basic result in the literature mentioned

above�

De�nition ��� A geodesic hinge c� c�� � in M consists of two non constant geodesic

segments c�co with the same initial point making the angle �� A minimal connection

c� between the endpoints of c and co is called a closing edge of the hinge�

The length of a geodesic segment c will be denoted by jcj�
Theorem ��� 	Toponogov
 Let M be a complete Riemannian manifold with sec�

tional curvature K � 
�

A� Given points p�� p�� q in M satisfying p� �� q� p� �� q � a non constant geodesic c

from p� to p� and minimal geodesics ci � from pi to q �i � 
� �� all parametrized by

arc length� Suppose the triangle inequality jcj 	 jc�j�jc�j is satis�ed and jcj 	 �p
�

in the case 
 � 
� �i��
� �� denote the angles at pi � �� � �� � �co�
�� �c�
��� �� �

�� � �c��
��� �c�jcj�� Then there exists a corresponding comparison triangle �p�� �p�� �q

in the model space M�
� with corresponding geodesics �c�� �c�� �c which are all minimal

of lengths j�cij � jcij� j�cj � jcj and

��



i� the corresponding angles ��i satisfy ��i 	 �i

ii� dist��q� �c�t�� 	 dist�q� c�t�� for any t� �
� jcj� �

Except for the case when 
 � 
 and one of the geodesics has length equal to �p
�

the triangle in M�
� is uniquely determined�

B� Let c� co� �o be a hinge in M with co minimal and jcj 	 �p
�
in case 
 � 
 and

c� a closing edge � Then the closing edge �c� of any hinge �c� �co� �o in M�
� with

j�cj � jcj � j�coj � jcoj satis�es
j�c�j � jc�j �

Remarks

�� Notice that c need not to be minimal and the case p� � p� is not excluded� c�

and c� have to be minimal� otherwise there are counterexamples�

�� With a little e�ort statement �ii� can be used to show that the length of secants

between c and ci are not shorter than the corresponding secants between �c and

�ci � provided the segment of c in the cut o� triangle is minimal�

iii� dist��c��t�� �c�s�� 	 dist�c��t�� c�s�� holds as long as cj���s� is minimal�
iv� dist��c��t�� �c�s�� 	 dist�c��t�� c�s�� holds as long as cj�s�jcj� is minimal�

In the case when c is minimal now any corresponding secants �� �� satisfy j��j 	
j�j�
For symmetry reasons only iii� needs to be proved�

By ii�

dist��q� �c�s�� 	 dist�q� c�s�� � ����

Connect ps � c�s� and q by a minimal geodesic 	s and consider the triangle

p� �ps �q with geodesic edges c� � cj�o�s� �	s and the corresponding comparison tri�
angle �p�� �ps� �q in M�

� � Using ii� for this triangle we obtain

dist��ps� �c��t�� 	 dist�c�s�� c��t�� � �

�

The monotonicity relation between angle and length of the closing edge of a hinge

in M�
� and ���� imply

�� �c��t� �p� �c�s� � �� �q �p� �c�s� 	 �� �q �p� �ps � �� �c��t� �p� �ps

�
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Figure 	� sketch for the proof iii�

and then

dist��c�s�� �c��t�� 	 dist��ps� �c��t�� � �
��

Inequality iii� now follows from �

� and �
���

	� Statement i� is a consequence of ii�� To prove for example �� 	 � � consider the

functions h��t� � dist�c��t�� c�t��
� and �h��t� � dist��c��t�� �c�t��

� for small values

of t� By iii� we have �h� 	 h� � According to ��� of section � we have the Taylor

formulas

h��t� � t�k �c��
�� �c�
�k� �O�t��

�h��t� � t�k��c��
�� ��c�
�k� �O�t��

so that k��c��
�� ��c�
�k 	 k �c��
�� �c�
�k and hence ��� 	 �� �

The converse implication i� � ii� is also true but more technical to prove�

�� Statement ii� carries over to limits in the sense of Gromov for Riemannian spaces

with curvature K � 
� where angles cannot be de�ned anymore�


� Part B is equivalent to A�i�� This follows immediately from the fact that in M�
�

the length of a closing edge in a hinge with minimal geodesics and the hinge angle

are in a monotone relation� Note that B is trivial in the case when the tiangle

inequality is not satis�ed in M � For this observe that the triangle inequality in

M�
� is satis�ed since all the corresponding geodesics in M�

� are minimal�

�� If c� is not minimal in B�� the statement is false� For consider in S�
��� a hinge

with two geodesics of length � making a positive angle� The end points have a

��



positive distance for � small� However� in the corresponding hinge in S�
� the end

points coincide�

�� An anologue of Toponogov�s theorem where the lower curvature bound is replaced

by an upper curvature bound is false� For example on the 	�sphere S	 there are

homogeneous metrics �Berger metrics� with positive curvature� upper curvature

bound � and closed geodesics of length � �� � However� if the sectional curvature

K of M satis�es K 	 
 and c� �c� �c is a triangle with minimal geodesics and

jc�j� jc�j� jcj � ��p
�
which is contained in a ball around p� of radius not greater

than the injectivity radius at p� � then there is a triangle �c� � �c� � �c in M�
� with

jcij � j�cij� jcj � j�cj and �� 	 ���� This is an immediate consequence of Rauch�s

�rst comparison theorem�

�� There are generalisations of Toponogov�s theorem to a version where the model

spaces M�
� are replaced by surfaces of revolution or surfaces with an S� � action�

c�f� �E�� �A�� U� Abresch pointed out to me that these generalisations can be

handled with the same technique as used in the proof below�

Proof of Theorem ���� By remark � above we only have to prove A�ii�� Note that

in the case 
 � 
 we have diam�M� 	 �p
�
by Myers� theorem� For the case 
 � 


the proof is organized in three steps� In step � we consider the general case for 
 	 
�

but we assume diam�M� � �p
�
and jcj � jc�j � jc�j � ��p

�
for the case 
 � 
� In step

� the case 
 � 
� diam�M� 	 �p
�
and jcj � jc�j � jc�j 	 ��p

�
is reduced to step � by a

simple limit argument� Finally� in step 	 we show that in the case 
 � 
 there are no

triangles with circumferece jcj� jc�j� jc�j � ��p
�
�

Step �� For the case 
 � 
 we assume diam�M� � �p
�
and also that the circumference

of the triangle satis�es jcj � jc�j � jc�j � ��p
�
� so that the comparison triangles in M�

�

exists� From the triangle inequality jcj 	 jc�j � jc�j we get jcj � �p
�
for 
 � 
�

Therefore we can choose � � 
 such that diamM � �p
�
� �� and jcj � �p

�
� ��� We

�rst look at a simple case� Suppose q�c��
� jcj��� Then jcj � jc�j � jc�j since c� and

c� are minimal� By the triangle inequality we must have jcj � jc�j� jc�j� Therefore q
divides c into two minimal pieces of length jc�j and jc�j� Consequently equality holds
in ii� since the geodesics from q to c�t� are parts of c� If q ��c��
� jcj�� we proceed as

follows�

We consider the distance functions r from q in M � �r from �q in M�
� and de�ne

h�t� � md��r�c�t�

�h�t� � md�� �r��c�t�

��



��t� � h�t�� �h�t� �

The idea is� to show that � cannot have a negative minimum by the use of the Hessian

estimate ���� in section ���� Unfortunately h is not di�erentiable in general since r

is not di�erentiable beyond the cutlocus of q � This problem is resolved by a local

approximation with a �superdistance function�� The argument is slightly di�erent in

the cases 
 � 
� 
 � 
 and 
 � 
�

In the case 
 � 
� if � has a negative minimum ��� in �
� jcj� also the function ��

de�ned by

���t� � ��t� � �
t�jcj � t�

jcj�
has a negative minimum � �� in �
� jcj� �

In the case 
 � 
 we have jcj 	 �p
�
� �� and de�ne ���t� � sn� �t� ��� sn� �

�
�
� on

�
� jcj�� If � has a negative minimum then

�� �
�

��

has a negative minimum�

For the point t���
� jcj� where � or �� or �� has a negative minimum� we approximate
r by local di�erentiable functions in a neighborhood of c�t��� Let 	 be a normal

geodesic from q to c�t��� For small values 
 � 
 we de�ne in some neighborhood U

of 	��
� j	j�� the local superdistance functions

r��x� � 
 � distU�	�
�� x� � r�x� � dist�q� x� �

r� is di�erentiable if U is su�ciently small� Therefore the function

h� � md� � r� � c �
��

is di�erentiable in some interval around t� and

h��t�� � h�t��� h� � h � �
	�

Using the estimate ���� for the Hessian we have

h��� � hHess�md��r��jc �c� �ci
	 cs��r��c�

sn��
�

sn��r��c� 
�

��



for 
 small� The quantity r� � c�t� � 
 is bounded away from zero independent of 


and r� � c�t��
 � dist�	�
�� c�t�� 	 �p
�
��� from the diameter assumption� Observing

�	�� we get

h��� � 
h� 	 � � const 
 sn� �
�
with a constant independent of 
 � Since �h�� � 
�h � � the di�erence �� � h� � �h

satis�es

���� � 
�� 	 const 
 sn� �
� � �
��

Furthermore

�� � �� ���t�� � ��t�� �

�

by �
	��

Case �� 
 � 


If � has a negative minimum �� at t� � then �� also has a negative minimum �� at

t� � but

�����t�� 	 �
��t�� � const 
 sn� �
� � 
���z�
��

�const 
 sn� �
� �

For 
 su�ciently small this is a contradiction�

Case �� 
 � 


At the point t���
� jcj� where �� has a negative minimum we consider �� and also ���

de�ned by

��� � �� � �
t�jcj � t�

jcj� �

Then ��� � �� and ����t�� � ���t�� by �

�� Therefore ��� also has a local negative

minimum at t� � But

����� 	 � ��

jcj� � const 
 sn� �
� �

which is a contradiction for small 
 �

Case �� 
 � 


At the point t� where �� �
�
��

has a negative minimum ��o we also look at ��� � ��
��
�

Again ��� � �� and ���t�� � ����t�� so that ��� has a negative minimum ��� at t� �

Di�erentiate at t� to obtain


 � �����t�� �
����� � ���

�
�

���
jt�

��



and

������t�� �
�

���
����

��
� � �������jt�

�
�

���
������ � 
����� � 
��sn��

�

�
��jt�

	 �

���t��
const 
 sn��
�� 
��

���t��
sn��

�

�
� � 


for 
 su�ciently small� a contradiction�

Step �� Assume now 
 � 
� diam�M� 	 �p
�
and jcj � jc�j � jc�j 	 ��p

�
� We

choose a sequence 
i � 
 � 
i � 
 and limi�� 
i � 
� Then diam�M� � �p
�i

and

jcj� jc�j� jc�j � ��p
�i
� By step � the theorem holds for the sphere S�

�i
� IR	 as the com�

parison space� By compactness� the sequence of comparison triangles ��i � ��ci� �ci�� �c
i
��

has a subsequence converging to a comparison triangle �� in S�
� � By continuity of the

family of distance functions on the family of spheres S�

� � IR	 � �
 � 
� statement A�ii�

now follows for the limit triangle ���

Step �� Suppose 
 � 
 and jcj � jc�j � jc�j � ��p
�
� We can choose � � 
 such that

jcj � jc�j � jc�j � ��p
	
Then for the comparison triangle in M�

	 the geodesics �c�� �c�� �c

have length � �p
	
and therefore form a great circle� The antipodal point �q of �q has

to be a point of �c� say �q � �c�t��� By step � we have
�p
	
� dist��q� �c�t��� 	 dist�q� c�t���

contradicting dist�q� c�t��� 	 �p
�
� �p

	
� This completes the proof� �

�




� Applications of Toponogov�s Theorem

��� An estimate for the number of generators for the fun�

dametal group

As a �rst application of Toponogov�s theorem we present Gromov�s theorem concerning

the number of generators for the fundamental group �� �M�� Since any element of the

fundamental group �� �M� with base point p of a Riemannian manifold M can be

represented by a geodesic loop of minimal length at the point p� it is clear that the

geometry of M should have strong in�uence on the structure of �� �M�� The earliest

result in this direction is Myers� theorem� cf��CE�� �GKM�� the universal cover of a

compact Riemannian manifold with strictly positive Ricci curvature is compact and the

fundamental group �nite� If the sectional curvature K of a compact even dimensional

manifold is strictly positive� then by the Synge Lemma� cf� �CE�� �GKM�� �� �M� � �

or Z� depending on the orientability of M � If M is complete non�compact and K � 
�

then �� �M� � � since M is di�eomorphic to IRn � cf� �GM�� Finally if M is complete

non�compact and K � 
� then by the soul theorem of Cheeger and Gromoll �CG���

�� �M� contains a lattice group of �nite index�

Theorem ��� 	Gromov


�i� Suppose the sectional curvature of Mn is nonnegative� Then �� �Mn� can be

generated by N 	 p
�n� �n�� elements�

�ii� If the sectional curvature K of Mn is bounded from below� K � ��� and the

diameter of Mn is bounded� diamMn 	 D � then �� �Mn� can be generated by

N 	 �
�

p
�n��� � � cosh���D��

n��
� elements�

Proof� Let G � �� �M� p�� be the fundamental group with base point p��M � �M

denotes the Riemannian universal cover of M � The group of covering transformations

G acts on �M by isometries� We choose a point x�� �M which covers p� and de�ne for

	�G the displacement

j	j �� dist�x�� 	x��

A minimal geodesic c from x� to 	x� projects in M to a loop of minimal length j	j
in the homotopy class representing 	 � There are only �nitely many elements of G

satisfying j	j 	 r � �An in�nite sequence 	ix� of points would have a limit point in the

compact ball of radius r around zero contradicting the covering property�� Therefore

we can choose an element 	��G with the property j	�j � minfj	j j 	�Gg� Inductively

��



we can construct generators 	� � 	� � ��� of G satisfying j	�j 	 j	�j 	 ��� as follows�

Suppose 	�� ���� 	k are constructed already and the subgroup � 	�� ���� 	k � generated

by 	�� ���� 	k is not equal to G� Then we can choose 	k���G so that j	k��j � minfj	j j
	�Gn � 	�� ���� 	k �g � For i � j we have j	ij 	 j	jj and

�ij �� dist�	ix�� 	jx�� � j	jj �

To prove the last inequality� suppose �ij � j	jj� Then 	�j �� 	��i 	j has displacement

j	�jj � �ij � j	jj and � 	�� ���� 	j �� � 	�� ���� 	j��� 	�j �� contradicting the choice of

	j �

For each 	i we choose a minimal geodesic ci from x� to 	ix� of length �i � j	ij� For
i � j we choose a minimal geodesic from 	ix� to 	jx� of length �ij � By Toponogov�s

theorem the angle �ij � �� � �ci�
�� �cj�
�� is bounded below by the angle �� of a compar�

ison triangle in M�
� where 
 � 
 for �i� and 
 � ��� for �ii�� By the law of cosines

����� ���� in M�
�

cos �� �
��i � ��j � ��ij

��i�j
for 
 � 
 �
��

cos �� �
cosh���i� cosh���j�� cosh���ij�

sinh���i� sinh���j�
for 
 � ��� � �
��

The right hand side of �
�� is increasing in the variable �i �to see this di�erentiate��

The relation �i 	 �j 	 �ij now leads to the estimates

cos �� 	 ��i � ��j � ��j
���i

�
�

�
for 
 � 
 �
��

cos �� 	 cosh����j�� cosh���j�

sinh����j�
�

cosh���j�

cosh���j� � �

	 cosh���D�

cosh���D� � �
for 
 � ��� � �
��

For the last inequality observe that �i 	 �D by the construction of the generators 	i

of G� To see this� observe that for � � 
 any loop at p� in M is homotopic to a

composition of loops with length 	 �D� �� Subdivide the original loop into segments

of length 	 � and then insert minimal connections from the subdivision points to

p� and their inverses� Since in the construction j	k��j is chosen to be minimal in

Gn � 	�� ���� 	k �� it follows j	k��j 	 �D � �� but � was arbitrary� Let

�� �

	
�
�
	

for 
 � 


arccos� cosh
��D�
��cosh
��D�

� for 
 � ��� ��
�

��



then �ij � �� � �� � To complete the argument consider the initial vectors vi �

�ci�
��Tx� �M � We have �� �vi� vj� � �� � 
� In Tx� �M there can be only a �nite number

of distinct unit vectors with this property� A rough explicit estimate for the maximal

number is obtained as follows� The intrinsic balls of radius ���� around the points

vi in the unit sphere Sn�� in Tx� �M are disjoint� Therefore the maximal number N�

of points vi is estimated by the volume of Sn�� divided by the volume of a ball of

radius ���� in Sn�� � The volume of this spherical ball is estimated below by the

volume of a euclidian �n��� ball of radius sin������� This estimate� however� can be

improved by a factor �
�
by the following simple observation� The generators satisfy

j	ij � j	��i j� Therefore we also have �� �vi��vj� � �� � Hence the volume of the sphere

can be replaced by the volume of the real projective space and we obtain

N� 	
�
�
volSn��

volBn���sin�������
�

p
�  �n��

�
�

 �n
�
� sinn��������

�
p
�
 �n��

�
�

 �n
�
�

�
�

�� cos��


n��
�

The logarithmic convexity of  can be used to �nd
q

n��
�

	  �n��
�
�� �n

�
� 	

q
n
�
�

Inserting the appropriate value for �� from ��
� into the estimate for N� �nishes the

proof� �

The estimates given in the Theorem are never sharp as can be seen by looking at

surfaces�

��� Critical points of distance functions

Distance functions on a Riemannian manifold M are not di�erentiable in general�

Despite this fact it is possible to develop a critical point theory similar to the Morse

theory of a di�erentiable function� The idea was introduced by Grove and Shiohama

�GS� for the proof of their diameter sphere theorem� cf� theorem 	���� Subsequently it

has been re�ned by Gromov �G�� in connection with his �niteness result for the sum of

the Betti numbers� cf� theorem 	���� These applications deal with distance functions

from a point in M � Recently Grove and Petersen have generalized the concept for

distance functions from closed subsets of a manifold� in particular from the diagonal

� in M �M � This leads to an interesting �niteness result concerning the number of

homotopy types of Riemannian manifolds� cf� �GP��

De�nition ��� Let A be a closed subset of M � Consider the distance function distA

from A de�ned by distA�q� � dist�A� q�� A point q�M is said to be a critical point for

�	



distA � if for any vector v�TqM there is a distance minimizing geodesic c from q to A

satisfying

hv� �c�
�i � 
 � ����

A non�critical point is called a regular point�

For points q ��A this condition is equivalent to �� �v� �c�
�� 	 �
�
� Instead of referring

to a critical or regular point for distA we also shall say that q is critical or regular for

A� Notice that any point q�A is critical for A�

In the following examples let A�fpg�
Examples

i� Consider the �at cylinder S� � IR � IR	 and p � �x�� y�� z��� x
�
� � y�� � �� Then

p and q � ��x���y�� z�� are the only critical points for p�

q cut locus of p

p

Figure �� cylinder

ii� Consider the �at torus T � IR��Z 
 Z and p � ��
�
� �
�
�� Then the only critical

points for p are p� q� � ��� �
�
�� q� � ��� ��� q	 � ��

�
� ���

According to the de�nition a point q is regular for A if the initial vectors for all

minimal geodesic from q to A are contained in an open half space of TqM � i�e� there

is a vector v�TqM such that

h �c�
�� vi � 


for any minimal geodesic c from q to A� Of course equivalently we have a vector

w � �v such that

h �c�
�� wi � 


for any minimal geodesic c from q to A�

��



q2 q2q3

q1
p

q1

q2 q3 q2

cut locus

flat torus

q1

p

q3

q2cut locus

torus of revolution

Figure 
� critical points and cut locus for a point p in tori

Lemma ��� 	local existence of gradient�like vector �elds
 Let M be complete

and A a closed subset of M � Then for any regular point q of distA there is a unit

vector�eld X on some open neighborhood U of q such that

hX
q� �c�
�i � 
 ����

for any �q�U and any minimal geodesic c from �q to A�

De�nition ��� A unit vector �eld X on U satisfying ���� is called a gradient�like

vector �eld for distA �

Proof� Since q is a regular point we can choose a unit vector Xq�TqM with hXq� �c�
�i �

 for any minimal geodesic c from q to A� Extend Xq to an arbitrary smooth vector

�eld on some open neighborhood of q � Then X satis�es condition ���� on a su�ciently

small ball U around q � Otherwise there would be a sequence of points qi converging

to q and minimizing geodesics ci from qi to A satisfying hXqi� �ci�
�i � 
� A limiting

geodesic c of ci would be a minimal geodesic from q to A with hXq� �c�
�i � 
� con�

tradicting the choice of Xq � �

Corollary ��� 	existence of global gradient�like vector �elds
 As above� let M

be complete and A a closed subset of M � Then

a� The set of regular points of distA is open�

b� On the open set U of regular points there exists a gradient�like vector �eld for

distA �

�




Proof� a� is obvious from ����� For the proof of b� we point out that local vector �elds

of the lemma can be glued together by means of a partition of unity to obtain a vector

�eld �X on U satisfying ����� This is a consequence of the following observation� If

v�� � � � � vm are unit vectors in a euclidian vector space satisfying hvi� wi � 
� then any

convex linear combination v �
Pm

i�� �ivi � �i � 
�
Pm

i�� �i � � satis�es hv� wi � 
�

Now we can take X � �X�k �Xk� �

The following lemma contains an important monotonicity property for gradient�like

vector �elds�

Lemma ��
 Let M be complete� A a closed subset� U an open subset of M and X

a gradient�like vector �eld for distA on U � ! the 	ow of �X and " the 	ow of X �

Then

a� distA is strictly decreasing along any integral curve of �X �

b� On any compact subset C of U the decreasing rate is controlled by a Lipschitz

constant
 There is a constant # � 
 such that

distA!�q� t� � �� 	 distA!�q� t��� �# ��	�

as long as !�q� t� � ���C for 
 	 � 	 � � Equivalently we have

distA"�q� t
�
� � �� � distA"�q� t

�
�� � �# ����

as long as "�q� t�� � ���C for 
 	 � 	 � �

Proof� It su�ces to prove b�� First notice that X satis�es the inequality h�Xq� �c�
�i �
# for some # � 
� any q�C and any minimal geodesic c from q to A� Other�

wise there would be sequences qi�C and minimal geodesics ci from qi to A with

limi�� hXqi� �ci�
�i � 
� By compactness there would be a limit point q�C and a

minimal limiting geodesic from q to A with hXq� �c�
�i � 
� contradicting ����� Con�

sider now the function h�t� � distA!�q� t�� We construct an upper support function
�h for h as follows� Let p�A with dist�p�!�q� t��� � distA!�q� t�� and choose a min�

imal geodesic c � �
� �� � M from !�q� t�� to p � For a �xed 
 � 
 � 
 � � let
�h�t� � 
 � dist�c�jcj � 
��!�q� t��� �h is di�erentiable in a neighborhood of t� and sat�

is�es �h�t� � dist�p�!�q� t�� � distA!�q� t� � h�t� and �h�t�� � h�t��� The derivative

at t� is given by �h��t�� �
D
grad distc
jcj���j�
q�t���!� �

�t
jq�t�

E
� h� �c�
���X �!�q� t��i�

hence �h��t�� 	 �#� Such a support function exists at any t� � therefore condition ��	�

��



follows easily� �

As an immediate consequence we have�

Corollary ��� Any local maximum point q of distA is a critical point for A�

Corollary ��� Let Mn be complete and B � B�p� r� a ball of radius r around the

point p�M � Suppose there are no critical points of distp in �B �

Then �B is a topological �n����submanifold of M �

Proof� We only have to show that �B is locally euclidian� Consider a vector �eld

X on the set of regular points with property ���� and the �ow ! of �X � For a

given point q��B let Q be a local �n����dim submanifold through q which is transver�

sal to X � for example the image under the exponential map of a neighborhood V

of the origin in the �n����plane orthogonal to Xq in TqM � By the inverse map�

ping theorem we can assume that V and � � 
 are chosen such that !jQ	������
is a local di�eomorphism� Since t �� distp!�q� t� is strictly decreasing� we have

distp!�q� �� � distp!�q� 
� � distp!�q����� Therefore by continuity we can assume

that distp!��q� �� � distp!�q� 
� � distp!��q���� for �q�Q� after shrinking Q if neces�

sary� Now any integral curve of X through a point �q of Q meets exactly one point of

�B � dist��p �r� by the monotonicity property� The map from Q to �B de�ned by the

projection along the integral curves is a homeomorphism onto its image� �

Corollary ��� Let M be a complete non�compact manifold and suppose that for some

point p�M all the critical points of distp are contained in a ball B � B�p� r�

Then M is homeomorhpic to the interior of a compact manifold with boundary�

Proof� Let X be a gradient�like vector �eld on the set of regular points with �ow "�

Then F � �B � �
���� M de�ned by F �q� t� �� "�q� t� maps �B � �
��� homeo�

morphic onto M n B � For this the properties ���� and kXk � � � � are important�

Hence M is homeomorphic to B�F ��B� �
���� � B�F ��B� �
� ��� with boundary
F ��B � f�g� � �B � �

Corollary ���� Suppose that there is no critical point of distp in B�p� r� n fpg�
Then B�p� r� is contractible�

��



Proof� An easy exercise� �

De�nition ���� An isotopy of M �in the topological category� is a homotopy G �

M � �
� ���M such that p �� G�p� �� is a homeomorphism from M onto a subset of

M for any � ��
� �� and p �� G�p� 
� is the identity map of M �

If B� and B� are subsets of M � we say that the isotopy G moves B� into B� � provided

G�B� � f�g� � B� �

Corollary ���� 	Isotopy Lemma
 Given a complete manifold M � a point p�M �


 � r� � r� 	 � and an open neighborhood U of the annulus A � B�p� r�� nB�p� r���
Assume that there are no critical points of distp in A�

Then there is an isotopy of M which is the identity on M nU and which moves B�p� r��

into B�p� r���

Proof� Using a partition of unity one can construct a vector �eld X on M which is

gradient�like on some neighborhood W of A with W � U and XjMnU � 
�

If r� � � we can choose # � 
 such that ���� holds on the compact set A� Then

for t� �
�
�
�r�� r�� the isotopy G de�ned by G�q� �� � !�q� � 
 t�� moves B�p� r�� into

B�p� r��� where again ! is the �ow of �X �

If r� � �� we consider F � �B�� � ����� M � F �q� t� � !�q� t� and use on the

domain of this homeomorphism onto a subset of M an isotopy induced from a defor�

mation of ������ into �
���� for instance G�t� �� � ln�� � et�� �

The elementary corollaries above demonstrate that gradient�like vector �elds can

be used for deformations in the same way as gradient vector �elds in standard Morse

theory� However all these deformation arguments are useless unless one can get addi�

tional information on the set of critical points� In standard Morse theory the Morse

Lemma is an important tool for this purpose� Unfortunately� there is no analogue of

the Morse Lemma available� In fact one cannot say much about the change of topology

of B�p� r� � dist��p �r� when r passes a critical level�

In the presence of a lower curvature bound� however� Toponogov�s comparison theo�

rem can be used to obtain additional information about critical points leading to rather

strong conclusions� In contrast to standard Morse theory the information obtained on

the set of critical points is more of a global nature� For the proof of 	��� one has

to consider not just a single distance function but all the distance functions from the

various points of M �

��



��� The diameter sphere theorem

One of the famous results in Riemannian geometry is the �
�
� pinching sphere theorem

cf� �GKM�� �CE�� which can be stated as follows�

Theorem ���� 	Rauch� Berger� Klingenberg
 Suppose Mn is complete� simply

connected and the sectional curvature K satis�es

�

�
� K 	 � �

Then M is homeomorphic to the standard sphere�

One of the essential steps in the proof of this theorem is to show that the injectivity

radius of the exponential map and hence the diameter of M is � � � �
�
p
	
� where

� � �
�
is the minimum of the sectional curvatures on M � Grove and Shiohama have

generalized the �
�
�pinching sphere theorem to the diameter sphere theorem below by

replacing the upper curvature bound by this lower bound for the diameter� The proof

is a nice application of critical point theory and of Toponogov�s theorem�

Theorem ���� 	Grove�Shiohama
 Let Mn be a complete manifold with K � � � 


and diamM � �
�
p
	
� Then M is homeomorphic to Sn �

Proof� After rescaling the metric we can assume K � � and diamM � �
�
� Let p� q be

two points of maximal distance in M � dist�p� q� � diamM � By corollary 	�� q is critical

for p� We show that q is uniquely determined by p� Suppose q� � q� are two points

satisfying dist�p� qi� � diamM � Choose minimal geodesics c from q� to q� and ci from

qi to p� Since q� is critical for p� c� can be chosen such that �� � �� � �c��
�� �c�
�� 	 �
�
�

Then �� �� jc�j � jc�j � diamM � �
�
and � �� jcj 	 �� � Consider the corresponding

comparison triangle �c� �c� �c� in the standard sphere with corresponding angle ��� and

edge lengths j�cj � �� j�c�j � j�c�j � �� � Then by ��� ��� 	 �� 	 �
�
� By the law of cosines

in S�
� we have


 	 sin �� sin � cos ��� � cos �� � cos �� cos � � ��� cos �� cos �� 	 


and hence � � 
� i�e� q� � q� �

Next we show that p and q are the only critical points for p� more precisely� Let

q� �� q � q��M � q� �� q� �� p and c � �
� ���M be a minimal geodesic of length � from

q� to q� � Then for any minimal geodesic c� from q� to p we have h �c���� �c��
�i � 
�

i�e� the vector v �� � �c����Tq
�
M can be used to de�ne the open half space for the

��



regularity of q� � To show this� choose a minimal geodesic c� from q� to p and let

�� � jc�j� �� � jc�j� By the uniqueness of q � q� we have 
 � � � �� and 
 �

�� � �� � For the geodesic triangle c� c� � c� with angle �� � �� � �c��
��� �c���� we
consider the corresponding comparison triangle inS�

� with corresponding angle ��� �

Then h �c��
��� �c���i � cos�� 	 cos ��� and by the law of cosines

cos ��� �
cos�� � cos � cos ��

sin � sin ��
� 


since �� �
�
�
�

Now let � � 
 be su�ciently small such that exp jB
p��� and also exp jB
q��� are local

di�eomorphisms� The vector �eld X� � grad�distp jB
p���nfpg� satis�es condition ����

in section 	��� The regularity argument above shows that X� � �grad�distq jB
q���nfqg�

satis�es this condition as well� Therefore one can construct a gradient�like vector �eld

X on M nfp� qg which coincides with X� on B�p� �
�
�nfpg and with X� on B�q� �

�
�nfqg

and kXk � �� The �ow " of X satis�es ���� on all of M n �B�p� �
�
��B�q� �

�
��� Hence

all the integral curves of X have �nite lengths and extend continuously to the end

points p and q � For a unit vector v�TpM the integral curve �v�t� �� "�exp� �
�
v�� t� �

�
�

is de�ned on an interval �
� �v�� where �v is the length of �v � Since X is di�erentiable�

the function v �� �v is di�erentiable� Let F �t� v� � �v�t 
 �v�� F �
� v� � p� F ��� v� � q

for t� �
� �� and kvk � �� Then the map G � tv �� F �t� v� maps the closed unit ball B

of TpM onto M inducing a homeomorphism from the quotientspace B��B � Sn to

M � �

With a slight modi�cation of the reparametrisation of �v in the proof above the

map G can be made smooth in the interior B of B � However there is no information

about the �twist� of the map near q �

The diameter sphere theorem may also be viewed as a diameter pinching theorem

for manifolds of positive curvature� The quantity

�M � min�K�
�diamM��

��

is invariant under scalings of the metric� By Myers� theorem we have �M 	 �� Ac�

cording to the diameter sphere theorem Mn is homeomorphic to Sn if �M � �
�
� If

�M � �� Mn is isometric to the sphere Sn � This rigidity result was originally obtained

by Toponogov as an application of the triangle comparison theorem� cf� �CE�� but it

also follows from the more general theorem of Cheng �Cg�� which has been discussed in

the �rst part of this lecture series�

	




If one relaxes the assumption in the �
�
�pinching theorem to �

�
	 K 	 �� then there

is the rigidity theorem of Berger� cf� �CE�� In view of this result one also should expect

a rigidity theorem if one assumes K � � and diamM � �
�
� In fact Gromoll and Grove

cf� �GG� have obtained a corresponding result�

Under the given hypothesis either

a� M is homeomorphic to a sphere� or

b� M has the cohomology ring of the Cayley plane� or

c� M is isometric to one of the following spaces with their standard metrics� lCPm �

IHP
 � lCP�d���f�z�� � � � �z�d� � �zd��� � � � � z�d��z�� � � � ��zd�g� Sn
� � � where the or�

thogonal representation of  � �� �M� on IRn�� is reducible�

The proof is somewhat technical for our exposition�

��� A critical point lemma and a �niteness result

The critical point lemma below was one of the basic observations which lead Gromov

to the �niteness theorem in the next section� Its proof is a simple application of

Toponogov�s theorem �used twice�� The given estimate is somewhat stronger than in

Gromov�s original lemma� It was also used by Abresch �A��

Lemma ���� 	critical point lemma
 Let M be complete and p� q� � q� �M � qi �� p

and assume q� is critical for p� Furthermore let ci be minimal geodesics from p to qi

of length �i ��� 	 �� and � � �� � �c��
�� �c��
���

a� If the sectional curvature satis�es K � 
� then

cos� 	 ��
��

�

b� If K � ��� �� � 
� and diamM � D � then

cos� 	 ��
��
�D coth��D� �

Proof� Let c be a minimal geodesic from q� to q� of length �� Since q� is critical for p

there is a minimal geodesic c� from q� to p of length �� such that �� � �� ��c��
�� �c�
�� 	
�
�
� Using Toponovs�s theorem ��� � part B for this hinge and the law of cosines we get

��� 	 ��� � �� for K � 


cosh��� 	 cosh��� cosh�� for K � ���

	�



Consider now the geodesic triangle c� � c� � c and the corresponding triangle �c� � �c� �

�c with the same edge length in the comparison space IR� respectively M�
��� � Then

the angle comparison theorem ��� A �i� leads to �� � �� ���c�� ��c�� 	 � or eqivalently

cos� 	 cos �� � Applying again the law of cosines we can �nish the argument�

cos �� �
��� � ��� � ��

�����
	 ��

��
for K � 


and

cos �� �
cosh��� cosh��� � cosh ��

sinh��� sinh���
	 cosh ��� cosh��� � cosh �
�

cosh �
�

sinh��� sinh���

� tanh��� coth��� 	 ��
��
��� coth��� 	 ��

��
�D coth�D

for K � ��� � �

Corollary ���


a� Given a complete manifold Mn with K � 
 and a constant L � �� Then there

are only �nitely many critical points q�� � � � � qk for the distance function distp

satisfying

distp�qi��� � L 
 distp�qi� �
If L � 	�� �

p
��n�� � then k 	 �n�

b� For manifolds with K � ��� and diamM � D the same statement holds for

L � 	�� �
p
��n���D coth�D �

Remark

By reversing the indexing of the points qi we also have at most �n critical points

satisfying

distp�qi��� 	 �

L
distp�qi�

if L is chosen as speci�ed in the corollary�

Proof of corollary ���
� We consider the case K � 
 and leave the simple modi��

cation for b� to the reader� Connect p and qi by minimal geodesics ci of lengths �i �

Then �i � L�j for i � j � By the critical point lemma the angles �ij � �� � �ci�
�� �cj�
��

satisfy cos�ij 	 
j

i
	 �

L
or equivalently �ij � arccos �

L
� 
� There are only �nitely

many vectors in TpM with this condition� compare also the proof of theorem 	��� If

L � � we have �ij � �
	
and k 	 p

��n �n�� � If L � 	���
p
��n�� � then �ij � �

�
� �n �

	�



where �n � arcsin �
	

�
�

��
p
�

�n��
� By the ball packing argument due to Abresch� cf� �A�

part II� there are at most �n vectors in IRn making a pairwise angle � �
�
� �n � �

Corollary ���� Let Mn be a complete non�compact manifold with K � 
� p�M �

Then all critical points of distp are contained in some ball of �nite radius around p�

As a consequence we obtain the following

Theorem ���� 	Gromov
 Let Mn be a complete non�compact manifold with K � 
�

Then M is homeomorphic to the interior of a compact manifold with boundary� hence

M is of ��nite� topological type�

Proof� Since the critical points of distp are contained in some ball of �nite radius�

corollary 	�� applies� �

Recent examples of Sha and Yang show that a similar result does not hold for

manifolds with positive Ricci curvature� cf� �SY��� However if Ric � 
 and in addition

K � �� and the �diameter growth� of �B�p� r� is of the order o�r
�

n �� then the same

conclusion as in the theorem holds� cf� �AG��

The above theorem 	��� may be viewed as a weak version of the much more subtle

soul theorem of Cheeger and Gromoll� by which M contains a compact totally geodesic

submanifold S such that M is di�eomorphic to the normal bundle of S in M � cf�

�CG��� �CE� and section 	���

��� An estimate for the sum of Betti numbers

In this section H��M� denotes the singular homology of M with coe�cients in some

arbitrary �eld F � The kth Betti number of M with respect to F is given by bk�M� �

dimF Hk�M�� For a compact n�manifold and by theorem 	��� also for complete n�

manifolds M of nonnegative curvature we have
Pn

k�� bk�M� � dimF H��M� ���

By an ingeniously designed Morse theory for distance functions Gromov �G�� ob�

tained the following result�

Theorem ���� 	Gromov


a� There is a constant C�n� such that any complete n�manifold M of nonnegative

curvature satis�es

dimF H��M� 	 C�n� �

		



b� Given D � 
 and 
 � 
 and n� then there is a constant C��D� 
� n� such that any

complete n�manifold with sectional curvature K � 
 and diamM 	 D satis�es

dimF H��M� 	 C��D� 
� n� �

In his paper �G�� Gromov indicated that a similar theorem as �a� holds for manifolds

with assymptotically nonnegative curvature� U� Abresch �A� gave the precise de�nition

of �assymptotically nonnegative curvature� for which such a theorem can be proved�

He also re�ned Gromov�s method and developed the necessary tools to obtain the

following result�

c� Let � � IR� � IR� be a decreasing function satisfying
R�
� r��r� dr 	 �� then

there is a constant C��n� �� such that

dimF H��M� 	 C��n� ��

for any complete Riemannian manifoldMn with sectional curvatures Kr � ���r�
at distance r from a given point p�M �

Remarks

�� The lower bound for the sectional curvature cannot be replaced by a lower bound

for the Ricci curvature� Sha and Yang recently have constructed metrics of pos�

itive Ricci curvature on the connected sum of an arbitrary number of copies of

Sn�Sm � cf� �SY��� In �SY�� they also gave complete noncompact examples with

positive Ricci curvature of in�nite homology type�

�� Under the hypothesis in the theorem one cannot expect �niteness for the number

of homotopy types� Here the lens spaces and also the simply connected Wallach

examples �AW� should be observed�

However Grove and Petersen have shown that there are only �nitely many homo�

topy types of compact manifolds if in addition to the lower curvature bound and

the upper diameter bound one assumes a lower bound for the volume� cf� �GP��

	� The methods for the proof of a� and b� are essentially the same� For the proof

of c� Abresch had to develop a more general version of Toponogov�s triangle

comparison theorem� compare remark � in section �� Though the proof of c� is

somewhat more technical� the re�ned method of Abresch leads to a simpli�ed

proof of a� and b�� It also gives a better estimate for the constants C�n� and

C��n� 
�D� than in �G���

	�



For reasons of exposition we concentrate on the proof of a� using the re�ned version

due to Abresch� So we assume K � 
 for the remainder of this section unless stated

otherwise� We also will �x the constant

L � 	�� �
p
��n��

as determined in corollary 	����

It is convenient to use the the following notation in connection with metric balls�

If B is a ball of radius r around p then �B denotes the concentric ball of radius �r

around p�

In contrast to standard Morse theory one cannot estimate the dimension of the

homology of the sublevels of distance functions �i�e� of metric balls� directly since the

intersection of a ball with the cutlocus can be rather complicated� As a replacement

for this part of the Morse theory Gromov introduces the concept of content�

De�nition ���� Let Y � X be open subsets of M � The content of Y in X is de�ned

as the rank of the inclusion map on the homology level

cont�Y�X� �� rk�H��Y �� H��X�� �

The content of a metric ball B in M is de�ned as

cont�B� �� cont�B� 
B� �

The content of B is a measure for how much of its homology survives after the inclusion

map into 
B � Clearly cont�B� � � for any contractible ball B � By corollary 	��� and

the Isotopy Lemma 	��� for su�ciently large balls B there is an isotopy of M which

moves M into B � Therfore there is a map f �M �M such that the induced map f�
is the identity on H��M� and f�M� � B � 
B �M � Hence cont�B� � cont�M�M� �

dimF H��M��

The strategy for the proof now consists in showing that the content of any metric

ball and hence of M is bounded by a constant C�n�� For this purpose Gromov in�

troduces the concepts of corank and compressibility for metric balls with the following

properties�

�i� Either a ball of content � � is incompressible or it can be deformed into an

incompressible smaller ball of at least the same content and of at least the same

corank�

�ii� The corank is bounded by a constant k� 	 �n�

	




�iii� If a ball B of radius r and of corank k is incompressible� then any ball of radius

	 r
�L

with center in 	
�
B has corank at least k � ��

�iv� A ball with maximal corank has content ��

Now the proof is based on a reverse induction over the corank� By �i� only incom�

pressible balls need to be considered� Suppose that the content of any ball of corank

� k is bounded by ak�n�� Let B be an incompressible ball of radius r and corank k �

Then B is covered by balls Bi of radius � �
r

�L
��n�� such that the concentric balls
�
�
Bi are disjoint� The maximal number N of these balls can be estimated from above

by the Bishop�Gromov volume comparison argument� It depends only on n� Using

property �iii� and the induction assumption� a topological argument stemming from a

generalized Mayer�Vietoris sequence for nested coverings then is used to show that the

content of B is bounded by ak�n� 
Nn�� � completing the induction argument�

We start introducing the concept of compressibility which essentially corresponds

to ��� compressibility� used by Abresch with the �xed value � � 
�

De�nition ���� A ball B of radius r in M is called compressible if there is a ball �B

of radius �r 	 	
�
r around some point in �B such that there is an isotopy of M which

is �xed outside 
B and which moves B into �B � Brie	y we say that B is compressible

into �B when these conditions hold�

If B is compressible into �B � then �B � 
 �B � 
B and the pairs �
B�B� and �
B� �B�

are homotopically equivalent� Therefore it is clear that

cont�B� 	 cont� �B� �

Consequently for each ball B of content � � there is an incompressible ball B� �

B� � 
B such that cont�B�� � cont�B�� For this observe that the injectivity radius

on the compact ball 
B is bounded below by some constant � � 
 and if a ball can

be compressed successively into a �nal ball of radius 	 � then it must have content �

since the � �balls are contractible�

Lemma ���� Suppose B is an incompressible ball of radius r � Then for any point

�p��B there must be a critical point �q for the distance function dist
p in the compact

annulus A
p � B��p� 	r� nB��p� 	
�
r��

Proof� Suppose for some point �p��B there is no critical point in A
p � Let �B �

B��p� 	
�
r�� Then we have inclusions B � B��p� 	r� and B��p� 	r� � 
B � By the isotopy

lemma 	��� there is an isotopy of M which is �xed outside 
B moving B��p� 	r� and

	�



hence B into �B contradicting the incompressibility of B � �

De�nition ���� Given p�M � r � 
� Let kr�p� be the maximal number of critical

points qj � j � �� � � � � kr�p�� for distp satisfying

distp�qj� � 	Lr and distp�qj��� 	 �

L
distp�qj� �

The corank of the ball B � B�p� r� is de�ned as

corank�B� � inffkr��p� j �p�
Bg �
Note that kr�p� 	 �n and therefore corank�B� 	 �n by the choice of L� If B is

compressible into �B � then corank�B� 	 corank� �B��

As an immediate consequence of the previous Lemma 	��� we have

Corollary ���� Suppose B � B�p� r� is incompressible and �r 	 r
�L
�

a� If �p��B � then k�r��p� � � � corank�B��

b� If �p� 	
�
B and �B � B��p� �r�� then corank� �B� � � � corank�B��

Proof� For a� let qj � � 	 j 	 kr��p� �� k be critical points with dist
p�qj� � 	Lr and

dist
p�qj��� 	 �
L
dist
p�qj�� Since B is incompressible� there is a critical point qk�� for �p

in the annulus A
p as in lemma 	���� Thus 	L�r 	 	
�
r 	 dist
p�qk��� 	 	r 	 �

L
dist
p�qj��

Now the kr��p� � � points qj satisfy the condition for the de�nition of k�r��p� hence a�

follows�

For b� observe the inclusions 
 �B � �	
�
� �

L
�B � �B � Now k�r��p� � � � corank�B� for

any �p�
 �B � �

As a consequence a ball of maximal corank must have content �� If B has maximal

corank� then because of b� in the lemma� B must be compressible into a ball of radius
	
�
r with the same maximal corank and at least the same content� This procedure can

be repeated k times until one reaches a ball �B of radius �	
�
�kr which is smaller than the

injectivity radius on the compact ball 
B � Then cont� �B� � � and hence cont�B� � ��

These are the basic ingredients from critical point theory� We now turn to the

covering arguments�

Lemma ���� Given an n�dim Riemannian manifold M of nonnegative Ricci curva�

ture� a ball B of radius r and a covering of B by balls B�� � � � � BN of radius � 	 r

with center in B such that the corresponding balls �
�
B�� � � � �

�
�
BN are disjoint� Then

N 	 ��
r

�
�n �

	�



Proof� Choose i� such that the ball �
�
Bi� with center p� has the smallest volume

among all the given balls� The ball �B around p� of radius 	r contains all the Bi �

Therefore

N 	 vol �B

vol�
�
Bi�

	
�
	r
�
�
�

�n
where the last inequality is the Bishop�Gromov estimate for the volume of concentric

balls� which has been discussed in the �rst series of these lectures given by K� Grove�

compare also �K� for a proof� �

Since the proof of theorem 	��� will be based on reverse induction over the corank�

we introduce the following notation�

Let k� 	 �n be the maximal corank of metric balls� For 
 	 k 	 k� we denote by Bk
the set of balls having corank � k �

The topological information for the induction step is contained in the next lemma�

Lemma ���
 Suppose cont� �B� is bounded by a constant ak for any �B�Bk � Further�
more let B�Bk�� be incompressible� Then

cont�B� 	 ak 
Nn��

where N 	 �	L 
 �
n���n �

Proof� Choose a covering of B by balls B�� � � � � BN of radius ��r� � r
�L
��n�� such that

�
�
B�� � � � �

�
�
BN are disjoint� Then by lemma 	��
 N 	 �	L 
 �
n���n � For 
 	 j 	 n��

we also consider the coverings Bj
�� � � � � B

j
N where Bj

i � �
j 
 Bi � The radii of all

these balls are 	 r
�L
� By corollary 	��� we have corank�Bj

i � � � � corank�B� � k �

hence cont�Bj
i � 	 ak � Using the result on the nested coverings in corollary ��� of the

appendix� we obtain

cont�
�
i

B �
i �
�
i

B n��
i � 	

nX

��

X
i������i�

cont�B n�

i� � � � � � B n�


i�
� B n���


i� � � � � � B n���

i�

� �

By the choice of the radii and the triangle inequality we have inclusions 
Bj
i � 
B �


Bj
i� � Bj��

i� and therefore

B � �
i

B �
i � �

i

B n��
i � 
B

and

B n�

i� � � � � � B n�


i�
� Bn�


i� � 
Bn�

i� � B n���


i� � � � � � B n���

i�

�

	�



The �rst chain of inclusions implies cont�B� 	 cont�
S
i B

�
i �
S
i B

n��
i �� and from

the second we conclude that the content of any of the intersections is bounded by

cont�Bn�

i� � 	 ak � Since the number of terms in the sum on the right hand side is

bounded by Nn�� � compare ���� in the appendix� the proof is complete� �

Proof of Theorem ���� a
� Reverse induction over the corank� For B�Bk� we have
cont�B� � �� Assume now that cont�B� 	 ak�n� for any B�Bk � Let B�Bk�� If B

is compressible and cont�B� � �� then B can be compressed into a ball of at least

the same content and of at least the same corank� Therefore we can assume that B

is incompressible� Now lemma 	��� applies and we get cont�B� 	 ak�n� 
Nn�� � Since

k� 	 �n we get recursively

dimF H��M� � cont�M� 	 N�n���n

where N � �	L 
 �
n���n � L � 	�� �
p
��n�� � Using L � 	n�� � an explicit rough

estimate for C�n� is given by

C�n� 	 �
	n
���n���n� �

�

Remarks

�� Note that the exponent in the estimate for C�n� is a polynomial of order � in n�

Gromov�s original constant depended double exponentially on n� The reason for

this improvement due to Abresch is the choice of L� the modi�cation of corank

and compressibility to eliminate one of Gromov�s critical point lemmas which

all together gave a better estimate for the corank� and �nally the improvement

of the estimate in the inductive lemma 	��� where Gromov uses the estimate

cont�B� 	 ak 
 �N �

�� The estimate for the constant C�n� still seems to be far away from reality� Known

examples of n�manifolds with nonnegative curvature all have a sum of Betti num�

bers 	 �n �

��� The soul theorem

This �nal section is devoted to the soul theorem� cf� �GM��� �CG���

Theorem ���� �Cheeger� Gromoll� Let Mn be a complete noncompact manifold of

nonnegative curvature K � Then there is a compact totally geodesic submanifold S in

	�



M such that M is di�eomorphic to the normal bundle ��S� of S � If K � 
� then M

is di�eomorphic to IRn �

We �rst introduce a few basic concepts which are needed for the proof�

De�nition ���� A nonempty subset C of M is called totally convex if for arbitrary

points p� q�C any geodesic with endpoints p and q is contained in C �

De�nition ���� A ray in M is a normal geodesic c � �
����M for which any �nite

segment is minimal� For a ray c � �
����M we de�ne the halfspaces Bc respectively

Hc by

Bc �
�
t��

B�c�t�� t�

Hc � M nBc

where B�c�t�� t� is the open metric ball of radius t around c�t��

Note that in a complete noncompact manifold M for any p�M there exists a ray

c � �
���� M with initial point c�
� � p� For a sequence qi�M with lim
i��

�p� qi� �

� and normal minimal geodesics ci from p to qi any limiting geodesic c obtained

from a convergent subsequence of ci will be a ray emanating from p� � �ci�
� has an

accumulation point in the compact unit sphere in TpM ��

The basic observation about the halfspaces Hc is the following�

Lemma ���� If M is complete� noncompact of nonnegative sectional curvature� then

Hc is totally convex for any ray in M �

Proof� Suppose Hc is not totally convex� i�e� there is a geodesic c� � �
� ���M with

endpoints c��
�� c�����Hc but c��s��Bc for some s� �
� ��� Then q �� c��s��B�c�t��� t��

for some t� � 
 and hence q�B�c�t�� t� for any t � t� by the triangle inequality� In

fact setting

t� � � � dist�q� c�t���� � � 


we have

dist�q� c�t�� 	 dist�q� c�t��� � dist�c�to�� c�t��

� �t� � �� � �t� t�� � t� �

for t � t� �

�




Let c��st� be a point on c� which is closest to c�t�� Further consider the restriction

ct� �� �c�j���st���� and a minimal geodesic ct� from c��st� to c�t�� Since ct��
� � c��st�

is the closest point to c�t� on c� we have �� � �ct��
�� �c
t
��
�� �

�
�
� Furthermore jct�j �

dist�ct��
�� c�t�� � dist�c��st�� c�t�� 	 dist�q� c�t�� 	 �t � �� and jct�j 	 jc�j� Consider
now the hinge ct�� c

t
��

�
�
� Using Toponogov�s theorem ��� part B with comparison space

IR� and the law of cosines we obtain

dist��ct��st�� c�t�� � dist��c��
�� c�t�� 	 jct�j� � jct�j� 	 jc�j� � �t� ���

Furthermore dist�c��
�� c�t�� � t since c��
��Hc �M nBc � Therefore t
� 	 jc�j���t�

��� � which for large values of t is a contradiction� �

We now �x a point p�M � For a ray c � �
����M we also consider the restriction

ct �� cj�t��� � Let

Ct ��
�
c

Hct

where the intersection is taken over all the rays c emanating from p�

Lemma ���� Ct is a compact totally convex set for all t � 
� moreover

a� Ct� � Ct� for t� � t� and

Ct� � fq�Ct� j dist�q� �Ct� � t� � t�g�
in particular

�Ct� � fq�Ct� j dist�q� �Ct�� � t� � t�g

b�
S
t�� Ct �M

c� p��C�

Proof� Clearly Ct is totally convex and closed and p�Ct � If some Ct were not compact

it would contain a ray c � �
���� Ct starting from p �use the same argument as for the

existence of rays in a noncompact manifold�� Now c�t�� ��Ct for t
� � t� contradicting

the de�nition of Ct � Statement c� is obvious from the construction of Ct � The proof of

a� and b� now is an exercise using only the de�niton of Ct and the triangle inequality�

cf� �CE�� �

Note that the interior of Ct is nonempty for t � 
� This is not true for C� in

general as can be seen on the paraboloid of revolution in IR	 � If p is the umbilic point

of the paraboloid then C� � fpg�

��



p

⎬
⎫

⎭
Ct

Figure �� paraboloid

The Ct provide an expanding �ltration of M by compact totally convex sets� Our next

goal is to construct minimal totally convex sets by a contraction procedure which will

be used to �nd a soul S � For this important part of the proof we also need the local

concept of convexity�

De�nition ���� A subset A of M is called strongly convex if for any q� q� �A there

is a unique minimal geodesic from q to q� which is contained in A�

Recall that there is a continuous function r �M ��
���� the convexity radius such

that for any p�M � any open metric ball B which is contained in B�p� r�p�� is strongly

convex� cf �GKM��

De�nition ���� We say that a subset C of M is convex if for any p�C there is a

number 
 � ��p� � r�p� such that C � B�p� ��p�� is strongly convex�

Note that a totally convex set is convex and connected� Also the closure of a convex

set is again convex�

Let C be a connected nonempty convex subset of M � For 
 	 l 	 n we may

consider the collection fN l

g of smooth l�dim submanifolds of M such that N l


 � C �

Let k denote the largest integer such that fNk

g is nonempty and N ��

S

N

k

 � C �

Lemma ���� N is a smooth connected totally geodesic submanifold of M and C � N �

Moreover N � C is a topological manifold with possibly empty bounary �N � N nN �

Proof 	outline
� The full details are technical� therefore we only give the main

idea� �CG��� �CE�� Let p�N and ��p� as in the de�nition above� Then p�Nk

 for

some � � Therefore we can choose a neighborhood U � N
 � B�p� �
�
��p�� of p in

��



N and 
 � � � �
�
��p� such that exp j��
U� is a di�eomorphism onto a neighborhood

T	 of p in M � where �	�U� � fv��TU�� j kvk � �g � TM is the � �tube in the

normal bundle ��U� of U � To prove that N is a submanifold it su�ces to show

that N � T	 � U � Suppose q��N � T	� n U � �C � T	� n U � Let q� be the closest

point to q in U � Then q� �U � otherwise we get a contradiction to the invertibility

of exp j��
U� close to q � The minimal geodesic from q to q� then is orthogonal to U �

By the choice of � � �
�
��p� the exponential map in the ball of radius � around q� is

invertible� Therefore all the unique minimal geodesics from q to q�� for q�� in some

neighborhood U � of q� are transversal to U and are contained in C � The conical set

fexp tu j u�Mq� kuk � ��q�� exp�u��U �� 
 � t � �g then is a �k � ���dimensional

submanifold in C which contradicts the de�nition of k � From the existence of T	 and

the convexity of C it follows that N is totally geodesic� For the remaining statements

we refer to �CG�� and �CE�� �

De�nition ���� Let C be a convex subset of M � The tangent cone to C at a point

p�C is by de�nition the set

TpC � fv�TpM j exp�t v

kvk��N for some 
 � t � r�p�g � f
g �

Clearly if p�N � int �C�� then TpC � TpN � The following lemma contains all the

technical information about TpC we need�

Lemma ���
 	tangent cone lemma
 Let C �M be convex and p��C �

a� Then TpC n f
g is contained in an open halfspace of TpM �

b� Suppose that there exists q�intC and a minimal normal geodesic c � �
� d� � C

from q to p such that jcj � dist�q� �C�� Then

TpC n f
g � fv� �TpC j �� �v�� �c�d�� � �

�
g �

where �TpC is the subspace of TpM spanned by TpC �

Proof� a� TpC is convex in TpM since C is convex� If TpC n f
g is not contained in
an open halfspace of TpM � then TpC must be a linear subspace of TpM of dimension

dim�intC�� and hence p is an interior point of C � For b� and the details of the the

analysis of convex sets we refer to �CG��� �

The following lemma is the key for constructing the soul of M via a contraction

procedure�

�	



Lemma ���� 	contraction lemma
 Suppose M has nonnegative sectional curva�

ture and C �M is a closed totally convex subset with �C �� �� We set

Ca � fp�C j dist�p� �C� � ag � Cmax �
�

Ca ��

Ca �

Then

a� Ca is closed and totally convex�

b� dimCmax � dimC �

c� If K � 
 then Cmax is a point�

This is a corollary of the following more general lemma�

Lemma ���� Under the assumptions of lemma 
�
�� � �� dist�C � M � IR is a

concave function� i�e� for any normal geodesic c which is contained in C we have

��c��t� � ��� ��t��� � ���c�t��� � ��� ����c�t��� � ��
�

If the sectional cuvature satis�es K � 
 then the strict inequality holds in �����

Proof� It is su�cient to show that for any point c�s�� of c there is a number � � 


such that ��c�s�� is bounded above by a linear function h�s� on �s���� s���� satisfying
h�s�� � ��c�s��� �� d� Let cs� be a distance minimizing normal geodesic of length d

from c�s�� to �C and � �� �� � �cs��
�� �c�s���� Then we can take

h�s� � d� �s� s�� cos� �

To show h�s� � ��c�s�� we consider the three cases � � �
�
� � � �

�
� � � �

�
� Note that

we only have to consider points s � s� �

Case � � �
�
� Let E denote the parallel unit vector �eld along cs� with E�
� � �c�s���

By the second comparison theorem of Rauch� there is a number � � 
 such that the

length of the curve cs�t� � exp�s�s��E�t� has length jcsj 	 d � jcs�j for 
 	 s�s� 	 � �

The geodesic �c � s �� exp�s � s��E�d� is orthogonal to cs� at q �� cs��d���C � hence
��c�
� ��TqC by lemma 	�	�� so that �c�t� �� intC for 
 � t � ��q�� Therefore ��c�s�� 	
jcsj 	 d � d� �s� s�� cos

�
�
�

Case � � �
�
� Let E�
�� �cs��
� be the unique unit vector in the convex cone spanned

by �c�s�� and �cs��
� and extend it to the parallel vector �eld E along cs� � De�ne cs as

in the �rst case to obtain

jcsj 	 d � ����

��



Applying the hinge version of Toponogov�s theorem �or just Rauch I� to the hinge with

geodesics t �� exp tE�
�� 
 	 t 	 �s � s�� cos�� � �
�
� and t �� c�s� � t� with angle

�� �
�
� one obtains

dist
�
c�s�� exp��s� s�� cos��� �

�
�E�
�



	 ��s� s�� cos� � ����

Combining ���� and ����� the inequality ��c�s�� 	 d� �s� s�� cos� follows�

Case � � �
�
� Choose the point cs��ts� on cs� such that dist�c�s�� cs���
� d��� �

dist�c�s�� cs��ts�� and a normal minimal geodesic as from cs��ts� to c�s��

Then �� � �as�
�� �cs��ts�� �
�
�
� Further E denotes the parallel vector �eld along cs� j�ts�d�

with E�ts� � �as�
�� The curve cs�t� � exp�jasjE�t��� ts 	 t 	 d� is of length

jcsj 	 �d� ts� for s� s� � � if � is su�ciently small� As before dist�c�s�� �C� 	 jcsj�
thus

dist�c�s�� �C� 	 �d� ts� ����

Applying the hinge version of Toponogov�s theorem �or just Rauch I� to the hinges

�cj�s��s� � cs�j���ts� � �� respectively �c��s� j���ts� � as � �
�
�� we obtain jasj� 	 �s � s��

� � t�s �
�ts�s� s�� cos� respectively �s� s��

� 	 jasj� � t�s � hence

� ts 	 ��s� s�� cos�� ����

From ���� and ���� the estimate ��c�s�� 	 h�s� follows�

The discussion of the strict inequality in the case k � 
 is left to the reader� �

Proof of the soul theorem� Let p�M and consider the �ltration of M by compact

totally convex sets Ct as in lemma 	�	�� If �C� � � let S � C� � If �C� �� �� appli�
cation of the contraction lemma 	�	� to the compact totally convex set C� gives us a

compact totally convex set Cmax
� of dimension � dimC� � Repeating this procedure

leads us in a �nite number �	 n� of steps to a compact totally convex set S � C� with

dimS � n and �S � �� In particular S is a compact totally geodesic submanifold of

M �

We now show that M is di�eomorphic to the normalbundle ��S�� The di�eomorphism

is constructed by means of the �ow of a gradient�like vector �eld of distS � Let q�M nS �
Then q��Ct for some t � 
 or q�intC� � By the contraction lemma 	�	� we have either

q��Ca
� for some a � 
 or q� intCmax

� � Repeating this argument a �nite number of

times� we �nd a compact totally convex set C such that q��C and S � intC � Any

geodesic from q to S has its initial tangent vector in the tangent cone TqC � Hence all

�




such initial vectors are contained in an open half space of TqM � compare lemma 	�	��

Therefore distS has no critical points on M nS � Choose � � 
 such that expj��
S� is a
di�eomorphism onto the ��tube around S � Here ���S� � fv�TS� j kvk � �g� Then
X� � grad distS is a gradient�like vector �eld on exp����S��nS such that hX�jq� �cq�
�i
� �� for the unique minimal normal geodesic cq from q to S � Therefore one can

construct a global gradient�like vector �eld X on M n S such that hXq� �c�
�i � 
 for

any distance minimizing geodesic from q to S and Xq � X�jq for q� exp������S��� Let
" be the �ow of X � De�ne F � ��S� � M as follows� F �v� �� exp�v� for kvk 	 �

�

and F �tv� �� "�exp� �
�
v�� t� �

�
� for v����S� and t � �

�
� Then F is a di�eomorphism

as follows easily by using ����� �

Remarks

�� A soul of M is not uniquely determined in general as can be seen by looking at

cylinders� However any two souls of M are isometric� cf� �S� and �Y��

�� If codim�S� � �� then exp j�
S� is an is an isometry between ��S� with its

standard ��at� bundle metric and M � cf� �CG���

	� In general the normal bundle ��S� need not to be trivial� Furthermore M is not

locally isometric to a product S � IRk in general� By the Toponogov splitting

theorem� cf� �CG��� however any line in M splits o� isometrically� so that M is

isometric to �M� IRk � where IRk carries the standard �at metric and �M does not

contain any lines� This even holds for manifolds of nonnegative Ricci curvature�

cf� �CG��� �EH�� More generally Strake �St� has shown the following� Suppose

the holonomy group of ��S� is trivial� then M is isometric to S� IRk where IRk

carries a metric of nonnegative curvature� For further results in this context we

also refer to �ESS��

�� For a discussion on the structure of the fundamental group see �CG���


� There is no analogue of the soul theorem for complete open manifolds of positive

Ricci curvature� cf� the examples in �GM��� �SY�� and �B�� but compare also the

result in �AG��

��



� Appendix� A topological Lemma

Theorem ��� 	Nested Coverings
 Let B �
i � B �

i � � � � � Bm��
i �� 	 i 	 N � be a

family of nested open subsets in a topological space X � and let X j ��
SN
i�� B

j
i for


 	 j 	 m � �� Then

rk
�
Hp�X

��� Hp�X
p���

�
	

pX
k��

X
i������ik

rk
�
Hp�k�B

p�k
i� � � � � �Bp�k

ik
�� Hp�k�B

p���k
i� � � � � � Bp���k

ik
�
�

for 
 	 p 	 m � here Hp �� � �� stands for singular homology with coe�cients in some

arbitrary �eld F �

Proof� Let

Cj
p�q ��

M
i������iq

Sp
�
B j

i� � � � � � B j
iq $ F

�
and Aj

p�� �� SUp
�
X j $ F

�
��
�

stand for the the groups of singular simplices which are �ne w�r�t� the covering of X j

by the B j
i � Whenever q � 
� homomorphisms �jp�q � C

j
p�q � Cj

p�q�� which commute

with the di�erentials of the singular chain complexes Cj
��q ��

L
pC

j
p�q can be de�ned in

the manner of Cech homology� one adds up the inclusions Sp
�
B j

i� � � � � � B j
iq $ F

�
�

Sp

�
B j

i� � � � � � d
B j

i� � � � � � B j
iq $ F



with sign ����� � De�ning similarly maps ��jp�� �

Cj
p�� � Aj

p�� � one obtains on each level j separately a long exact sequence of chain

complexes % the generalized Mayer�Vietoris sequence �BT� pp� �������� �

�� Cj
��q

	j
��q�� Cj

��q�� �� � � �
	j
����� Cj

���
�	j
����� Aj

��� �� 
 ����

This sequence is natural w�r�t� the inclusion maps �j� � j� ��

	j��j���q � Cj���q �� Cj���q ����

�j��j���� � Aj�
��� �� Aj�

��� ��	�

For q � � we set Aj
p�q �� im��jp�q� and de�ne �j��j���q as the restriction of 	j��j���q�� � With

this shorthand the generalized Mayer�Vietoris sequence splits naturally into short exact

sequences of chain complexes�


 �� Aj
��q�� �� Cj

��q �� Aj
��q �� 
 ����

��



Taking the corresponding long exact homology sequences leads in particular to both

the commutative diagrams with exact rows�

Hp�C
�
��q� � Hp�A

�
��q� � Hp���A

�
��q���

� �

����p
p�q

�

����p
p���q��

Hp�C
p
��q� � Hp�A

p
��q� � Hp���A

p
��q���

�

�	p�p��
p�q

�

��p�p��
p�q

�

Hp�C
p��
��q � � Hp�A

p��
��q � � Hp���A

p��
��q���

��
�

when � 	 p 	 m� and

H��C
�
��q� � H��A

�
��q� � H���A�

��q��� � 


�

�	�����q

�

�����
��q

�

H��C
�
��q� � H��A

�
��q� � H���A�

��q��� � 


����

else� Here the vanishing occurs already on the chain level� Aj
���q�� � Cj

���q � 
�

When applying standard diagram chasing techniques� ��
� and ���� yield the following

estimates respectively�

rk�����p��
p�q � � rk���p�p��

p�q � ����p
p�q�

	 rk��	p�p��
p�q � � rk�����p

p���q��� for � 	 p 	 m ����

rk ������
��q� 	 rk��	�����q � ����

By induction we conclude that

rk�����p��
p�q � 	

pX
k��

rk��	k�k��
k�p�q�k� �

pX
k��

rk��	p�k�p���k
p�k�q�k � ����

for 
 	 p 	 m� Setting q to 
� this inequality specializes % in the presence of formulae

��
�� ���� � and ��	� % precisely to the claim in Theorem ���� ��

Corollary ��� 	Nested Coverings
 Let B �
i � B �

i � � � � � B n��
i �� 	 i 	 N � be a

family of nested open subsets in an n�dimensional topological manifold Mn � Then

rk

�
H��

�
i

B�
i �� H��

�
i

Bn��
i �

�

	
nX

k��

X
i������ik

rk
�
H��Bn�k

i�
� � � � �Bn�k

ik
�� H��Bn���k

i�
� � � � �Bn���k

ik
�
�

��
�

where H��� � �� is again singular homology with coe�cients in some arbitrary �eld F �

��



Remark� The number of terms on the r�h�s� of ��
� is

nX
k��

�� N

k � �

�A � N 

nX

k��

Nk

�k � ��&
� Nn�� ����

Proof of the Corollary� Since we are dealing with open subsets in an n�dimensional

manifold Mn � Hp vanishes unless 
 	 p 	 n� Therefore

rk

�
H��

�
i

B�
i �� H��

�
i

Bn��
i �

�

�
nX

p��

rk

�
Hp�

�
i

B�
i �� Hp�

�
i

Bn��
i �

�

	
nX

p��

rk

�
Hp�

�
i

Bn�p
i �� Hp�

�
i

Bn��
i �

�

Each term on the r�h�s� can be estimated separately by applying Theorem ��� to the

nested open sets B n�p
i � � � � � B n��

i � � 	 i 	 N � With this shift in the indexing in

mind � m � � � �n� ��� �n� p� �� one gets ' slightly sharper than ��
� ' �

rk

�
H��

�
i

B�
i �� H��

�
i

Bn��
i �

�

	
nX

k��

X
i������ik

n�kX
���

rk
�
H��B

n�k
i�

� � � � �Bn�k
ik

�� H��B
n���k
i�

� � � � � Bn���k
ik

�
�

thus proving the Corollary� ��

��
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