LECTURE NOTES FOR MATH \$200
COMPARISON GEDMETRY
Lecture 1 Review of Riemannian Geometry
$$1/26/2023$$

TM Def: A Riemannian metric g
Def: A Riemannian metric g
Mⁿ on a susable mounfold Mⁿ is
a (subothly verying) inner product
on the tangent space of M:
 $V \times V = V$
 $V = V = 0$
 $V = V = 0$
 $V = V = 0$
and if Xn. Xp ore suboth vector fields, $p \mapsto q_p(X_0, Y_p)$ is small,
 $(X, V \in X(H)$ sections of TM $\rightarrow M$
 $V = V = 0$
 $V = 0$

Pl: Choose an atla
$$\{x_{\alpha}: \cup_{x} \to x_{\alpha}(\cup_{x})\}\$$
 and a subordinate
portition of unity $p_{\alpha}: \cup_{\alpha} \to [0,1]$. On each $x_{\alpha}(\cup_{\alpha})$,
use either the Euclidean inner product $g^{(n)}$, or, more generally,
any inner product $g^{(n)}(e_{i},e_{j}) = S_{ij} + f_{ij}$, where f_{ij} are
sufficiently servel and $f_{ij} = f_{ji}$. Then set $(f_{ij}: x_{\alpha}(\cup_{\alpha}) - R)$
 $g(v, \omega) = \sum_{\alpha} p_{\alpha} g^{(n)}(dx_{\alpha}(v), dx_{\alpha}(w))$.
Def: Let $y: [a_{1}b] \to (M^{n},g)$ be a piecewise smooth curve.
The length of T (w.r.t. g) is defined as
 $f(k) = y_{i}(e_{i})$
 $y_{i}(k) = \int_{\alpha} g_{\alpha}(v) + f_{\alpha}(v) + g_{\alpha}(v) + g$

Z

So
$$q \notin x^{-1}(B_{\delta}(x(p)))$$
 and hence any curve from
 $p to q$ must cross $x^{-1}(\partial B_{\delta}(x(p)))$ and thus
have length $\geq C \cdot S$, contradicting dists $(p,q) = 0$.
Similarly, the topologies agree : because dists
restricted to Small charts is comparable to the
Euclidean distance, open (metric) balls
 $B_{\delta}(v) = 2r \in M$: dists $(p,r) < S^{2}$
form a base for the (manifold) topology of M. []
Natural quantions: How does the Riemannian structure of (M. 3)
Capture completeness of the motric space (M, dists)?
When is the inf in Lg(v) attained by a urive?
A: Hopf-Rinow Theorem, coming soon.
Levi - Civita connection
 $Def:$ A connection (or covariant derivative) on the tangent
bundle TM of a substitution M is a map
 $\nabla: X(M) \times X(M) \longrightarrow X(M)$ satisfying
1) $\nabla_{qX+py} Z = q \nabla_{X} Z + q \nabla_{Y} Z$ (C^{co} bilinear in $\nabla_{(r)}$)
 $z) \nabla_{\chi} (p \vee +pZ) = X(P) \vee + p \nabla_{X} \vee + X(P) Z + Q \cdot \nabla_{X} Z$
 $X(P) = dq(x)$ (R-bilinear in ∇ (·) x Leibnie rule)
4

$$\begin{array}{l} \hline \label{eq:control} \hline \end{tabular} \\ \hline$$

(learly,
$$\nabla$$
 determines Γ_{ij}^{K} and also vie - versa:

$$X = \sum_{a} a_{\overline{i}} E_{\overline{i}}, \quad Y = \sum_{j} b_{j}E_{j} \quad \text{on a other} \quad U \ni p$$

$$\nabla_{X} Y = \sum_{a} a_{\overline{i}} \nabla_{E_{i}}(b_{j}E_{j}) = \sum_{i} a_{\overline{i}}E_{i}(b_{i})E_{j} + a_{\overline{i}}b_{\overline{j}} \nabla_{E_{i}}E_{\overline{j}}$$

$$= \sum_{i} a_{\overline{i}} \frac{\Im}{\Im \kappa_{i}} b_{\overline{j}} E_{\overline{j}} + \underline{A}_{i}b_{\overline{j}} \sum_{i} \Gamma_{ij}^{K} E_{\overline{k}} \quad \text{we det}$$

$$\xrightarrow{Max dev}_{ij} b_{\overline{j}} E_{\overline{j}} + \underline{A}_{i}b_{\overline{j}} \sum_{i} \Gamma_{ij}^{K} E_{\overline{k}} \quad \text{we det}$$

$$\xrightarrow{Max dev}_{ij} b_{\overline{j}} E_{\overline{j}} + \underline{A}_{i}b_{\overline{j}} \sum_{i} \Gamma_{ij}^{K} E_{\overline{k}} \quad \text{we det}$$

$$\xrightarrow{Max dev}_{ij} b_{\overline{j}} K E_{\overline{k}} \quad \text{we det}$$

$$\xrightarrow{Max dev}_{ij} b_{\overline{j}} K E_{\overline{k}} \quad \text{we det}$$

$$\xrightarrow{Max dev}_{ij} b_{\overline{j}} K E_{\overline{k}} \quad \text{we det}$$

$$\xrightarrow{Max dev}_{ij} b_{\overline{k}} K e_{\overline{k}} \quad \text{we dev}_{ij} k e_{\overline{k}} K e_{\overline{k}} \quad \text{we dev}_{ij} k e_{\overline{k}} K e_{\overline{k}} \quad \text{we dev}_{ij} k e_{\overline{k}} \quad \text{we dev}_{ij}$$

Def: The vector field V along
$$\chi(t)$$
 is porallel if $V'(t) = 0$.
Def: A geodesic is a curve $\chi(t)$ such that $\chi'(t)$ is porallel;
equivalently, if $\ddot{\chi} = \zeta \chi(t) = \zeta$,
 $\frac{D\dot{\chi}}{dt} = \sum_{i} \chi''_{i}(t) = \zeta \chi'_{i}(t) = \chi'_{i}(t) \chi'_{i}(t) \Gamma''_{ij}(\chi(t)) = \zeta = 0$.
i.e., $\forall i$, $\chi''_{i} + \sum_{j \in V} \chi'_{j} \chi'_{k} \Gamma'_{jk} = 0$. "Geodesic ODE'
(System of M. Coupled
(Z'' order nowlinear ODEs)
Thum. On a Riemannian manifold (M''g), given $p \in M$ and
 $V \in TpM$, there exists a unique maximal geoderic $\chi((T, T_{i}) \rightarrow M$
with $\chi(0) = p$ and $\ddot{\chi}(0) = v$. Moreover, such χ depends
smoothly on its initial conditions $(p,v) \in TM$.
Prop: If $\chi: T \rightarrow M$ is a geodesic, then $\|\dot{\chi}\| = \text{covet}$.
 $\frac{R''}{dt} \|\ddot{\chi}(t)\|^{2} = \frac{1}{dt} \langle \ddot{\chi}(t), \chi(t) \rangle = 2 \langle \nabla_{j} \chi, \chi \rangle = 0$.
Examples of geoderics:
 $\chi'(t) = p + tv$.

Lecture 2 Exponential map, completeness, etc. 2/2/2023
Let (M,g) be a Riem mild; for every
$$v \in T_{p}M$$
, let
 $\gamma_{v}: (T_{-}, T_{+}) \rightarrow M$ be the analyse max. geodesic on M with
 $\gamma_{v}(0) = p$ and $\tilde{\gamma}_{v}(0) = v$.
Note: By uniqueness, for [t], [s] small,
 $\gamma_{sv}(t) = \gamma_{v}(st)$
Def: The (Riem) exponential map at $p \in M$ is
 $exp_{v}: (\mathcal{D}_{p} \subset T_{p}M \longrightarrow M$
 $V \longrightarrow \gamma_{v}(4)$
where \mathcal{O}_{p} is the open neighborhood of $0 \in T_{p}M$ s.t. $\gamma_{v}(t)$ is
defined up to $t = 1$ whenever $v \in \mathcal{O}_{p}$.
Prop: $d(exp_{v})_{0}v = v$ for all $v \in T_{p}M = T_{0}(T_{p}M)$, or,
in short, $d(exp_{p})_{0} = id$.
B the (In porticulor, there are open subsets ($\mathcal{O} \subset T_{p}M$
 $t \mapsto (T_{p} \cap f_{p}) = 0$ is a diffeomorphism.
So $(exp_{p}|_{0}: U \rightarrow U)$ is a diffeomorphism.
So $(exp_{p}|_{0})^{-1}: U \rightarrow \mathbb{R}^{n}$
 $defines a local chart,
call three "geoloac normal coordinates" $\mathcal{O} \in \mathbb{R}^{n} = T_{0}M$$

$$d(aqp_{p})_{v} v = \frac{\partial}{\partial t} eqp_{p}(tv(s)) \Big|_{\substack{t=1\\s=0}} = \frac{\partial f}{\partial t}(4,0) \\ \Rightarrow \langle d(eqp_{p})_{v} v_{\perp} = \frac{\partial}{\partial s} exp_{p}(tv(s)) \Big|_{\substack{t=1\\s=0}} = \frac{\partial f}{\partial s}(4,0) \\ \Rightarrow \langle d(eqp_{p})_{v} v_{\perp} d(eqp_{p})_{v} w_{\perp} \rangle \\ = \langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \rangle(4,0).$$

Compute:

$$\frac{\partial}{\partial t} \left(\begin{array}{c} \partial f \\ \partial t \end{array} \right)^{2} = \left(\begin{array}{c} \nabla_{2} & \partial f \\ \partial t \end{array} \right)^{2} = \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial t \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} = \left(\begin{array}{c} \partial f \\ \partial t \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} = \left(\begin{array}{c} \partial f \\ \partial t \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} = \left(\begin{array}{c} \partial f \\ \partial t \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} = \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} = \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} = \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{2} + \left(\begin{array}{c} \partial f \\ \partial s \end{array} \right)^{+$$

Therefore $t \mapsto \left\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \right\rangle (t_{i}0)$ is constant, and, computing at t = 0: $\frac{\partial f}{\partial s} (t_{i}0) = \frac{\partial}{\partial s} \left(\exp_{p} \right) (t_{V(s)}) \Big|_{s=0} = d(\exp_{p}) \left(\frac{t_{V(0)}}{v} \right) \left(\frac{t_{V'(0)}}{w_{L}} \right) = d(\exp_{p})_{t_{V}} t_{w_{L}}$ $\lim_{t \to 0} \frac{\partial f}{\partial s} (t_{i}0) = \lim_{t \to 0} d(\exp_{p})_{t_{V}} t_{w_{L}} = 0; \quad s_{0} \left\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \right\rangle (t_{0}) = 0.$

Example:
$$S^{n}(1)$$
 unit mind sphere, $Axp_{p}: TpS^{n} \rightarrow S^{n}$
 $exp_{p}(B_{r}(b)) = B_{r}(p), \forall r \in (0, \pi)$
 $injectively radius f
 $S^{n}(r) = Tr$
 $rege(B_{r}(b)) = B_{r}(p), \forall r \in (0, \pi)$
 $injectively radius f
 $S^{n}(r) = Tr$
 $rege(B_{r}(b)) = B_{r}(p) = S^{n}(S^{n}(s, \pi))$
 $S^{n}(r) = Tr$
 $rege(B_{r}(s)) = S^{n}(S^{n}(s, \pi))$
 $S^{n}(r) = S^{n}(r) = S^{n}(S^{n}(s, \pi))$
 $S^{n}(r) = S^{n}(r) = S^{n}(r)$
 $S^{n}(r) = S^{n}$$$

Also using Gauss Lemma, among other things one proces:

$$\frac{1}{1100} (Hard Rimon' 1931). Lat (M,g) be a connected Riem will. TPAE:
(1) $\exists v_{p} \in M \ s.l. exp_{p}$ is defined on all of TFM (M of gendenically complete),
(ii) $\forall p \in M$, exp_{p} is defined an all of TFM (M of gendenically complete),
(iii) $\forall p \in M$, exp_{p} is defined an all of TFM (M of gendenically complete),
(iii) $\forall r \in M$, exp_{p} is defined an all of TFM (M of gendenically complete),
(iii) $\forall r \in M$, exp_{p} is defined an all of TFM (M of gendenically complete),
(iv) $(M, disty)$ is a complete metric pare (in Carebo og. converge)
If any, have all, of the above helds, then given any $P: p \in M$.
There exists a minimizing geodesic y from p to p , i.e., $Lg(y) = dist(Pp)$.
Voriations of geodesics & Jacob fields
Consider a variation of geodesics
 $(-E, E) \cdot (T, T_{+}) = (S, t) \mapsto Y(S, t) = Y_{S}(t) \in M$
 $t \mapsto Y_{*}(t)$ is a geodesic, $\forall S \in (-E, E)$.
 $T(t)$
 $defined a Jacobi field.
Prop: A vector field J along a geodesic Y is a Jacobi field
 M and only if it satisfies the Jacobi equetion.
 $R(X,Y) = V_{X}V_{Y}Z - V_{Y}V_{X}Z - V_{[X,Y]}Z$.
 $T^{3}$$$$

$$\begin{array}{l} \underbrace{Pl:}_{k} (\Rightarrow) & \exists \downarrow \quad \exists (t) = \frac{d}{ds} \forall s(t) |_{S=0} \quad \text{where} \quad \forall s(t) \quad \text{is a variation} \\ & b_{j} \quad \text{geodescs, then} \\ & \exists \exists (t) = \frac{D^{2} J}{dt^{2}} = \frac{D}{dt} \frac{D}{dt} \frac{d}{ds} \forall s(t) = \frac{D}{dt} \frac{D}{ds} \frac{d}{dt} \forall s(t) \\ & = \frac{D}{ds} \frac{D}{dt} \frac{d}{ds} \forall s(t) + R(\dot{y}, J) \dot{y} \\ & = \frac{D}{dt} \frac{D}{ds} \dot{y} - \frac{D}{ds} \frac{D}{dt} \dot{y} \quad \begin{bmatrix} B_{j}, S_{j} \\ B_{j}, S_{j} \end{bmatrix} \dot{y} \\ & = \frac{D}{dt} \frac{D}{ds} \dot{y} - \frac{D}{ds} \frac{D}{dt} \dot{y} \quad \begin{bmatrix} B_{j}, S_{j} \\ B_{j}, S_{j} \end{bmatrix} \dot{y} \\ & = \frac{D}{dt} \frac{D}{ds} \dot{y} - \frac{D}{ds} \frac{D}{dt} \dot{y} \quad \begin{bmatrix} B_{j}, S_{j} \\ B_{j}, S_{j} \end{bmatrix} = 0 \\ & \delta \quad \exists^{\prime} + R(\exists, \ddot{y}) \dot{y} = 0 \quad b/c \quad R(\chi, Y) Z = -R(Y, X) Z. \\ & (\Longleftrightarrow) \quad \exists f \quad \exists \quad \text{satisfrus} \quad \exists^{\prime\prime} + R(\exists, \dot{y}) \dot{y} = 0, \quad \text{Hue} \quad \text{lat} \\ & \alpha(s) = \exp_{g(s)} \quad \text{salong} \quad \alpha(s) \quad \text{with} \quad \chi(s) = \ddot{y}(s), \quad \chi'(s) = J(s), \\ & \delta \quad \forall^{\prime} = \psi_{g(s)} \quad \forall^{\prime} = \psi_{g(s)} + \chi(s). \\ & \delta \quad \forall^{\prime} = \psi_{g(s)} \quad \forall^{\prime} = \psi_{g(s)} + \chi(s). \\ & \delta \quad \forall^{\prime} = \frac{d}{ds} \forall_{s}(t) \end{bmatrix}_{s=0} \quad \text{sabefins}, \quad b_{j} \quad (\Rightarrow), \quad \text{the} \\ & \forall ector \quad fidd \quad \exists^{\prime} = \frac{d}{ds} \forall_{s}(t) \end{bmatrix}_{s=0} \quad \text{sabefins}, \quad j' \quad (\Rightarrow), \quad \text{the} \\ & \forall ector \quad fidd \quad \exists^{\prime} = \frac{d}{ds} \forall_{s}(t) \end{bmatrix}_{s=0} \quad \text{sabefins}, \quad J'' + R(\exists, \ddot{y}) \dot{y} = 0. \\ & M_{\text{breaver}}, \quad J(s) = \frac{d}{ds} \forall_{s}(s) \end{bmatrix}_{s=0} \quad \text{and} \end{aligned}$$

In (dreaded) coordinates

$$R\left(\frac{1}{\partial x_{i}}, \frac{2}{\partial x_{j}}\right) \stackrel{2}{\partial x_{k}} = \nabla_{3} \nabla_{3} \partial_{x} - \nabla_{3} \nabla_{3} \partial_{x} \qquad [\exists_{i} \partial_{j}] = 0$$

$$= \nabla_{3} \left(\sum_{\ell} \Gamma_{jk}^{\ell} \partial_{\ell}\right) - \nabla_{j} \left(\sum_{\ell} \Gamma_{ik}^{\ell} \partial_{\ell}\right)$$

$$= \sum_{\ell} \frac{\partial \Gamma_{ik}^{\ell}}{\partial x_{i}} \partial_{\ell} + \sum_{\ell} \Gamma_{jk}^{\ell} \Gamma_{\ell}^{\ell} \partial_{\ell}$$

$$= \sum_{\ell} \frac{\partial \Gamma_{ik}^{\ell}}{\partial x_{i}} \partial_{\ell} - \sum_{\ell} \Gamma_{ik}^{\ell} \Gamma_{j\ell}^{\ell} \partial_{\ell}$$

$$= \sum_{\ell} \left(\frac{\partial \Gamma_{ik}^{\ell}}{\partial x_{i}} - \frac{\partial \Gamma_{ik}^{\ell}}{\partial x_{j}} + \Gamma_{jk}^{\ell} \Gamma_{\ell}^{\ell} - \Gamma_{ik}^{\ell} \Gamma_{j\ell}^{\ell}\right) \partial_{\ell}$$

$$R_{ijk}^{\ell} = \frac{1}{2} \sum_{\ell} \left(\frac{\partial \Gamma_{ik}^{\ell}}{\partial x_{i}} - \frac{\partial \Gamma_{ik}^{\ell}}{\partial x_{j}} + \frac{\partial \Gamma_{ik}^{\ell} \Gamma_{i\ell}^{\ell}}{\partial x_{i}} - \frac{\partial \Gamma_{ik}^{\ell}}{\partial x_{i}}\right)$$
So that $R(X,Y)^{2} = \sum_{\ell} R_{ijk}^{\ell} a_{i} b_{i} c_{k} \partial_{\ell}$

$$rf X = \sum_{i} \sum_{j=k-\ell}^{2} Y_{i} - \sum_{j=j}^{2} b_{j} \frac{\partial}{\partial x_{j}}, Z = \sum_{i} c_{k} \frac{\partial}{\partial x_{i}}$$

$$\frac{Lecture 3}{2} - 2/4/20023$$
Recale: Curvature tensoe $R: \Xi(M) \times \Xi(M) \times \Xi(M) - \Xi(M)$.
$$\frac{U(4)}{R(X,Y,2,W)} = \langle R(X,Y)Z,W \rangle = \langle \nabla_{X} \nabla_{Y} Z - \nabla_{Y} \nabla_{X} Z - \nabla_{D} x_{i} T^{2},W \rangle$$

$$re. R\left(\frac{2}{3} x_{i}^{-2} \frac{\partial}{\partial x_{i}} - \frac{\partial}{\partial x_{i}}\right) = R_{ijk\ell} = \sum_{j} R_{ijk}^{\ell} g_{j\ell}$$

$$\frac{16}{2}$$

]6

which has the following symmetries:

$$R(X,Y,Z,W) = R(Z,W,X,Y)$$

$$R(X,Y,Z,W) = -R(Y,X,Z,W)$$

$$= R(Y,X,W,Z)$$

$$P^{A} Bianchi identity: R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$$

$$\frac{Def(Gurvature operator):}{By the above, we can also consider R as a symmetric bilenear map R: A2TM - A2TM: Reall (VeV)
$$R(X,Y) = -(R(X,Y)Z,W) = -(R(X,Y)W) = (R(X,Y)W)$$

$$R(X,Y), Z,W) = -(R(X,Y)Z,W) = (R(X,Y)W) = (VeW)$$

$$R(X,Y), Z,W) = (R(X,Y)Z,W) = (R(X,Y)W) = (VeW)$$

$$R(X,Y), Z,W) = (R(X,Y)W) = (XZ) = (XZ) = (XZ) = (XW) = (YW)$$

$$R(X,Y) = (R(X,Y)W) = (XZ) = (XZ) = (XZ) = (XW) = (YW)$$

$$R(X,Y) = (XW) = (XZ) = (XZ) = (XW) = (YW)$$

$$R(X,Y) = (XW) = (XZ) = (XW) = (YW)$$

$$R(X,Y) = (XW) = (XZ) = (XW) = (YW)$$

$$R(X,Y) = (XW) = (XW) = (XW) = (YW)$$

$$R(X,Y) = (XW) = (XW) = (YW)$$

$$R(X,Y) = (XW) = (XW) = (YW)$$

$$R(X,Y) = (XW) = (XW) = (YW)$$

$$R(XW) = (YW) = (YW)$$

$$R(XW) = (YW) = (YW)$$

$$R(XW) = (YW) = (YW)$$

$$R(XW) = (YW)$$

$$R(XW) = (YW) = (YW)$$

$$R(XW) = (YW)$$

$$R(XW) = (YW) = (YW)$$

$$R(XW) = (YW)$$

$$R(YW) =$$$$

$$\frac{P!}{k!} Check that PHS has sec = K, then we uniqueness.}{Examples of (complete) Riem. mflds w/ sec = K:
Simply-connected their quotients:
• K>0: $S^{*}(\frac{4}{\sqrt{K}})$ RP". Leves space...
• K < 0: $H^{*}(\frac{4}{\sqrt{K}})$ Hyperbolic sorface...
*Ball modules'' warped product woddi':
Geometrically, in terms of distance spheres:
• unit round sphere
out round sphere
where $Sec = k$ $Sin(\sqrt{K}r)$ is the solution to
 $Sinh(\sqrt{K}r)$ shall $K<0$ K=0
 $Sinh(\sqrt{K}r)$ Sink(r K<0
 $Fue ODE$ $Sin_{K}(r) = 1$ (see course nucleoge!)
• $S^{*}(\frac{1}{\sqrt{K}}) = \sum x \in \mathbb{R}^{N+1}$: $x_{1}^{2} + \dots + x_{n}^{2} + x_{n+1}^{2} = \frac{1}{K}$ (K>0)
w/ metric induced from Evalution metric $dx_{1}^{2} + \dots + dx_{n+1}^{2} = \frac{1}{K}$ (K<0)
w/ metric induced from Lorenzian metric $dx_{1}^{2} + \dots + dx_{n+1}^{2} = \frac{1}{K}$ (K<0)$$

Lemma 1. The Jacobi field along
$$\gamma(t)$$
 with $J(0)=0$ and $J'(0)=w$ is $J(t)=d(exp_{g(0)})_{tg'(0)}$ tw.
Pl: $J(t)=d(exp_{g(0)})_{tg'(0)}$ tw is the veriational field of a veriation of γ by geodenes, so it is a Jacobi field.
Judded: if $v \cdot r'(0)$, then $\gamma(0, t) = v \cdot r'(0)$ $\gamma(0, t)$
 $\gamma(0, t) = \frac{1}{2} \gamma(0) (t(v+sw))$ $\gamma(0) = d(exp_{g(0)})_{tv} tw = J(t)$
Moreover, $J(0)=0$ and $J'(0)=0$ and $J'(0)=0$ and $J'(0)=0$ and $J(0)=0$ and $J(0)=0$ and $J(0)=0$ and $J(0)=0$ and $J(0)=0$ field along $\gamma(1)$ with source invital conduction, $J(t)$ is the claused Jacobi field. In $\frac{1}{2}$ we have $f(0)$ to $f(0)$ the conduction $f(0)$ is a anne standard $r(0)=J(0)$ $J(0)=0$ and $J'(0)$ is a anne standard $r(0)=J(0)$ $\gamma(1)$ with $w(0)=r'(0)$ $r(0)=J(0)$.

Lemma 2. Let
$$\gamma: [0,L] \rightarrow M$$
 be a geodesc, $\forall \in T_{0}(n)M$, $\forall \in T_{0}(n)M$.
If $L > 0$ is suff. small, there exists a unique Jacobi field
 J along γ with $J(0) = v$, $J(0) = w$.
If: Let $J = \{ J \text{ is a Jacobi field olong } \gamma$, $J(0) = 0 \}$,
however $I = \{ J(t) = d(ever_{0}(0))_{ty'(0)} t J'(0) \}$ this is a
and $ev_{t} : J \longrightarrow T_{V(t)}M$ due $J = \dim T_{p}M$
 $J \longmapsto J(t)$
If $t > 0$ is small, then ev_{t} is injective: otherwise
 $J_{1}, J_{2} \in J, J_{1}(t) = J_{2}(t)$ but $J_{1} \neq J_{2}$. Thue $J_{1} - J_{2} \in J$
softisfies $0 = (J_{1} - J_{2})(t) = d(ever_{0}(0))_{ty'(0)} t (J_{1} - J_{2})'(0)$
and for t small $d(ever)_{ty'(0)}$ is truvertible, so $(J_{1} - J_{2})'(0)=0$
and for t small $d(ever)_{ty'(0)}$ is truvertible, so $(J_{1} - J_{2})'(0)=0$.
Neure $(J_{1} - J_{2})(0) = 0$ and $(J_{1} - J_{2})'(0) = 0$ so $J_{1} = J_{2}=J_{1}$.
Since ev_{t} : $J \rightarrow T_{NH}M$ is linear and drim $J = dem$ $T_{H}M$,
 ev_{t} is bijective. So $\exists J_{1} \in J$ with $J_{1}(t) = w$.
By the same orgunent starting from $\gamma(t)$, $\exists J_{2}$ a
Jacobic field along γ with $J_{2}(0) = v$ and $J_{2}(t) = 0$.
 T_{Hvy} $J = J_{4} + J_{2}$ so tis fres $J(0) = v$ and $J(t) = W$.

l

Lecture 4 Comparison results for Jacobi fields 2/16/2023

Prop: If
$$\gamma: [0,L] \rightarrow M$$
 is a geodesic with $\gamma(0) = p$, $\tilde{\gamma}(0) = v$,
 $W \in T_v T_p M$ has $||W|| = 1$ and $J(t)$ is the Jacobi field along $\gamma(t)$
 $With J(0) = 0$ and $J'(0) = W$, $||W|| = 1$, (i.e., $J(t) = d(exp_p)_{tv} tw)$,
then $||J(t)||^2 = t^2 - \frac{1}{3} \langle R(v, w)w, v \rangle t^4 + O(t^5)$

$$\frac{\|v\|_{s}}{\delta t} = \tau$$

$$\langle 2, 2\rangle_{(0)} = 5\langle 2, 2\rangle_{(0)} = 0$$

$$\langle 2, 2\rangle_{(0)} = 5\langle 2, 2\rangle_{(0)} = 0$$

$$\begin{aligned} & \text{Also}, \quad \mathcal{I}'(0) = -\mathcal{R}(\mathcal{J}'_{1}\dot{\chi})\dot{\chi}(0) = 0 \quad \text{so} \\ & \langle \mathcal{I}_{1}\mathcal{I}\rangle^{(1)}(0) = \mathcal{G}\langle \mathcal{I}'_{1}\mathcal{J}'_{1}\rangle(0) + \mathcal{Q}\langle \mathcal{I}''_{1}\mathcal{J}\rangle(0) = 0 \\ & \text{Moneover, for any vector field W along } \mathcal{J}, \\ & \left(\frac{D}{dt}\mathcal{R}(\mathcal{I}(t),\dot{\chi}(t))\dot{\chi}(t),\mathcal{W}\right) = \frac{d}{dt} \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{W}\rangle - \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{W}'\rangle \\ & = \langle \mathcal{R}(\mathcal{W},\dot{\chi})\dot{\chi},\mathcal{I}\rangle + \langle \mathcal{R}(\mathcal{W},\dot{\chi})\ddot{\chi},\mathcal{I}'\rangle \\ & = \langle \mathcal{R}(\mathcal{W},\dot{\chi})\dot{\chi},\mathcal{I}\rangle + \langle \mathcal{R}(\mathcal{W},\dot{\chi})\ddot{\chi},\mathcal{I}'\rangle \\ & = \langle \mathcal{R}(\mathcal{U},\dot{\chi})\dot{\chi},\mathcal{I}\rangle + \langle \mathcal{R}(\mathcal{U},\dot{\chi})\dot{\chi},\mathcal{I}'\rangle \\ & = \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{I}\rangle + \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{I}'\rangle \\ & = \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{I}'\rangle \\ & = \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{I}\rangle + \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{I}'\rangle \\ & = \langle \mathcal{R}(\mathcal{I},\dot{\chi})\dot{\chi},\mathcal{I}\rangle \\ &$$

$$Thus: \langle J, J \rangle^{(1)}(o) = \{ \langle J', J'', \rangle(o) + 6 \langle J'', J'', \rangle(o) + 2 \langle J''', J \rangle(o) \\ = -8 \langle J', R(J', \delta) \rangle \langle o) = -8 \langle R(w, v) v, w \rangle \\ = -8 \langle R(v, w) w, v \rangle, \\ s_{0} J'' = -R(J, \delta) \rangle$$

Goal for our first comparison results (Rauch) is to
promote the geometric information
"curvature controls length of Jacobi fields"
from the above "infinitesimal at
$$t=0$$
" version to the
more global version "until the first conjugate point."

Let
$$A: \mathfrak{X}(M) \to \mathfrak{X}(M)$$
 be the tensor $A = \nabla V$, i.e. $A(X) = \overline{V_X}V$.
and $R_V: \mathfrak{X}(M) \to \mathfrak{X}(M)$ be the tensor $R_V(X) = R(X,V)V$.
Note: $[J, V] = 0$ hence $\nabla_V J = \nabla_J V = A \cdot J$
Reduce Jacobi equation from $Z^{n,3}$ order ODE to system of $1^{n,4}$ order ODES
 $J'' + R(J,V)V = 0$ $f' = A \cdot J =$
 $R_V(J)$ $A' + A^2 + R_V = 0$
 $(\nabla_V A) X = \nabla_V (AX) - A \nabla_V X$
 $= \nabla_V \nabla_X V - A (\nabla_X V + [V,X])$
 $= \nabla_X \nabla_V V + R(V,X)V + \nabla_{V,X}V - \nabla_{V,X}V + [V,X]$
 $= -R_V(X) - A(A(X))$
So: $A' = -R_V - A^2$ ce. $A' + A^2 + R_V = 0$
 $(\nabla_V: \mathfrak{X}(N) - \mathfrak{X}(N)$ the one top of $N^2 + R^2 + R_V = 0$
 $\nabla_V: \mathfrak{X}(N) - \mathfrak{X}(N)$ is self-adjoint; i.e. $\forall K, Y, \langle \nabla_K V, Y \rangle = \langle X, \nabla_V V \rangle$
Then $V = \nabla f$ locally, because setting $\mathfrak{Z}(X) = \langle X, V \rangle$, we have
 $d\mathfrak{Z}(X,Y) = X\mathfrak{Z}(Y) - Y\mathfrak{Z}(X) - \mathfrak{Z}([XY])$
 $= \langle \nabla_X Y, Y \rangle - \langle X, \nabla_Y V \rangle = 0$ so $d\mathfrak{Z}$ is closed. 28

Examples:
1. On any (M,g), let
$$S_{t} = \partial B_{t}(g) = \frac{1}{2} \times eM$$
: dist(x,p)=t]. Then
 $A \sim \frac{1}{t} Id$ as $t \neq 0$ Lie M is inferriterimally Exclusion of p
(Mote: If (Mg) = R², then $A = \frac{1}{t} Id$, by next example.
2. If (Mg) = R², then $A = \frac{1}{t} Id$, by next example.
2. If (Mg) has constant curvature $\sec x$, then $R_{y} \in K Id$ and
we can solve the Ricalli equation explicitly when S_{t} are
 $S - called "umbilical" surfaces, i.e., $A = a Id$.
 $A' + A^{2} + R_{y} = 0$ and $a' + a^{2} + K = 0$
 $K \ge d$: $a(t) = \sqrt{K} \cot(\sqrt{K}, t)$ Concurtic circles
 $K = 0$: $a(t) = \sqrt{K} \cot(\sqrt{K}, t)$ Concurtic circles
 $K = 0$: $a(t) = \sqrt{K} \cot(\sqrt{K}, t)$ Concurtic circles
 $K = 0$: $a(t) = \sqrt{K} \cot(\sqrt{K}, t)$ Concurtic splices
 $V = \frac{1}{t - t_{0}}$ $S = \frac{1}{t - t_{0}}$ $V = \frac{1}{t - t_{$$

To fluct take comparison, identify
$$T_{RGM} \stackrel{P}{=} T_{RGM}$$
 via possible transport
 $P_{RG}^{RH} \stackrel{W}{=} \stackrel{W$

Indeed:
$$V' = g' V g^T + g V' g^T + g V (g^T)'$$

= $X g V g^T + g V g^T + g V g^T X^T$
= $X U + S + U X$.
Since $S = R_i - R_2 \ge 0$, we have $V' = g^T S(g^T)^T \ge 0$.
Since $U(t_0) = g(t_0) V(t_0) g(t_0)^T = A_2(t_0) - A_1(t_0) \ge 0$, we have $V(t_0) \ge 0$.
Thus $V(t) \ge 0$ for all $t \in (t_0, t')$ and have also
 $A_2(t_1 - A_1(t) = U(t)) = g(t_1) V(t_0) g(t_0)^T \ge 0$ for all $t \in (t_0, t')$; i.e. $A_1(t_0) \le A_2(t)$
for $t \in (t_0, t')$. Since A_1' is bounded from above $(A_1' \le -A_1^2 - R_1 \le -R_1)$
the only singolarity possible is $-\infty$, so $A_1 \le A_2$ implies $t' = t_1 \le t_2$.
Proof. The above still holds if A_1 , A_2 are signified
at t_0 , but $U = A_2 - A_1$ has a continuous extension
 $A_1' = t_1'$
to t_0 , with $U(t_0) \ge 0$.
 $t = A_2 - A_1$ has a continuous extension
 $A_1' = t_1'$
 $Goundarie instrumentations "Principal univertures of equidational hypersurfaces
decrease forther on the space of A_2 to $T_1' = A_1 T_1$. Then $t \mapsto \frac{|T_1(t_0)|}{|T_2(t_0)|}$
is monivereasing. Moreover, if first $\frac{|T_2(t_0)|}{|T_2(t_0)|} = A_1$, then $|T_2(t_0)| \le |T_1| \le |T_1|$.
for all $t_{C}(t_0, t')$. Equality holds for some the flot) of and only if
 $T_1 = j$. V_1 on $[t_0, t']$ for some $V_1 \in E$ with $A_1 := \lambda V_1$, $j' = \lambda j$.$

ſ

$$\begin{array}{l|c} \mbox{Lecture S} & 2/23/2023 \\ \hline \mbox{Recall:} & \mbox{\mathbb{R}} (K) = \mathbb{R}(X,V) V \\ \hline \mbox{\mathbb{R}} (X) = 0 & \mbox{\mathbb{R}} & \mbox{$\mathbb{J}'=A:J$} \\ \mbox{\mathbb{J}} (Jacki equation) & \mbox{\mathbb{I}} & \mbox{\mathbb{I}} & \mbox{\mathbb{R}} = A:J \\ \mbox{\mathbb{J}} & \mbox{\mathbb{R}} (X,V) V \\ \hline \mbox{\mathbb{I}} & \$$

Application of Kauch I: <u>Cor</u>: Lot (M^n,g) be a complete Riem mfld with $\sec \le 0$, and v > 0s.t. $\exp_p : B_r(0) \longrightarrow M$ is a different onto its image. Fix a linear isometry $I : T_pM \longrightarrow R^n$. Given $\gamma: [0,1] \longrightarrow \exp_p(B_r(0))$, we have $length(\gamma) \gg length_{R^n}(I \circ exp_p^{-1}(\gamma))$.

Indeed,
$$J_{t}^{i}(0) = \frac{D}{ds} J_{t}^{i}(5) \Big|_{S=0} = \frac{D}{ds} \frac{2}{2t} \exp_{p} sJ^{i}(t) \Big|_{S=0}$$

 $= \frac{D}{dt} \frac{2}{2s} \exp_{p} sJ^{i}(t) \Big|_{S=0} = \frac{D}{dt} \frac{d(\exp_{p})}{id} J^{i}(t) = J^{i}(t)$
and so length $\mathbb{P}(I \circ \exp_{p}^{-1} X) = \int_{0}^{1} || \frac{2}{2t} I \circ \exp_{p}^{-1}(5) || dt = \int_{0}^{4} || J_{t}^{i}(0) || dt$. \square
and so length $\mathbb{P}(I \circ \exp_{p}^{-1} X) = \int_{0}^{1} || \frac{2}{2t} I \circ \exp_{p}^{-1}(5) || dt = \int_{0}^{4} || J_{t}^{i}(0) || dt$. \square
 $\mathbb{P}(I) = \mathcal{F}(I) = \mathcal{F}(I) = \mathcal{F}(I) = \mathcal{F}(I) = \mathcal{F}(I) = \mathcal{F}(I)$
 $= \int_{0}^{1} \int_{0}^{1} || \frac{2}{2t} I \circ \exp_{p}^{-1}(5) || dt = \int_{0}^{4} || J_{t}^{i}(0) || dt$. \square
 $\mathbb{P}(I) = \int_{0}^{1} || \frac{2}{2t} || \frac{2}{2t$

Cor: A geodesic triangle on a complete manifold with sec <0 satisfies
A (i)
$$l(c)^2 > l(a)^2 + l(b)^2 - 2l(a)l(b)$$
 cos γ ($l = length$)
A (ii) $\alpha + \beta + \gamma \leq \pi$ If sec <0, then get strict inequalities.
Pl:
TM $o = \frac{1}{|\alpha|} = \frac{1$

Application of Kauch I:

Lecture 6 (Recall Rach I, I and Appl. of Rach I)
$$3/2/2023$$

Car. Let (M'g) be a complete Riem mild with $0 < \kappa \leq sc \leq K$.
Then the distance d between consecutive conjugate points along geodeses
in (M'', 5) is $\frac{\pi}{1K} \leq d \leq \frac{\pi}{1K}$.
P1. Let $\gamma_{\cdot}[0,L] \rightarrow M$ be a geodesic, $J:[0,L] \rightarrow M$ a Jecoh: field
asth $J(0) = 0$. Let \overline{J} be a Jecoh field or $S'(\frac{1}{1K})$ with $\overline{J}(0) = 0$
and $\|\overline{J}'(0)\| = \|J'(0)\|$. Then, by Rach I, $\|J(t)\| \geq \|\overline{J}(t)\| > 0$
for all $t \in (0, \frac{\pi}{1K})$, blc $\overline{J}(t) = \overline{J}'(0) \cdot \frac{\sin(t+\overline{1K})}{1K}$, so $d \geq \frac{\pi}{1K}$.
Similarly, if $d > \frac{\pi}{1K}$, then by Rach I, the rower optime $S'(\frac{1}{tc})$
would only have conjugate points after distance $\frac{\pi}{1K}$, a contradictan-
diam (M'',g) $\leq \frac{\pi}{1K}$. In yorticular, M is compact and π_{5} M is finite.
P1. Let $\eta \in M$ and $\gamma_{\cdot}[0,L] \rightarrow M$ be a minimizing geodese with
 $\eta(0) = \eta$ ord $\eta(L) = q$. It suffices to show lingh (η) = $L \leq \frac{\pi}{1K}$. Some
 $L > \frac{\pi}{1K}$, and let $J(t)$ be a Jacob field along $\gamma(i)$ with $J(0) = 0$.
Then by Ravd I, $\|J(t)\| \leq \|J'(0)\| \frac{\sin t+1}{5K}$ for all $t \in (0, \frac{\pi}{5K})$, and
the first conjugate point along $\gamma(i)$ with $J(0) = 0$.
Then by Ravd I, $\|J(t)\| \leq \|J'(0)\| \frac{\sin t+1}{5K}$ for all $t \in (0, \frac{\pi}{5K})$, and
the first conjugate point along γ happens before distance $\frac{\pi}{5K}$. Therefore
the geodesic γ is not minimizing from $\chi(0) = p + \chi(L) = q$, when
 $\chi = divid K$ that M is also compact, so $\pi \leq M$ is finite $\pi \leq 0$.

(a) y is not autimizing from y(0) to y(L), i.e., L > dist(y(0), y(L)),
if and only if ∃tx ∈ (0,L) st. y(te) ∈ Ct(y(0): so either
- y(0) is capingule to y(te); or
- ∃x ≠ y goodsic with a(0)=y(0) and a(1)=y(1). you
is. M is compact and DM=g.
$$\frac{[Ihuy(Syme, 1926). Let(M, g) be a closed Rieu. melli avith sec > 0.If m is even, then M orientable => trs M = 213M mon-orientable => trs M = 213If m is odd, then M is orientable.Pl. Let y: [0,L] ->M be a closed geoderic, ie y(0)=y(L)=py(0)=y(L).Porallel transport along y gives a linear isometry P of TpM,with P y(0) = y(L) = y(0). Moreover, P reducts to a linearisometry P: E → E, where E = spon(y(0))⊥ c TpM.If m is even and Mu is orientable, then dim E is odd andporallel transport along on slop processes orientation, so det P|_E > 0.Thus, P|_E must have an eigenvector with eigenvalue 1, say W ∈ E,[w]|=1. Then let W(t) be the porallel vector field along y(t)with w(0)=w|L)=w, and Gety[s,t] = Lxpgit w(t)B) Application of Rand IT, we know thatRe = {Ro - Ro + the sponter of the$$

Thus, if M' is not simply connected, let
$$\gamma$$
 be a shortest
urve in a nontrivial face however the graves. Then γ is a closed
peodexic of least length among curves in that however, deals?
Havever $\gamma_{S} = \gamma(s, \cdot)$ has smaller light and $\gamma_{S} \in [N]$, contribution
of another $\gamma_{S} = \gamma(s, \cdot)$ has smaller light and $\gamma_{S} \in [N]$, contribution
of m is even and M' is non-orientable, apply the above
argument to its orientable double-cover (M', Z) and find that
M is simply connected, so $Z_{2} \rightarrow M \rightarrow M$ is the universal
cover of M, is, $\pi_{S}M \cong Z_{2}$.
If m is odd and non-orientable, then down E is even
and there exists a closed geodesic γ (minimizing length asmory
man contractible loops) such that $P:E \rightarrow E$ has det $P|_{E} < 0$.
Thus $P|_{E}$ must have an agenvector with granualit +1, say we E.
Mull = 1. Reasoning as before, get a contradiction with γ being of
shortest length among such loops, since $\gamma(s,t) = \exp_{S(t)} sult)$ would
be even shorter for $S \neq 0$ Small.

Quork: Clased and manifolds (M', g) with u odd and sec > 0 must have
a long $\pi_{S}M'_{2}$ eg, consider $Z_{P} \cap S^{3}$ and Leus grave S'_{2P} ,
which has $sec \equiv 1$ and $T_{1}M \cong Z_{P}$.

Chern Problem (1965): If (M', g) is a closed River with with sec >0 and
 $\Gamma < \tau_{S}M$ is a Abulton subgrap, is it true that Γ is cycle?

A: (K. Shantur 1997) No, there exist asamptes what $sec < 0$ (Presumm)
were sec > 0 (Myees/Same), 42

Average comparison Theorems
Def. The Ricci tensor of
$$(M^{n}, g)$$
 is the bilinear symmetric tensor
Ric: $X(M) = X(M) \rightarrow C^{\infty}(M)$ given by $Ric(Y, Y)_{P} = \sum_{i=1}^{n} \langle R(e_{i}, X) Y, e_{i} \rangle$
where feiz is an orthournul bass of TPM.
The porticular, $Ric(V) = Ric(V, V) = tr R_{V}$, since R_{V} : $X(M) \rightarrow X(M)$
 $R_{V}(X) = R(X, V) \vee$
Geometrically, $Ric(V) = \sum_{i=1}^{M} Sec(V, e_{i})$ is e_{1}
 r_{V} ($X = R(X, V) \vee$
 $R_{V}(X) = R(X, V) \vee$
 R_{V}

Geometrically,
$$Q(t) = \frac{H}{N-1}$$
 where $H = tr A$ is the mean curvature of S_t . If

Pl: Apply ODE comparison from previous class!
$$A_1 \leq A_2 \implies \text{tr } A_1 \leq \text{tr } A_2$$

$$\begin{array}{c} \| & \| \\ A & \overline{A} \\ \end{array} \qquad (n-1)a \qquad (n-1)\overline{a} \\ \end{array}$$

$$\frac{R_{\rm m}K_{\rm T}}{A(t)} \sim \frac{1}{t-t_0} \, \mathrm{Id} \,, \quad \overline{\alpha} = \frac{SN_{\rm K}'}{SN_{\rm K}} \quad \text{where} \quad \begin{cases} SN_{\rm K}'' + K_{\rm S}N_{\rm K} = 0 \\ SN_{\rm K}(t_0) = 0 \\ SN_{\rm K}(t_0) = 1 \\ SN_{\rm K}(t_0) = 1 \end{cases}$$

Let
$$J_{1}, ..., J_{n-1}$$
 be Jacobi fields along χ
that form a basis of solutions to
 $J^{1} = A J$ $(A: V^{\perp} = V^{\perp})$ J_{1} V^{\perp}
and set $j = det (J_{1}, J_{2}, ..., J_{n-1})$. identified via
product transport
Since $(J_{1}, ..., J_{n-1})^{l} = \sum_{k=1}^{n-1} J_{1} \wedge ... \wedge J_{k} \wedge ... \wedge J_{n-1}$
 $= \sum_{k=1}^{n-1} J_{1} \wedge ... \wedge J_{k} \wedge ... \wedge J_{n-1}$

we have
$$j' = (n-4) a j$$
; because $j = \langle J_1 n \dots n J_{n-1}, v d \rangle$.

$$\begin{array}{c} \underline{\mathrm{Then}} \ \mathrm{Let} & A: [\mathrm{to}, \mathrm{ti}) \rightarrow \mathrm{Syn}^{2} \mathrm{V}^{\perp} \quad \mathrm{and} \quad a = \frac{4}{\mathrm{m}-1} \ \mathrm{tr} \ A \ \mathrm{be} \ \mathrm{s.t.} \quad a \leq \overline{a},\\ \mathrm{and} \ \mathrm{j}' = (\mathrm{n}-\mathrm{s}) a, \mathrm{j}. \quad \mathrm{Checke} \ \mathrm{j} \ \mathrm{s.t.} \quad \mathrm{J}' = (\mathrm{n}-\mathrm{s}) \mathrm{a}, \mathrm{Then} \ \mathrm{j}/\mathrm{j} \ \mathrm{is} \ \mathrm{Monincreasing},\\ \hline \mathrm{M}_{-1}(\mathrm{a} < (\mathrm{n}-\mathrm{s}) \mathrm{a}, \mathrm{c}) \ \mathrm{Checke} \ \mathrm{j} \ \mathrm{s.t.} \quad \mathrm{J}' = (\mathrm{n}-\mathrm{s}) \mathrm{a}, \mathrm{Then} \ \mathrm{j}/\mathrm{j} \ \mathrm{is} \ \mathrm{Monincreasing},\\ \hline \mathrm{M}_{-1}(\mathrm{a} < (\mathrm{n}-\mathrm{s}) \mathrm{a} \ \otimes (\mathrm{log} \ \frac{\mathrm{s}}{\mathrm{s}})^{1} \leq 0 \ \Rightarrow \ \mathrm{J}' \ \mathrm{Monincreasing},\\ \hline \mathrm{M}_{-1}(\mathrm{a} < (\mathrm{n}-\mathrm{s}) \mathrm{a} \ \Rightarrow (\mathrm{log} \ \frac{\mathrm{s}}{\mathrm{s}})^{1} \leq 0 \ \Rightarrow \ \mathrm{J}' \ \mathrm{Monincreasing},\\ \hline \mathrm{M}_{-1}(\mathrm{a} < (\mathrm{n}-\mathrm{s}) \mathrm{a} \ \Rightarrow (\mathrm{log} \ \frac{\mathrm{s}}{\mathrm{s}})^{1} \leq 0 \ \Rightarrow \ \mathrm{J}' \ \mathrm{Monincreasing},\\ \hline \mathrm{M}_{-1}(\mathrm{a} < (\mathrm{n}-\mathrm{s}) \mathrm{a} \ \Rightarrow (\mathrm{log} \ \frac{\mathrm{s}}{\mathrm{s}})^{1} \leq 0 \ \Rightarrow \ \mathrm{J}' \ \mathrm{Monincreasing},\\ \hline \mathrm{M}_{-1}(\mathrm{a} < (\mathrm{n}-\mathrm{s}) \mathrm{a} \ \Rightarrow (\mathrm{log} \ \frac{\mathrm{s}}{\mathrm{s}})^{1} \leq 0 \ \Rightarrow \ \mathrm{J}' \ \mathrm{Monincreasing},\\ \hline \mathrm{M}_{-1}(\mathrm{a} < (\mathrm{n}-\mathrm{s}) \mathrm{a} \ \Rightarrow (\mathrm{log} \ \frac{\mathrm{s}}{\mathrm{s}})^{1} \leq 0 \ \Rightarrow \ \mathrm{J}' \ \mathrm{Monincreasing},\\ \hline \mathrm{Monincreasing}, \ \mathrm{Monincreasing},\\ \hline \mathrm{Monincreasing}, \ \mathrm{Monincreasing}, \ \mathrm{Monincreasing},\\ \mathrm{Monind} \ \mathrm{M}_{-1}(\mathrm{b} < (\mathrm{B}^{-1}(\mathrm{p})), \ \mathrm{S} \ \mathrm{Monincreasing}, \ \mathrm{He} \ \mathrm{Conclusion},\\ \ \mathrm{M}_{-1}(\mathrm{B}^{-1}(\mathrm{p})) \ \Rightarrow (\mathrm{M}(\mathrm{B}^{-1}(\mathrm{p}))) \ \mathrm{S} \ \mathrm{Monincreasing}, \ \mathrm{He} \ \mathrm{Conclusion},\\ \ \mathrm{Monind} \ \mathrm{M}_{-1}(\mathrm{B}^{-1}(\mathrm{p})) \ = \mathrm{M} \ \mathrm{M} \ \mathrm{B}^{-1}(\mathrm{B}^{-1}(\mathrm{p})) \ = \mathrm{M} \ \mathrm{S} \ \mathrm{M} \ \mathrm{S} \ \mathrm{S} \ \mathrm{M} \ \mathrm{S} \ \mathrm{S} \ \mathrm{S} \ \mathrm{M} \ \mathrm{S} \ \mathrm{S} \ \mathrm{S} \ \mathrm{S} \ \mathrm{M} \ \mathrm{S} \ \mathrm{S} \ \mathrm{S} \ \mathrm{S} \ \mathrm{S} \ \mathrm{M} \ \mathrm{S} \$$

Since
$$d(\Theta p)_{tv} c_{i} = \frac{1}{4} (d(\Theta p)_{tv} t_{ci}) = \frac{1}{4} J_{i}(t)$$
 is the Jacki field
along $t_{1} \rightarrow \omega p_{1} t_{v}$ with $J_{i}(0) = 0$ and $J_{i}(0) = e_{i}$, M follows that
 $det(d(\Theta p)_{tv}) = \frac{1}{t^{n-1}} det(J_{i}(t), ..., J_{n-1}(t))$ and hence:
 $Vel(Br(p)) = \int_{S^{n-1}(1)} \int_{0}^{r(v)} \frac{det(J_{i}(t), ..., J_{n-1}(t))}{(j_{v}(t))} dt dv$ as $j_{v}(t) = 0$ for
 $f_{v}(t)$.
By previous result, $j_{v}(t)/J_{i}(t)$ is max increasing on $[0, r]$, where
 $J(t) = det(\overline{J}_{i}, ..., \overline{J}_{n-1})$, for corresponding Jacobi fields \overline{J}_{i} on \overline{M} .
 $J(t) = det(\overline{J}_{i}, ..., \overline{J}_{n-1})$, for corresponding Jacobi fields \overline{J}_{i} on \overline{M} .
Set $q(t) = \frac{1}{Vel(S^{m-1}(1))} \int_{S^{m-1}(1)} \frac{j_{v}(t)}{J_{i}(t)} dt dv_{1}$ which is also non-increasing
(because it is an everage of maniversectors quantities). As before,
 $Vel(Br(p)) = \int_{S^{m-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$
Thus,
 $\frac{Vel(Br(p))}{Vel(S^{n-1}(1))} = \frac{J_{S^{m-1}(1)} \int_{0}^{r} J_{i}(t) dt dv}{V_{i}} = \frac{J_{i}(t) J_{i}(t) dt}{J_{i}(t) dt} = \frac{J_{i}(t) J_{i}(t) dt}{Vel(S^{n-1}(1)) \int_{0}^{r} J_{i}(t) dt}$
is some $(J_{i} - weighted)$ average of
 $Vel(Br(p)) = \int_{S^{m-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt}$
 $\frac{J_{i}(t)}{Vel(S^{n-1}(1))} \int_{0}^{r} J_{i}(t) dt dv$.

The plicitly: if \$, \$\$>0, and the plit is non-increasing, then

$$\frac{\int_{0}^{r} \phi(t) dt}{\int_{0}^{r} \psi(t) dt} = \frac{\int_{0}^{r} \frac{\phi(s)}{\psi(s)} ds}{\int_{0}^{r} ds} \text{ is non-increasing, where } \begin{bmatrix} ds = 2\psi(t) dt \\ F = s(r) \end{bmatrix}.$$
Rigidity statement follows from rigidity statements in ODE comparison:
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$, $jv(t) = J(t)$, then $a(t) = \overline{a}(t)$, for all $0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$, $jv(t) = J(t)$, then $a(t) = \overline{a}(t)$, for all $0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$, $jv(t) = T(t)$, then $a(t) = \overline{a}(t)$, for all $0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$, $jv(t) = T(t)$, then $a(t) = \overline{a}(t)$, for all $0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$, $jv(t) = T(t)$, then $a(t) = \overline{a}(t)$, for all $0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$, $jv(t) = T(t)$, then $a(t) = \overline{a}(t)$, for all $0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$, $jv(t) = T(t)$, then $a(t) = \overline{a}(t)$, for all $0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall 0 \leq t \leq r$.
If $\forall v \in S^{n-1}(1)$, $\forall v \in S^{n-1}(1)$, $\forall v \in S^{n$

Another situation in which "integral" average" control is enorgh:
Then (Myers, 1941). If (M^{*}g) is a complete Riem will all Ricz K(m),
with K50, then diam (M^{*}g)
$$\equiv \frac{\pi}{V_{K}}$$
. In particular (M^{*}g) is compact
and π_{5M} is finite.
To prove this, much more about voriational structure of geodesics:
Fix $p_{1g} \in M$ and $X = 2g \in W^{4,2}([0,e], M)$: $g(0) = p$. $g(e) = g$?
The rise a thebet is a diadic voriational structure of geodesics:
Fix $p_{1g} \in M$ and $X = 2g \in W^{4,2}([0,e], M)$: $g(0) = p$. $g(e) = g$?
The rise a theory is a diadic voriational structure of geodesics:
 $F_{1X} = 2V \in W^{4,2}([0,e], TM)$; vector field along γ with?
 $T_g X = 2V \in W^{4,2}([0,e], TM)$; vector field along γ with?
 $V(0) = 0$. $V(e) = 0$
Define the energy functional $E: X \to R$
 $E(\gamma) = \frac{1}{2} \int_{0}^{e} g(\gamma, \beta) dt$
Then $\gamma \in X$ is a critical point, i.e. $SE(\gamma) = 0$, on curves $\gamma \in W^{4,4}$
 P γ is a geodesic. Indeed: $SE(\gamma) = 0$, on curves $\gamma \in W^{4,4}$
 $V(0) = 0$ wave on the data field
 $V(0) = 0$ $\int_{0}^{e} \delta(\frac{1}{ds} \delta_{1}|_{s=0}^{e} \delta) dt = \int_{0}^{e} g(\gamma, \frac{1}{dt}, \frac{1}{y}) dt$
 $V(0) = 0$ indication: $SE(\gamma)(V) = \frac{1}{ds} E(\gamma_{2})|_{s=0}^{e} \frac{1}{2} \int_{0}^{e} \frac{1}{ds} g(\gamma, \beta_{2})|_{s=0}^{e} dt$
 $V(0) = 0$ wave on the data field
 $V(0) = 0$ indication $g(V, \frac{1}{dt}, \frac{1}{y}) dt$
 $V(0) = 0$ is $f(0) = 0$ indication $g(V, \frac{1}{dt}) dt$
 $= 0$ by $V(0) = 0$ is $f(0) = 0$. $V(e) = 0$
 $f(0) = 0$, $V(e) = 0$ is $f(0) = 0$. $f(0) = 0$ is $f(0) = 0$. $f(0) = 0$ is $f(0) = 0$. $f(0) =$

So
$$\delta E(\gamma | V|) = \frac{d}{ds} E(\{s\})|_{s=0} = 0$$
 for all variations γ_{s} if and only if
 $\frac{D\ddot{\chi}}{dt} = 0$ i.e. γ is a geodesic.
(and hence $\|\dot{\gamma}\| = coust$)
$$\int \beta | V| = 0, \quad \forall P cos \beta = 0$$
i.e. $\langle \beta, P \rangle_{z=0} = 0, \quad \forall P cos \beta = 0$
i.e. $\langle \beta, P \rangle_{z=0} = 0, \quad \forall P cos \beta = 0$
 $i.e. \langle \beta, P \rangle_{z=0} = 0, \quad \forall P cos \beta = 0$
 $\frac{\delta cound}{\delta s} \quad \forall Hessian \quad eff E at γ is
 $S^{2} E(\gamma)(V_{1} V) = \frac{d^{2}}{ds^{2}} E(\gamma s)|_{s=0} = \frac{1}{2} \int_{0}^{\ell} \frac{d^{2}}{ds} g(\tilde{\gamma} s, \tilde{\gamma} s)|_{s=0} dt$
 $S^{2} E(\gamma)(V_{1} V) = \frac{d^{2}}{ds^{2}} E(\gamma s)|_{s=0} = \frac{1}{2} \int_{0}^{\ell} \frac{d^{2}}{ds} g(\tilde{\gamma} s, \tilde{\gamma} s)|_{s=0} dt$
 $S^{2} E(\gamma)(V_{1} V) = \frac{d^{2}}{ds} \sum E(\gamma s)|_{s=0} = \frac{1}{2} \int_{0}^{\ell} \frac{d^{2}}{ds} g(\tilde{\gamma} s, \tilde{\gamma} s)|_{s=0} dt$
 $S^{2} E(\gamma)(T_{1} V - T_{1} X) = P$
 $Symmetric belower form;$
 $= \int_{0}^{\ell} g(\frac{D}{ds} \tilde{\gamma} s, \tilde{\gamma} s)|_{s=0} dt$
 $symmetric endowerphism = \int_{0}^{\ell} g(\frac{D}{ds} \tilde{\gamma} s, \tilde{\gamma} s)|_{s=0} dt$
 $V = \frac{2}{2s} \gamma_{s} = \sum_{0}^{\ell} g(\frac{D}{ds} V, \tilde{\gamma}) + g(V, V') dt$
 $V' = \frac{D}{dt} \sum_{2s} V_{s} = \sum_{0}^{D} \frac{D}{2s} \tilde{\gamma}_{s} = \frac{D}{ds} \tilde{\gamma}_{s}$
 $= \int_{0}^{\ell} g(\frac{D}{dt} \frac{D}{ds} V, \tilde{\gamma}) + g(V, V') dt$
 $V' = \frac{D}{dt} \sum_{2s} V_{s} = \frac{D}{ds} \tilde{\gamma}_{s} = \frac{D}{ds} \tilde{\gamma}_{s}$
 $= \int_{0}^{\ell} g(\frac{D}{dt} \frac{D}{ds} V, \tilde{\gamma}) - g(R(V, \tilde{\gamma})\tilde{\gamma}, V) + g(V, V') dt$
 $V(L, b)$
 $V_{s}(z) = g(\frac{D}{ds} V, \tilde{\gamma})|_{0}^{\ell} - \int_{0}^{\ell} g(V', V) + g(R(V, \tilde{\gamma})\tilde{\gamma}, V) dt$
 $+ g(V', V)|_{0}^{\ell} - \int_{0}^{\ell} g(V'', V) + g(R(V, \tilde{\gamma})\tilde{\gamma}, V) dt$
 $= V(L, V(s) V, V(L) = 0$
 $= V(L, V(s) V, V(L) = 0$
 $V = V(L, V(s) V, V(L) = 0$$

$$= -\int_{0}^{\ell} g(V'', V) + g(R(V, \hat{\chi})\hat{\chi}, V) dt$$

$$= -\int_{0}^{\ell} g(V'' + R(V, \hat{\chi})\hat{\chi}, V) dt$$

This vanishes if V is a Jacké field:
 $V'' + R(V, \hat{\chi})\hat{\chi} = 0$.

Note: If
$$Sec_M > 0$$
, then $g(R(V, \tilde{\eta})\tilde{\chi}, V) > 0$, so using a
populal vector field V olong a geoderic χ . get
 $S^2 E(\tilde{\chi})(V, V) = -\int_0^l g(V'', V) + g(R(V, \tilde{\eta})\tilde{\chi}, V) < 0$
i.e. χ is unstable; small variations of χ decrease
its energy (and its length). Recall/cf. application of Raich I.
Neverills about Energy V . Length of curves:
• Critical points of E come parametrized of constant qued, i.e. $SE(\chi) = 0$
implies $|\tilde{\chi}|| = \text{const.}$, while the length functional is invariant under
responsement isotions of χ in particular critical points view not have
constant speed.
• Appl. Cauchy-Schwartz inequality $(\int_0^l \chi \psi)^2 \leq \int_0^{d/2} \int_0^{d/2} \psi^2$ with $\psi \equiv 1$ to get
 $L(\chi)^2 = (\int_0^l \|\tilde{\chi}\| \| dt)^2 \leq l \int_0^l \|\tilde{\chi}\|^2 dt = 2l E(\chi)$ and "=" iff $\|\tilde{\chi}\| \equiv 1$.
So if χ is a unit speed min. ged. from p to q , and f^2 is a curve
from χ to q , then $E(\chi) = \frac{1}{2l} L(\chi)^2 \leq \frac{1}{2l} L(p)^2 \leq E(\zeta^3)$, with
 $E(\chi) = E(p)$ of and only if β is unit speed and hence $L(p) = L(\chi)$
So β is a certical point of $E \ll \chi$ is a unit speed min. ged. from p to q .
 χ is a certical point q is a unit speed min. ged. from p to q .
 ψ boundary unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p to q .
 ψ is a unit speed min. ged. from p is a unit speed min. ged.
 ψ is a minimizer of $E \notin \chi$ is a unit speed min. ged.
 ψ is a unit to χ is a minimizer of E ψ is a unit speed min. ged.

Useful for later: if
$$\gamma: [0, \ell] \rightarrow M$$
 is unit speed, then given
any variation V, i.e. a vector field V along γ , we have:
$$\delta L(\gamma)(V) = \frac{1}{\ell} \ \delta E(\gamma)(V) = \frac{1}{\ell} \left(g(V, \mathring{\gamma}) \Big|_{0}^{\ell} - \int_{0}^{\ell} g(V, \frac{D\mathring{\gamma}}{dt}) dt \right)$$
$$If \ \delta L(\gamma) = 0 \ (equivalently \ \delta E(\gamma) = 0), \ then$$
$$\int_{0}^{2} L(\gamma)(V, V) = \frac{1}{\ell} \ \delta^{2} E(\gamma)(V, V)$$
$$= \frac{1}{\ell} \left(g(\nabla_{V} V, \mathring{\gamma}) \Big|_{0}^{\ell} + \int_{0}^{\ell} g(V', V') - g(R(V, \mathring{\gamma}) \mathring{\gamma}, V) dt \right)$$

Thus, adding from
$$i=1$$
 to $i=n-1$:

$$0 \leq \sum_{i=1}^{n-1} \delta^{2} E(\gamma)(V_{i}, V_{i}) = \sum_{i=1}^{n-1} \int_{0}^{1} \sin\left(\frac{\pi t}{\ell}\right)^{2} \left(\frac{\pi^{2}}{\ell^{2}} - g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} \left((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell^{2}}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell^{2}}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell^{2}}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell^{2}}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \sin\left(\frac{\pi t}{\ell^{2}}\right)^{2} ((n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \frac{1}{\ell^{2}} (n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \frac{1}{\ell^{2}} (n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \frac{1}{\ell^{2}} (n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \frac{1}{\ell^{2}} (n-s)\frac{\pi^{2}}{\ell^{2}} - \sum_{i=1}^{n-1} g(R(E_{i}, \gamma)\dot{\gamma}, E_{i})\right) dt$$

$$= \int_{0}^{l} \frac{1}{\ell^{2}} (n-s)\frac{\pi^{2}}{\ell^{$$

When a Vol (M) ≥ Vol (Br(p)) + Vol (B_T-r(q)). From Bishap Vd. Goup,

$$r = \frac{Val(Br(r))}{Vd(Br)}$$
 is non-increasing, in particular,
 $\frac{Val(Br(x))}{Val(Br)} > \frac{Val(B_{TR}(x))}{Val(B_{TR}(x))} = \frac{Val(M)}{Val(S^{n}(Yr))}$ b/c $\begin{cases} B_{T} = S^{n}(Nr) \\ B_{T}(x) = M \end{cases}$
 $r.$ Vol (Br(x)) > $\frac{Val(M)}{Val(B_{TR}(x))}$ Vol (S^{n}(Yr)) b/c $\begin{cases} B_{T} = S^{n}(Nr) \\ B_{T}(x) = M \end{cases}$
 $r.$ Vol (Br(x)) > $\frac{Val(M)}{Val(S^{n}(Yr))}$ Vol (Br). Thus, applying thus in $@$:
 $Vsl(Br(x)) > \frac{Val(M)}{Val(S^{n}(Yr))}$ (Val(Br) + Vbl(B_{Tr})) = Val(M); so all
 $Vsl(M) > \frac{Val(M)}{Val(S^{n}(Yr))}$ (Val(Br) + Vbl(B_{Tr})) = Val(M); so all
 $Vsl(S^{n}(Yr))$ (Val(S^{n}(Yr))) = Val(M); so all
 $Val(S^{n}(Yr))$ (Val(S^{n}(Yr))) = Val(S^{n}(Yr)) = Val(S^{n}(Yr)).
 $Val(S^{n}(Yr))$ (Val(S^{n}(Yr))) = Val(S^{n}(Yr))) = Val(S^{n}(Yr)).
 $Val(S^{n}(Yr))$ (Val(S^{n}(Yr))) = Val(S^{n}(Yr))) = Val(S^{n}(Yr)).
 $Val(S^{n}(Yr)) = Val(S^{n}(Yr)) = Val(S^{n}(Yr))$.
 $Val(S^{n}(Yr)$

Lecture 8

3/16/2023

$$\frac{sel}{t} \xrightarrow{to} \underbrace{exercise}{t}$$
a) $\mathbb{RP}^{W(\frac{1}{4E})} = \frac{s^{n}(\frac{1}{4E})}{Z_{2}}$, where $Z_{2} \cap S^{n}(\frac{1}{4E})$ has a metric
 $11 \cdot x = \pm x$
with $sec = K$, hence $Ric = (n-4)K$, and
 $Vel(\mathbb{RP}^{n}(\frac{1}{4E})) = \frac{1}{2} Vel(S^{n}(\frac{1}{4E}))$. Clearly, $Ty(\mathbb{RP}^{n}=\mathbb{Z}_{2})$.
b) If (\mathbb{N}^{n},g) has $Ric \ge (n-1)K$, and $[S]\in Ty[\mathbb{N}, bt] \Gamma = <[Y] > < Ty[\mathbb{N}]$
 $be the subgroup generated by $[Y]$, set $d = |T|$. Then
 $let \mathbb{N}^{n} \rightarrow \mathbb{N}^{n}$ be the covaring space comes ponding $to\Gamma$,
 $recall$ it is a degree d covaring. In particular, with
 $recall$ if n^{s} a degree d covaring. In particular, with
 $fue partibleck metric, by Fibini, and our assumption,$
 $Vel(\mathbb{N}, \tilde{g}) \stackrel{e}{=} d$. $Vel(\mathbb{N}, g) \stackrel{>}{=} d$. $Vel(\mathbb{N}^{n}(\frac{1}{4E}))$.
Since $(\mathbb{P}^{n}, \tilde{g})$ also has $Ric \ge (n-1)K$, \mathfrak{B} Bishap Velone Comparison,
 $Vel(\mathbb{N}, \tilde{g}) \stackrel{e}{=} d$. $Vel(\mathbb{N}, \mathbb{N})$, so $d < 2d$, i.e. $|\Gamma| = d = 1$ so
 $[N]$ is trivial, hence $T_{4}M = \frac{1}{2}$.
Triangle Version
 $Fic and from σ to \mathbb{P}_{1} ,
 \mathcal{P}_{1} (\mathbb{N}, \mathbb{Q}) has $sec \ge K$, $T_{1}\mathbb{P}_{1}\mathbb{P}_{2} \in \mathbb{N}$,
 \mathcal{P}_{2} min. gead from σ to \mathbb{P}_{2} ,
 \mathcal{P}_{2} min. gead from σ to \mathbb{P}_{2} ,
 \mathcal{P}_{1} min. $gead$ from σ to \mathbb{P}_{2} ,
 \mathcal{P}_{2} min. \mathcal{P}_{2} dist($\mathcal{P}_{1}(\mathbb{N})$) \mathcal{P}_{2} dist($\mathcal{P}_{1}(\mathbb{N})$) \mathcal{P}_{2} dist($\mathcal{P}_{2}(\mathbb{N})$) \mathcal{P}_{2} dist($\mathcal{P}_{2}(\mathbb{N})$) \mathcal{P}_{2} dist(\mathcal{P}_{2}).
 \mathcal{P}_{2} min. \mathcal{P}_{2} dist(\mathcal{P}_{2}).
 \mathcal{P}_{3} min. \mathcal{P}_{3} dist(\mathcal{P}_{3}).
 \mathcal{P}_{4} min. \mathcal{P}_{4} dist(\mathcal{P}_{4}).
 \mathcal{P}_{4} dist(\mathcal{P}_{4}).
 \mathcal{P}_{4} min. \mathcal{P}_{4} dist(\mathcal{P}_{4}).
 \mathcal{P}_{4} dist(\mathcal{P}_{4}).$$

$$\begin{array}{c|c} \underbrace{\text{Hinge Uersion}}_{II} & \underset{(1)}{\text{Hinge Version}} & \underset{(2)}{\text{Hinge Version}} & \underset{(2)}{\text{Hin$$

$$\begin{array}{l} \hline Proof at Toponogen Triangle Comparison (Triangle Version): First by locator of the locator of locator of$$

Similarly, on
$$\widetilde{M}$$
 with $3e \equiv K$, we have "Updat" above

$$\frac{d^{2}}{dt^{2}} \left\{ \left(dist(\widetilde{o}, \widetilde{\gamma}(t)) \right) = Hes \left(t^{0} \widetilde{\rho} \circ \widetilde{\gamma} \right) \left(\frac{2}{3t}, \frac{3}{3t} \right) \leq -K \left(t^{0} \widetilde{\rho} \circ \widetilde{\gamma} \right) (t) + C \right)$$
Thus, $\delta^{\parallel} = \frac{d}{dt^{2}} \left(t^{0} \rho \circ \gamma - t^{0}, \widetilde{\rho} \circ \widetilde{\gamma} \right) \leq -K \left(t^{0} \rho \circ \gamma - t^{0}, \widetilde{\rho} \circ \widetilde{\delta} \right) = -K \delta$.
On the other hand, $a^{\parallel} = -K'a$ and $\delta(t_{0}) = a(t_{0}) < 0$ so $\frac{1}{2}$ where $(\delta - a)^{2}(t_{0}) \leq -K \delta(t_{0}) + K' a(t_{0}) = \delta(t_{0}) - (K'-K) < 0$
which contradicts the fact that to is a minimum for $\delta(t) - a(t)$.
Clusse $\partial_{\Xi} = \beta(\varepsilon)$, replace $\rho = did(, 0)$ with $\partial_{\Xi} \varepsilon = \delta(\varepsilon)$. So $t_{0} = \delta(\varepsilon)$. By the triagle $\rho = did(, 0)$ with $\rho = did(0)$ inequality, $\int_{\Sigma} \frac{f(y(t_{0}))}{2}\rho(y(t_{0})) = \rho(y(t_{0})) = \rho(y(t_{0}))$. For any $t_{0} = did(0)$. Since β is unive from σ_{Ξ} to $\gamma(t_{0})$, we have $\gamma(t_{0}) \notin (ut(0\varepsilon))$. Reasoning as before with $f_{0}\rho_{\Sigma}$, and sending $\Sigma \sim 0$, get $(f_{0}\rho_{\Sigma} \circ \gamma)^{\parallel} \leq -K (f_{0}\rho_{\Sigma} \circ \gamma) + C + error$.
Then for ρ_{Σ} is oper support function for for ρ at $\gamma(t_{0})$, and hence $\delta_{\Sigma} = f(\gamma^{\parallel})^{2} \circ \gamma^{\parallel} \circ \gamma^{\parallel}$ is s.t. $\delta_{\Sigma} - a$ is oper support function for δ at to.
Thus, it also attains a minimum of to, contradicting $(\delta_{\Sigma} - a)^{\parallel}(t_{0}) < 0$.

Finally, in order to prove that
$$\alpha_i \ge \alpha_i$$
, we apade give by
contradiction. Suppose $\alpha_0 = \text{angle between } \beta_0'$ and $\gamma'(0)$
 $\alpha_0' = -\frac{\beta_0'}{\beta_0'} - \frac{\beta_0'}{\beta_0'} \text{ and } \gamma'(0)$
satisfy $\alpha_0 < \alpha_0$. Assume $\gamma_0 \notin \text{Cut}(0)$, so $\varepsilon_{\text{KP}0}$ is invertible near γ_0 .
Let β_i be the shortest curve $p_0 \notin \text{Cut}(0)$, so $\varepsilon_{\text{KP}0}$ is invertible near γ_0 .
Let β_i be the shortest curve $p_0 \notin \text{Cut}(0)$, so $\varepsilon_{\text{KP}0}$ is invertible near γ_0 .
Let $\beta_i = \gamma_0(1) \rightarrow M$ for each $t_i' = \rho_0(1)$
 $\beta_0' = \rho_0' = \rho_0'$