LECTURE NOTES FOR MATH 82000 COMPARISON GEOMETRY

Lecture 1 Review of Riemannion Geometry 1/26/2023

Def: A Riemanmian metric g on a smooth manifold M^{n} is a (smoothly verging) inner product on the tangent spaces of M :

$$
\begin{array}{ll}
\forall p \in M, \quad g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R} \\
g_{p}(v, w)=g_{p}(w, v) & \forall v, w \in T_{p} M \\
g_{p}(v, v) \geqslant 0 & \forall v, w \in T_{p} M \\
g_{p}(v, v)=0 \Leftrightarrow & \Leftrightarrow v=0
\end{array}
$$

and if $\underbrace{X_{p}, Y_{p}}$ are smooth vector fields, $p \mapsto g_{p}\left(X_{p}, Y_{p}\right)$ is smooth;

$$
(X, Y \in X(M) \text { sections of } T M \rightarrow M \text {.) }
$$

(bilinear forms)
i.e., g is a section of the bundle $S_{y n}{ }^{2} T M \rightarrow M$ whose image is contained in the open subset
Sym ${ }^{2} T M \subset S_{y m}{ }^{2} T M$ of positive-definite symmetric bilinear forms. We call $\left(M^{n}, z\right)$ a Riemannion manifold.

Prop: Every smooth manifold admits (many) Riemannion metrics.

Pl: Choose an atlas $\left\{x_{\alpha}: U_{\alpha} \rightarrow x_{\alpha}\left(U_{\alpha}\right)\right\}$ and a subordinate partition of unity $\rho_{\alpha}: U_{\alpha} \longrightarrow[0,1]$. On each $x_{\alpha}\left(U_{\alpha}\right)$, use either the Euclidean inner product $g^{(\alpha)}$, or, more gevendly, any inner product $g^{(\alpha)}\left(e_{i}, e_{j}\right)=\delta_{i j}+f_{i j}$, where fij are sufficiently small and $f_{i j}=f_{j i}$. Then set $\binom{f_{i j}: x_{\alpha}\left(U_{\alpha}\right) \rightarrow \mathbb{R}}{i \leq i, j \leq n}$

$$
g(v, w)=\sum_{\alpha} \rho \alpha g^{(\alpha)}\left(d x_{\alpha}(v), d x_{\alpha}(w)\right)
$$

Def: Let $\gamma:[a, b] \rightarrow\left(M^{n}, g\right)$ be a piecewise smooth curve. The length of γ (w.r.t. g) is defined as

$\gamma(a)$ Given points $p, g \in M$, the $\frac{\text { distance }}{}$ (w.r.t. g) between p and q is defined as

$$
\operatorname{dist}_{g}(p, q)=\inf _{f}\left\{L_{g}(\gamma): \begin{array}{l}
\gamma:[a, b] \rightarrow M \\
w / \quad \gamma(a)=p, \quad \gamma(b)=q
\end{array}\right\}
$$

Prop. If $\left(M^{\mu}, g\right)$ is a Riemannion manifold, then $\left(M^{n}\right.$, dist $\left.g\right)$ is a metric space, and the metric topology ogres with the manifold topology.

PI:: Clearly dist is nonnegative and symmetric. For the triangle inequality, if γ_{1} and γ_{2}

are curves with endpoints p, q and q, r, then define $\gamma_{1} * \gamma_{2}$ by concatenating.
Clearly, $\quad \operatorname{Lg}\left(\gamma_{1} * \gamma_{2}\right)=\lg \left(\gamma_{1}\right)+\operatorname{Lg}\left(\gamma_{2}\right)$.
Suppose now γ_{1} and γ_{2} are such that

$$
\begin{aligned}
& \operatorname{Lg}_{g}\left(\gamma_{1}\right)<\operatorname{distg}(p, q)+\varepsilon \\
& \operatorname{Lg}_{g}\left(\gamma_{2}\right)<\operatorname{dist}_{g}\left(q_{1} r\right)+\varepsilon
\end{aligned}
$$

Then

$$
\operatorname{dist} g(p, r) \leq L_{g}\left(\gamma_{1} * \gamma_{2}\right)=L_{g}\left(\gamma_{1}\right)+L_{g}\left(\gamma_{2}\right)<\operatorname{dist}(p, q)+\operatorname{dist}(q, r)+2 \varepsilon
$$

Letting $\varepsilon \rightarrow 0$ gives the triangle inequality.
Suppose $p, q \in M$ hove $\operatorname{dist}_{g}(p, q)=0$ but $p \neq q$. Then choose a chart $x: U \rightarrow x(U) \subset \mathbb{R}^{n}$
 around $p \in M$. There exist $\delta>0$ and $C>0$ s.t. $B_{\delta}(x(p)) \subset x(u)$ and $\begin{aligned} & \text { Euclidean (open) } \\ & \text { ball of robins } \delta>0 .\end{aligned} g(v, v) \geqslant C^{2}\|d x(v)\|^{2}$, for all $v \in T_{r} M, \quad r \in x^{-1}\left(B_{\delta}(x(p))\right)$. Thus, for all such $r, \quad \operatorname{distg}_{g}(p, r) \geqslant C\|x(p)-x(r)\|$.

So $q \notin x^{-1}\left(B_{\delta}(x(p))\right)$ and hence any curve from p to q must cross $x^{-1}\left(\partial B_{\delta}(x(p))\right)$ and thus have length $\geqslant C \cdot \delta$, contradicting $\operatorname{distg}(p, q)=0$.
Similarly, the topologies agree: because dist restricted to small charts is comparable to the Euclidean distance, open (metric) balls

$$
B_{\delta}(p)=\{r \in M: \operatorname{dist}(p, r)<\delta\}
$$

form a base for the (manifold) topology of M.
Natural questions: How does the Riemannion structure of $\left(M^{n}, g\right)$ Capture completeness of the metric space (M, dist z)? When is the inf in $L_{g}(\gamma)$ attained by a curve?
A: Hopt-Rinow Theorem, coming seen.
Levi-Civita connection
Def: A connection (or covariant derivative) on the tangent bundle TM of a smooth manifold M is a mop $\nabla: X(M) \times \forall(M) \rightarrow X(M)$ satisfying

1) $\nabla_{\varphi X+\psi y} z=\varphi \nabla_{x} z+\psi \nabla_{y} z \quad\left(C^{\infty}\right.$-bilinear in $\left.\nabla_{(\cdot)}\right)$
2) $\nabla_{x}(\varphi y+\psi z)=\frac{X(\varphi)}{\lambda} y+\varphi \cdot \nabla_{x} y+X(\psi) z+\psi \cdot \nabla_{x} z$ $X(\varphi)=d \varphi(X) \quad(\mathbb{R}$-bilinear in $\nabla(\cdot)$ \& Leibniz rule)

Theorem (Levi-Cinta). Given a Riemannion manifold ($M^{\prime \prime}, g$), there exists a unique connection on TM such that
(3) $\nabla_{x} Y-\nabla_{y} X=[X, Y] \quad$ (tersion-free)
\& Lie bracket: $[x, y] p=x(y(\varphi))-y(x(t))$
(4) $X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{x} Z\right) \quad\binom{$ compatible with $g}{$ or $\nabla_{g}=0}$

Prof: First, using partitions of unity, show that there exist connections on TM for any smooth manifold M.
Suppose ∇ is a connection on TM satisfying (3), (4).
Then

$$
\begin{aligned}
& x g(y, z)=g\left(\nabla_{x} y, z\right)+g\left(y, \nabla_{x} z\right) \\
& y g(z, x)=g\left(\nabla_{y} z, x\right)+g\left(z, \nabla_{y} x\right) \\
& z g(x, y)=g\left(\nabla_{z} x, y\right)+g\left(x, \nabla_{z} y\right)
\end{aligned}
$$

So

$$
\begin{aligned}
X g(Y, Z)+Y g(Z, X)-Z g(X, Y) & =g([X, Z], Y)+g([Y, Z], X) \\
& +g([X, Y], Z)+2 g(\nabla, X, Z)
\end{aligned}
$$

Thus

$$
\begin{array}{r}
g\left(\nabla_{y} X, Z\right)=\frac{1}{2}\left(X g(y, z)+Y g(Z, X)-Z g(X, y) \quad \text { "Koszull}{ }^{\text {Formula" }}\right. \\
-g([x, z], y)-g([y, z], X)-g([x, y], z)) .
\end{array}
$$

The above uniquely defines ∇.
Christoffel symbols them, but good to know using

them, but good to know ${ }^{M}$
what they ore...
On a chart $x: U \mathbb{R}^{n}$ we have coordinate functions

$$
x=\left(x_{1}, \ldots, x_{n}\right) ; U \rightarrow x(U) \subset \mathbb{R}^{n}
$$

and coordinate vector fields $E_{i}=\frac{\partial}{\partial x_{i}}$ Recall:

$$
\nabla_{E_{i}} E_{j}=\sum_{k} \Gamma_{i j}^{k} E_{k} \quad \begin{aligned}
& \Gamma_{i j}^{k}: U \rightarrow \mathbb{R} \text { are called } \\
& \text { Christoffel symbols of } \nabla .
\end{aligned}
$$

Setting $Y=E_{i}$ and $X=E_{j}$ in Voszul formula and solving for each $Z=E_{k}$, we find:

$$
\Gamma_{i j}^{m}=\frac{1}{2} \sum_{k}\left(\frac{\partial}{\partial x_{i}} g_{j k}+\frac{\partial}{\partial x_{j}} g_{k i}-\frac{\partial}{\partial x_{k}} g_{i j}\right) g^{k m}
$$

where $g_{i j}=g\left(E_{i,}, E_{j}\right)$, and
$\left(g^{k m}\right)$ is the inverse matrix to $(g i i)$.
Note: $\left[E_{i}, E_{j}\right]=0, \forall i, j$ so last 3 terms vanish.

Clearly, ∇ determines $\Gamma_{i j}^{k}$ and also vice-verse:
$X=\sum_{i} a_{i} E_{i}, Y=\sum_{j} b_{j} E_{j}$ on a chart $U_{\partial p}$

Note: The above depends on values of X only at p,
but of Y on a neighborhood ff p. TM
Vector fields along a curve

$$
\begin{aligned}
& \gamma:[a, b] \rightarrow M \\
& V:[a, b] \rightarrow T M
\end{aligned}
$$

such that
$V_{\gamma(t)} \in T_{\gamma(t)} M, \forall t \in[a, b]$; i.e., V is a section of $\gamma^{*} T M$.
$V^{\prime}:=\nabla_{\gamma}, V$ is defined locally extending V. $\begin{gathered}\text { No ned } \\ \text { tox ted } \\ \gamma, b x<d\end{gathered}$
often we formally, ∇ induces a Often we
write $\frac{D V}{d t}$ egg., in coordinates: formally, ∇ indues a
connection on $\gamma^{T} T M$.

$$
\begin{aligned}
V & =\sum_{j} V_{j}(t) E_{j}, \dot{\gamma}(t)=\sum \dot{\gamma}_{i}(t) E_{i} \\
V^{\prime} & :=\sum_{j} \frac{d V_{j}}{d t} E_{j}+\sum_{i, j, k} \dot{\gamma}_{i}(t) V_{j}(t) \Gamma_{i j}^{k}(\gamma(t)) E_{k}
\end{aligned}
$$

Def: The vector field V along $\gamma(t)$ is parallel if $V^{\prime}(t)=0$.
Def: A geodesic is a curve $\gamma(t)$ such that $\dot{\gamma}(t)$ is praallel; equivalently, if $\dot{\gamma}=\sum_{i} \gamma_{i}(t) E_{i}$,

$$
\begin{aligned}
& \frac{D \dot{\gamma}}{d t}=\sum_{i} \gamma_{i}^{\prime \prime}(t) E_{i}+\sum_{j, k} \gamma_{i}^{\prime}(t) \gamma_{j}^{\prime}(t) \Gamma_{i j}^{k}(\gamma(t)) E_{k}=0 . \\
& \text { i.e., } \forall i, \quad \gamma_{i}^{\prime \prime}+\sum_{j, k} \gamma_{j}^{\prime} \gamma_{k}^{\prime} \Gamma_{j k}^{i}=0 . \begin{array}{l}
\text { "Geodesic ODE } \\
\\
\binom{\text { System of } n \text { coupled }}{2^{\text {nd }} \text { order nonlinear ODE }}
\end{array}
\end{aligned}
$$

Immediate consequence of basic ODE theory:
Thu. Un a Riemannian manifold $\left(M^{n}, g\right)$, given $p \in M$ and $v \in T_{p} M$, there exists a unique maximal geodetic $\gamma_{:}\left(T_{-}, T_{+}\right) \rightarrow M$ with $\gamma(0)=p$ and $\dot{\gamma}(0)=v$. Moreover, such γ depends smoothly on its initial conditions $(p, v) \in T M$.

Prop: If $\gamma: I \rightarrow M$ is a geodetic, then $\|\dot{\gamma}\|=$ cont.
Pf: $\frac{d}{d t}\|\dot{\gamma}(t)\|^{2}=\frac{d}{d t}\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle=2\langle\underbrace{\nabla_{\dot{\gamma}}}_{=0} \dot{\gamma}, \dot{\gamma}\rangle=0$.
Examples of geodesics:
\mathbb{R}^{n} straight limes

$$
\gamma_{v}(t)=p+t v
$$

Lecture 2 Exponential mop, completeness, etc. 2/2/2023
Let (M, g) be a Riem. mfled; for every $v \in T_{p} M$, let $\gamma_{v}:\left(T_{-}, T_{+}\right) \rightarrow M$ be the unique max. geodesic on M with $\gamma_{v}(0)=p$ and $\bar{\gamma}_{v}(0)=v$.
Note: By uniqueness, for $|t|,|s|$ small,

$$
\gamma_{s v}(t)=\gamma_{v}(s t)
$$

Def: The (Riem.) exponential mop at $p \in M$ is

$$
\begin{aligned}
\exp _{p}: \bigoplus_{p} & \subset T_{p} M \\
v & \longmapsto \gamma_{v}(1)
\end{aligned}
$$

where \emptyset_{p} is the open neighborhood of $0 \in T_{p} M$ s.t. $\gamma_{v}(t)$ is defined up to $t=1$ whenever $v \in \Theta_{p}$.
Prop: $d\left(\exp _{p}\right)_{0} V=V$ for all $V \in T_{p} M=T_{0}\left(T_{p} M\right)$, or, in short, $d(\exp)_{0}=i d$.
By the (In particular, there are open subsets $U \subset T_{p} M$ Inverse
Function
Theorem. Theorem. $\left.\exp \right|_{0}: 0 \rightarrow U$ is a diffeomorphism.

$$
S_{0}\left(\left.\exp _{p}\right|_{0}\right)^{-1}: U \rightarrow \mathbb{R}^{n}
$$

defines a local chart,
call these "geodesic normal coordinates"

$$
\mathbb{R}^{n}=T_{p} M
$$

$$
\begin{aligned}
& \text { Chain rule: } \\
& d f_{p} v=\frac{d}{d t} f\left(\left.\gamma_{v}(t)\right|_{t=0} \quad=\left.\frac{d}{d t} \gamma_{v}(t)\right|_{t=0}=\dot{\gamma}_{v}(0)=v .\right.
\end{aligned}
$$

Gauss Lemma: $\exp _{p}$ is a radial isometry; more precisely

$$
\left\langle d\left(\exp _{p}\right)_{v} v, d(\exp)_{v} w\right\rangle=\langle v, w\rangle, \quad \forall v, w \in T_{p} M=T_{v} T_{p} M
$$

Pf:

Thus

$$
\begin{aligned}
& P_{p}^{\gamma_{r}^{(1)}}: T_{p} M \rightarrow T_{\gamma_{11}} M \\
& \left.\left\langle d\left(\text { exp }_{p}\right)_{v} v, \operatorname{d(erpp}\right)_{v} w\right\rangle=\left\langle d(\text { emp })_{v} v, d(\text { emp })_{v}(\alpha v)\right\rangle \\
& +\left\langle d(\text { exp })_{v} v, d\left(\text { xp }^{\prime}\right)_{v} w_{\perp}\right\rangle \\
& =\alpha\left\langle P_{p}^{\gamma_{v}(1)} v_{1} P_{p}^{\gamma_{j}(1)} v\right\rangle \\
& +\left\langle d\left(\left(x_{p p}\right)_{v} v, d\left(\operatorname{expp}_{p}\right)_{v} w_{\perp}\right\rangle\right. \\
& =\left\langle v,{\underset{w}{w_{T}}}_{\alpha v}^{\alpha}+\left\langle d\left(\operatorname{expp}_{v} v_{v} d\left(\operatorname{expp}_{p}\right)_{v} w_{\perp}\right\rangle\right.\right. \\
& =\langle v, w\rangle+\left\langle d\left((\exp)_{v} v, d\left(\operatorname{expp}_{p}\right)_{v} w_{\perp}\right\rangle\right.
\end{aligned}
$$

Write $w=w_{T}+w_{1}$, where $\left\{\begin{array}{l}w_{T}=\alpha V . \\ \left\langle w_{1}, v\right\rangle=0\end{array}\right.$ Clearly,

$$
\begin{aligned}
d(\exp)_{v} v & =\left.\frac{d}{d t}(\exp p)((t+1) v)\right|_{t=0} \\
& =\left.\frac{d}{d t}(\exp)(t v)\right|_{t=1} \\
& =\left.\frac{d}{d t} \gamma_{v}(t)\right|_{t=1}=\dot{\gamma}_{v}(1)=\underbrace{P_{r}^{\gamma(1)}(v) .}
\end{aligned}
$$

parallel tremospant of $V \in T M$ along γ_{v} to $\gamma_{v}(1)$.

So we must show $\left\langle d(e x p p)_{v} v, d(\text { exp })_{v} w_{\perp}\right\rangle=0$.
Let $v(s)=(\cos s) v+(\sin s) w_{\perp}$ so $\left\{\begin{array}{l}v(0)=v \\ v^{\prime}(0)=w_{\perp} \\ \|v(s)\|=\text { oust. }\end{array}\right.$ and $\quad f(t, s)=\exp _{p}(t v(s))=\gamma_{v(s)}(t)$

$$
\left.\begin{array}{l}
d\left(\operatorname{expp}_{p}\right)_{v} v=\frac{\partial}{\partial t} \exp _{p}\left(\left.t v(s)\right|_{\substack{t=1 \\
s=0}}=\frac{\partial f}{\partial t}(1,0)\right. \\
d\left(\exp _{p}\right)_{v} w_{\perp}=\left.\frac{\partial}{\partial s} \exp _{p}\left(t_{v}(s)\right)\right|_{\substack{t=1 \\
s=0}}=\frac{\partial f}{\partial s}(1,0)
\end{array}\right\} \Rightarrow\left\langle\operatorname{d(\operatorname {exp})_{v}v,d(\operatorname {expp})_{v}ww_{\perp }\rangle } \begin{array}{r}
=\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(1,0) .
\end{array}\right.
$$

Compute:

$$
\begin{aligned}
& \text { compatibility } \\
& \text { of } \nabla
\end{aligned}
$$

Therefore $t \mapsto\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(t, 0)$ is constant, and, computing at $t=0$:

$$
\begin{aligned}
& \frac{\partial f}{\partial s}(t, 0)=\left.\frac{\partial}{\partial s}\left(\exp _{p}\right)(t v(s))\right|_{s=0}=d\left(\operatorname{expp}_{p}\right)(\underset{v}{t v(0)})\left(\underset{w_{\perp}(0)}{t v_{1}}\right)=d\left(\operatorname{expp}_{t v} t w_{\perp}\right. \\
& \lim _{t \rightarrow 0} \frac{\partial f}{\partial s}(t, 0)=\lim _{t \rightarrow 0} d\left(\exp _{p}\right)_{t v} t w_{\perp}=0 ; \text { so }\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}\right\rangle(1,0)=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { are geodesics. and } \\
& \begin{array}{l}
=\frac{1}{2} \frac{\partial}{\partial s}\left\langle\frac{\partial f}{\partial t}, \frac{\partial f}{\partial t}\right\rangle \stackrel{\text { are geoderis. }}{=}\left\|\dot{\gamma}_{v(s)}(t)\right\|=\left\|\dot{\gamma}_{v(s)}(0)\right\|=\|v(s)\| \\
=0
\end{array} \\
& \text { = consist. }
\end{aligned}
$$

Example: $\mathbb{S}^{n}(1)$ unit round sphere, $\exp p: T_{p} \mathbb{S}^{n} \longrightarrow \mathbb{S}^{n}$

$$
\exp _{p}\left(B_{r}(0)\right)=B_{r}(p), \forall r \in(0, \pi)
$$

injectivicty radius of
$S^{n}(i)$

$$
\text { - }\left.\exp _{p}\right|_{B_{\pi}(0)}: B_{\pi}(0) \rightarrow S^{n} \backslash\{-p\}
$$

is a diffeomorphism

- Geodetic spheres / distance spheres have area distortion
$\partial B_{t}(p)$ is a sphere of radius $\sin t$. $\partial B_{t}(0)$ is a sphere of radius t.

Rok: In general, lagpeot $r>0$ s.t. $\left.\quad \exp _{p}\right|_{B_{r}(0)}: \operatorname{Br}_{r}(0) \rightarrow M$ is a diffeom. onto its image is called injectivity radius at p; denoted ing (M). Injectivity radius of (M, g) is $\operatorname{inj}(M)=\inf _{p} \operatorname{inj}_{p}(M)$. If $s<\operatorname{inj}_{j p}(M)$, then $B_{r}(p)=\exp _{p}\left(B_{r}(0)\right)$; and for all $v \in B_{s}(0) \subset T_{p} M$, the geodesic $[0,1] \ni t \not r \exp _{p}(t v) \in B_{r}(p)$ is the unique minimizing geoderic from p to $q=\exp _{p} v$. P1. follows from Gauss Lemme
ie. $L_{g}(\gamma)=\operatorname{distg}(p, q)$.
Mare gevereely, $\operatorname{Cut}(p) \subset M$ is the image via $\exp p$ of the set of $v \in T_{p} M$ s.t. $\exp _{p}(t v)$ is minimizing for $t \in[0,1]$ but not for $t=1+\varepsilon$, for any $\varepsilon>0$.
So $\operatorname{inj}_{p}(\mu)=\operatorname{dist}_{g}(p, \operatorname{Cut}(p)): \operatorname{dist}(p, C)=$ inf $\{\operatorname{as}$ dist $(p, x): x \in C\}$

Also using Gauss Lemma, among other things, one proves:
Tum (Hort-Rinow' 1931). Let (M,g) be a connected Rem. wild. TFAE:
(i) $\exists p_{0} \in M$ s.l. $\exp _{p_{0}}$ is defined on all of $T_{p_{0}} M$
(ii) $\forall p \in M$, $\exp _{p}$ is defined on all of $T_{p} M\left\{\begin{array}{l}M \text { is "geoderically complete"," } \\ \text { ie. all geodesics }\end{array}\right.$ ie. all geoderesis con
be extended be extended fo $(-\infty,+\infty)$
(iii) $K \subset M$ closed and bounded $\Rightarrow K$ compact ("Heine-Boal property")
(iv) (M, dist z) is a complete metric space (is. Cauchy seq. converse.) If any, hence all, of the above holds, then given any $p, q \in M$, $]$ there exists a minimizing geodesic γ from p to q, ie., $L g(\gamma)=\operatorname{dist}(p, q)$.

Variations of geodesics \& Jacobi fields
Qi why isn't this also equivalent to (i)-(ii)! A: Eg., $M=B_{r}(0) \subset \mathbb{R}^{n}$
Consider a variation of geodesics

$$
\left(-\varepsilon_{1} \varepsilon\right)_{\times}\left(T_{-}, T_{+}\right) \ni(s, t) \mapsto \gamma(s, t)=\gamma_{s}(t) \in M
$$

$t \longmapsto \gamma_{s}(t)$ is a geoderic, $\forall s \in(-\varepsilon, \varepsilon)$.
Def: The variational field $J(t)=\left.\frac{d}{d s} \gamma_{s}(t)\right|_{s=0}$ along $\gamma_{0}(t)$ is called a Jacobi field.
Prop: A vector field J along a geodesic γ is a Jacobi field $2^{\text {nd }}$ ord if and only if it satisfies the Jacobi equation $\begin{gathered}\text { order } \\ \text { liner } \\ \text { oDE } \\ \prime \prime \\ J^{\prime \prime}\end{gathered} R(J, \dot{\gamma}) \dot{\gamma}=0$, where R is the curvature tensor. "his soon! $\operatorname{lin} D J^{\prime \prime}+R(J, \dot{\gamma}) \dot{\gamma}=0$, where R is the curvature tensor:

$$
R(x, y) Z=\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{[x, y]} Z
$$

Pf: (\Rightarrow) If $J(t)=\left.\frac{d}{d s} \gamma_{s}(t)\right|_{s=0}$ where $\gamma_{s}(t)$ is a variation by geodesics, then

$$
\begin{aligned}
J^{\prime \prime}(t)=\frac{D^{2} J}{d t^{2}} & =\frac{D}{d t} \frac{D}{d t} \frac{d}{d s} \gamma_{s}(t)=\frac{D}{d t} \frac{D}{d s} \underbrace{\frac{d}{d t} \gamma_{s}(t)}_{\dot{\gamma}_{s}(t)} \\
& =\frac{D}{d s} \underbrace{\frac{D}{d t} \dot{\gamma}_{s}(t)}_{=0 \text { bl } \gamma_{s}(t) \text { is geod. }}+R\left(\dot{\gamma}_{1} J\right) \dot{\gamma}
\end{aligned}
$$

so $J^{\prime \prime}+R(J, \dot{\gamma}) \dot{\gamma}=0$ b/c $R(x, y) z=-R(y, x) z$.
\Leftrightarrow If J satisfies $J^{\prime \prime}+R(J, \dot{\gamma}) \dot{\gamma}=0$, then let $\alpha(s)=\exp _{\gamma(0)} s J(0)$ and let $X(s)$ be a vector field
$X(s) \quad J(s) \quad \alpha(0)$ along $\alpha(s)$ with $X(0)=\dot{\gamma}(0), X^{\prime}(0)=J(0)$. Set $\gamma_{s}(t)=\exp _{\alpha(s)}+X(s)$.
$\gamma(0) \quad \gamma(t)$ Since t
$t \mapsto \gamma_{s}(t)$ are geodesics, $b_{]} \Leftrightarrow$, the vector field $\tilde{J}(t)=\left.\frac{d}{d s} \gamma_{s}(t)\right|_{s o 0}$ sotisfees $\tilde{J}^{\prime \prime}+R(\tilde{J}, \dot{\gamma}) \dot{\gamma}=0$.
$M_{\text {greener, }} \tilde{J}(0)=\left.\frac{d}{d s} \gamma_{s}(0)\right|_{s=0}=\alpha^{\prime}(0)=J(0)$ and

$$
\begin{array}{r}
\tilde{J}^{\prime}(0)=\left.\frac{D}{d t} \frac{d}{d s} \gamma_{s}(t)\right|_{\substack{s=0 \\
t=0}}=\left.\frac{D}{d s} \frac{d}{d t} \gamma_{s}(t)\right|_{\substack{s=0 \\
t=0}}=\left.\frac{D}{d s} X(s)\right|_{s=0} \\
\\
=X^{\prime}(0)=J(0) .
\end{array}
$$

So $\bar{J}(t)=\tilde{J}(t)=\left.\frac{d}{d s} \gamma_{s}(t)\right|_{s=0}$ for all t by uniqueness of sol to ODE $u /$ same initial conditions; hence J is the variational field of the family of geodesics $\gamma_{s}(t)$.
Rms: The Jacobi field along $\gamma_{v}(t)$ with $J(0)=0$ and $J^{\prime}(0)=w$ is given by $J(t)=d\left(\exp _{p}\right)_{t v} t w$, of. end of Pf. of Gauss Lemma. Next class: Comparison geometry via Jacobi fields (Ranch) Before that, let's explore further the curvature tensor

Prop: $R: X(M) \times X(M) \times X(M) \rightarrow X(M)$ is a tensor, ie., $(R(X, Y) Z)_{p}$ only depends on X_{p}, Y_{p}, Z_{p}; and we may thus consider R as a section of $T M^{*} \otimes T M^{*} \otimes T M^{*} \otimes T M$.
If: Follows from the claims:

$$
\begin{aligned}
& (X, y) \mapsto R(X, y) Z \text { is } C^{\infty}(M) \text {-bilinear (and skew-symmetic) } \\
& Z \longmapsto R(X, y) Z \text { is } C^{\infty}(M) \text {-linear. }
\end{aligned}
$$

In (dreaded) coordinder

$$
\left.\begin{aligned}
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{2}{\partial x_{k}} & =\nabla_{\partial_{i}} \nabla_{\partial_{j}} \partial_{k}-\nabla_{\partial_{j}} \nabla_{\partial_{i}} \partial_{k} \quad\left[\partial_{i,} \partial_{j}\right]=0 \\
& =\nabla_{\partial_{i}\left(\sum_{l} \Gamma_{j k}^{l} \partial_{l}\right)-\nabla_{j}\left(\sum_{l} \Gamma_{i k}^{l} \partial_{l}\right)} \\
& \left.=\sum_{l} \frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}} \partial_{l}+i \sum_{i p} \Gamma_{j k}^{l} \Gamma_{i l}^{l} \partial_{p} \quad \right\rvert\, \\
& -\sum_{l \leftrightarrow p} \frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}} \partial_{l}-\sum_{l} \sum_{p} \Gamma_{i k}^{l} \Gamma_{j l}^{l} \partial_{p}
\end{aligned} \right\rvert\,
$$

So that $R(X, y) Z=\sum R_{i j k}{ }_{l}^{l} a_{i} b_{j} c_{k} \partial_{l}$

$$
\text { if } x=\sum a_{i} \frac{\partial}{\partial x_{i}}, \quad y=\sum b_{j} \frac{\partial}{\partial x_{j}}, z=\sum c_{k} \frac{\partial}{\partial x_{k}} \text {. }
$$

Lecture 3.
Recall: Curvature tensor $R: X(M) \times \mathscr{X}(M) \times X(M) \rightarrow X(m)$.
"Lowering indices", we get a $(4,0)$-tensor

$$
\begin{aligned}
& R: \mathcal{X}(M) \times \mathcal{H}(M) \times \mathcal{H}(M) \times \forall(M) \longrightarrow C^{\infty}(M) \\
& R(x, y, z, W)=\langle R(x, y) Z, W)=\left\langle\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{\left[x,, T^{\prime}\right.}, W\right\rangle
\end{aligned}
$$

le. $R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial x_{l}}\right)=R_{i j k l}=\sum_{p} R_{i j k}{ }^{p} g_{p l}$
which has the following symmetries:

$$
\begin{array}{rlrl}
R(X, Y, Z, W) & R(X, Y, Z, W) & =R(Z, W, X, Y) \\
& =R(X, Y, Z, W) & =-R(Y, X, Z, W) \\
& =R(Y, X, W, Z)
\end{array}
$$

1 ${ }^{\text {st }}$ Biachi identity: $R(x, y) z+R(y, z) x+R(z, x) y=0$
Def (Curvature operator):
By the dove, we can also consider R as a symmetric bilinear map $R: \Lambda^{2} T M \rightarrow \Lambda^{2} T M: \Lambda^{2} V=V$

$$
\begin{aligned}
& (X \cap Y) \longmapsto R(X \wedge Y) \quad A V=V \otimes V / \sim \\
& (X \wedge Y) \longmapsto R(X \wedge Y) \quad \text { vow } \sim-w \otimes V \\
& v \wedge \omega:=[v \otimes \omega] \\
& \left\langle R\left(\frac{X \wedge Y}{\text { Slew }}, \frac{Z \wedge W}{\text { kw }}\right)=-\langle R(X, Y) Z, W\rangle=\langle R(X, Y) W, Z)\right.
\end{aligned}
$$

Recall: $\langle X \wedge Y, Z \wedge W\rangle=\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, Z\rangle$

$$
=\operatorname{det}\left(\begin{array}{ll}
\langle x, z\rangle & \langle y, z\rangle \\
\langle x, w\rangle & \langle y, w\rangle
\end{array}\right)
$$

In particular, $\|x \wedge Y\|^{2}=\|x\|^{2}\|y\|^{2}-\langle X, Y\rangle^{2}$
Def(Sectonel curvature):

$$
\sec (X, Y)=\frac{\langle R(X, Y) Y, X\rangle}{\|X\|^{2}\|Y\|^{2}-\langle X, Y\rangle^{2}}=\frac{\langle R(X \wedge Y), X \wedge Y\rangle}{\|X \wedge Y\|^{2}}=\sec (\sigma)
$$

Pop: $\operatorname{Sec}(X, Y)$ only depends on $\sigma=\operatorname{span}\{X, Y\} \subset T_{p} M$.

Pit Any other basis is obtained by performing finitely many of the following operations:
a) $\{x, y\} \rightarrow\{y, x\}$
b) $\{x, y\} \rightarrow\{\lambda x, y\} \quad \lambda \in \mathbb{R}$
c) $\{x, y\} \longrightarrow\{x+\lambda y, y\} \quad \lambda \in \mathbb{R}$.

All the above clearly preserve $\sec (X, Y)$; e.g.. (C):

$$
\begin{aligned}
&\langle R(X+\lambda Y, Y) Y, X+\lambda Y\rangle=\langle R(X, Y) Y, X\rangle \text { b/e } \\
& \quad R(Y, Y)=0 \\
&\langle R(, \cdot) Y, Y\rangle=0 . \\
&\|X+\lambda y\|^{2}\|Y\|^{2}-\langle X+\lambda Y, Y\rangle^{2}=\left(\|X\|^{2}+2 \lambda\langle X, Y)+\lambda^{2}\|Y\|^{2}\right)\|Y\|^{2}-\left(\langle X, Y\rangle+\lambda\|y\|^{2}\right)^{2} \\
&=\|x\|^{2}\|Y\|^{2}-\langle X, Y\rangle^{2} . \\
&(\text { or, more elegantly, note: }\|(X+\lambda Y) \wedge Y\|^{2}=\|X \wedge Y+\lambda \underbrace{Y \wedge Y}_{=0}\|^{2}=\|X \wedge Y\|^{2} .)
\end{aligned}
$$

Rok: Given $\sigma \subset T_{p} M$, let $\Sigma=\exp _{p}(\sigma)$. Then $\sec (\sigma)=K_{\Sigma}$.

Prop: R_{p} is determined by $\mathrm{sec}: G r_{2} T_{p} M \rightarrow \mathbb{R}$.
Pf: "Polorization, using the symmetries of curvature tenor.
Suppose R^{\prime} is st. $\frac{\left\langle R^{\prime}(X, Y) Y, X\right\rangle}{\|X \wedge Y\|^{2}}=\frac{\langle R(X, Y) Y, X\rangle}{\|X \wedge Y\|^{2}}=\sec (X \wedge Y)$
for all X, Y; want to show $R^{\prime}=R$.
By hypothexs, $\left\langle R^{\prime}(\underline{x+z}, \underline{y}) \underline{y}, \underline{X+Z}\right\rangle=\langle R(\underline{x+z}, \underline{y}) \underline{y}, \underline{x+z}\rangle$

So

$$
\begin{aligned}
& \left\langle R^{\prime}(X, Y) Y, X\right\rangle+2\left\langle R^{\prime}(X, Y) Y, Z\right\rangle+\left\langle R^{\prime}(z, y) Y, Z\right\rangle \\
& =\langle R(X, Y) Y, X\rangle+2\langle R(X, Y) Y, z\rangle+\langle R(z, y) Y, Z\rangle
\end{aligned}
$$

So $\left\langle R^{\prime}(\underline{x}, \underline{y}) \underline{y}, \underline{z}\right\rangle=\langle R(\underline{x}, y) y, \underline{z}\rangle . \quad \forall x, y, z$
Thus, $\quad\left\langle R^{\prime}(x, y+w)(y+w), z\right\rangle=\langle R(x, y+w)(y+w), z\rangle$

$$
\begin{aligned}
& \text { so }\left\langle R^{\prime}(X, y) y, z\right\rangle+\left\langle R^{\prime}(X, Y) w, z\right\rangle+\left\langle R^{\prime}(X, w) y, z\right\rangle+\left\langle R^{\prime}(X, w), w, z\right\rangle= \\
& =\langle R(x, y) y, Z\rangle+\langle R(x, y) \omega, Z\rangle+\langle R(x, \omega) y, z\rangle+\langle R(x, w) \omega, Z\rangle \\
& \text { so }\left\langle R^{\prime}(X, Y) \omega, Z\right\rangle+\left\langle R^{\prime}(X, \omega) y, Z\right\rangle=\langle R(X, Y) \omega, Z\rangle+\langle R(X, \omega) y, Z\rangle \\
& \text { ide. }\left\langle R^{\prime}(\underline{x}, \underline{y}) \underline{w}, z\right\rangle-\langle R(\underline{x}, \underline{y}) \underline{w}, z\rangle=\langle R(x, w) y, z\rangle-\left\langle R^{\prime}(x, w) y, z\right\rangle \\
& =\left\langle R^{\prime}(\underline{W}, \underline{X}) \underline{Y}, z\right\rangle-\langle R(\underline{W}, \underline{X}) y, z\rangle \\
& \forall x, y, z, w
\end{aligned}
$$

Therefore $R^{\prime}(X, Y) W-R(X, Y) W$ is inveriout under cyclic perm. of (x, y, w) and hence, by the $1^{\text {st }}$ Biachin identity,

$$
3\left(R^{\prime}(x, y) W-R(x, y) W\right)=0, \quad \forall x, y, w
$$

so $R=R^{\prime}$.
Cor. If $R: \Lambda^{2} T M \rightarrow \Lambda^{2} T M$ is st. $\sec (\sigma)=K$ for all σ, then $R=k$. Id, ie.

$$
\begin{aligned}
\langle R(x, y) z, w\rangle & =-\langle R(x \wedge y), z \wedge w\rangle=-k\langle x \wedge y, z \wedge w\rangle \\
& =-k(\langle x, z\rangle\langle y, w\rangle-\langle x, w\rangle\langle y, z\rangle)
\end{aligned}
$$

PP: Check that RHS hos sec $\equiv K$, then use uniqueness.
Examples of (complete) Riem. mflds $\omega /$ sec $\equiv K$:

	simply-connected	their quotients:
- $K>0:$	$\mathbb{S}^{n}(1 / \sqrt{k})$	\mathbb{R}^{n}, Lens space...
- $K=0:$	\mathbb{R}^{n}	T^{n}, Klein bottle...
- $K<0:$	$\mathbb{H}^{n}(1 / \sqrt{-k})$	Hyperbolic surface...

"Ball models" "Warped product models":

$$
r S(r)=\{x \in M: \operatorname{dist}(p x)=r\}
$$

Geometrically, in forms of distance spheres:
metric on
n-dim meld $\rightarrow g=d r^{2}+S n_{k}(r)^{2} d \theta^{2}$ metric of $S^{n-1}(1)$ unit round sphere of constant curvature $\sec \equiv k \quad\{\sin (\sqrt{k} r)$
is the solution to
the $00 E\left\{\begin{array}{l}s n_{k}^{\prime \prime}+k s n_{k}=0 \text {. } \\ s n_{k}(0)=0\end{array}\right.$

$$
\sin _{k}^{\prime}(0)=1
$$

(see course webpage!)
"Quadric models":

- $\mathbb{S}^{n}(1 / \sqrt{k})=\left\{x \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n}^{2}+x_{n+1}^{2}=\frac{1}{k}\right\}(k>0)$ $w /$ metric induced from Euclidean metric $d x_{1}^{2}+\cdots+d x_{n+1}^{2}$
- $H^{n}(1 / \sqrt{-k})=\left\{x \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=\frac{1}{k}\right\} \quad(k<0)$
w/ metric induced from Lorenzian metric $d x_{1}^{2}+\cdots+d x_{n}^{2}-d x_{n}^{2}$
"hyperboloid model"

Upper half - space moduli: ($K \equiv-1)$
$\mathbb{H}^{n}(1)=\left\{(x, t) \in \mathbb{R}_{x}^{n}(0,+\infty)\right\}$ with metric induced from $\frac{d x_{1}^{2}+\cdots+d x_{n}^{2}+d t^{2}}{t^{2}}$
Cartan: Curvature is the only local invariant of a Riem. mfled.

$\varphi=\exp _{p} \circ I \circ \exp _{p}^{-1}$ is a diffeom. (on geod. normal cooed.)
Let $\bar{\gamma}=\varphi \circ \gamma, I_{\gamma(t)}: T_{\gamma(t)} M \rightarrow T_{\bar{\gamma}(t)} \bar{M} \quad\left(\begin{array}{l}\left.\text { Note: } I_{\gamma(t)} \text { ore }\right) \\ I_{\gamma(t)}:=P \bar{\gamma}^{\prime}(t) \circ I_{0}, P_{\gamma(t)}^{P}\end{array}\right.$ parallel trouspart $\lambda \bar{P}, \gamma(t)$

Preserving curvature is the "Integrability condition" to become a local isometry:
Tum (Corban). If for all geodesics $\gamma(t)$ starting at $p \in M$,

$$
I_{\gamma(t)}(R(X, Y) Z)=\bar{R}\left(I_{\gamma(t)} X, I_{\gamma(t)} Y\right) I_{\gamma(t)} Z \quad \forall|t| \text { small }
$$

then φ is a local isometry, and $d \varphi_{\gamma(t)}=I_{\gamma(t)}$
Pf. Given q near p, and $X \in T_{q} M$, let $\gamma:[0, L] \rightarrow M$ be minimizing geodesic $\omega / \gamma(0)=p, \quad \gamma(L)=q$ and let $J:[0, L] \rightarrow T M$ be the Jacobi field along γ with $\frac{J(0)=0 \text { and } J(L)=X \text {. }}{T_{\text {see Lemma } 2 \text { later }}}$

Let $\bar{J}(t)=I_{\gamma(t)}(J(t))$. By hypothesis, $\bar{J}(t)$ is a Jacobi field along $\bar{\gamma}$:
$\bar{J}^{\prime \prime}=I\left(J^{\prime \prime}\right)$ bl defined

$$
\bar{J}^{\prime \prime}(t)+\bar{R}\left(\bar{J}(t), \bar{\gamma}^{\prime}(t)\right) \bar{\gamma}^{\prime}(t)=I_{\gamma^{\prime \prime}}\left(J^{\prime \prime}(t)+R\left(J(t), \gamma^{\prime}(t)\right) \gamma^{\prime \prime}(t)\right)=0 .
$$

Clearly, $\|J(t)\|=\left\|\bar{J}^{\prime}(t)\right\|$ bl $I_{\gamma(t)}$ ere linear isometries.
$\begin{aligned} & \text { Moreover, } \\ & \text { see } \\ & \text { Lemuna 1 } \\ & \text { later }\end{aligned}>\left\{\begin{array}{l}\bar{J}(t)=d\left(\operatorname{expp}_{p}\right)_{t \gamma^{\prime}(0)} t \bar{J}^{\prime}(0) \\ \bar{J}(t)=d\left(\operatorname{expp}_{\bar{p}}\right)_{t \bar{\gamma}^{\prime}(0)} t \bar{J}^{\prime}(0)\end{array}\right.$

$$
\begin{aligned}
& \text { so } \quad \bar{J}(t)=d\left(\exp _{\bar{p}}\right)_{t \bar{\gamma}^{\prime}(0)} t \bar{J}^{\prime}(0) \\
& t J^{\prime}(0)=\stackrel{\stackrel{e x p l}{p}^{c}}{t \gamma^{-1}(0)} J(t) \\
& \text { Inverefet } \\
& \stackrel{T h m}{=} d\left(\exp _{p}^{-1}\right) \\
& e^{-1} \exp _{p}\left(t \gamma^{\prime}(0)\right] \\
& =d\left(\exp _{\bar{p}}\right)_{t \bar{\gamma}^{\prime}(0)} t I\left(J^{\prime}(0)\right) \\
& \underbrace{\exp _{p}\left(t \gamma^{\prime}(0)\right)}_{\gamma(t)} \\
& =d\left(\exp _{\bar{p}}\right)_{t I \gamma^{\prime}(0)} \circ I \circ d\left(\exp _{p}^{-1}\right)_{\gamma(t)} J(t) \\
& =d(\underbrace{\left(\exp _{p} \circ I \circ \operatorname{expp}_{p}^{-1}\right.}_{\varphi})_{\gamma(t)} J(t) \\
& =d \varphi_{\gamma(t)} J(t)
\end{aligned}
$$

Computing at $t=L$, we here $\bar{J}(L)=d \varphi_{\gamma(L)} J(L)=d \varphi_{q} X$ and $\left\|d \varphi_{q} X\right\|=\|\bar{J}(L)\|=\|J(L)\|=\|X\|$ so $d \varphi_{q}$ is an isome try. $\binom{I_{q}$ is linear }{ isometry }

Lemma 1. The Jacdos field along $\gamma(t)$ with $J(0)=0$ and $J^{\prime}(0)=w$ is $J(t)=d\left(\exp _{\gamma(0)}\right)_{t \gamma^{\prime}(0)} t w$.
If: $J(t)=d\left(\exp _{\gamma(0)}\right)_{t \gamma^{\prime}(0)} t w$ is the variational Field of a variation of γ by geodesic, so it is a Jacobi field.

$$
\begin{aligned}
& \text { Indeed: if } v=\gamma^{\prime}(0) \text {, then } \gamma(s, t) \\
& \gamma(s, t)=\exp _{\gamma(0)}(t(v+s \omega)) \\
& \left.\frac{\partial}{\partial s} \gamma(s, t)\right|_{s=0}=d\left(\exp _{\gamma(0)}\right)(t v)(t \omega)=d\left(\exp _{\gamma(0)}\right)_{t v} t w=J(t) .
\end{aligned}
$$

Moreover, $J(0)=0$ and

$$
J^{\prime}(0)=\left.\frac{D}{d t} \frac{\partial}{\partial s} \gamma(s, t)\right|_{\substack{t=0 \\ s=0}}=\left.\frac{D}{d s} \frac{\partial}{\partial t} \gamma(s, t)\right|_{\substack{t=0 \\ s=0}}=\left.\frac{D}{d s}(V+s w)\right|_{s=0}=w
$$

so by uniqueness of sol. to ODE with some initial condition, $J(t)$ is the claimed Jacobi field.
Rub: These is a similar expression (using exp) for the unique Jacobi field along $\gamma(t)$ with arbitrary initial condition $J(0)$ and $J^{\prime}(0)$; namely:

Lemma 2. Let $\gamma:[0, L] \rightarrow M$ be a geodexic; $v \in T_{\gamma(0)} M, w \in T_{\gamma(L)} M$. If $L>0$ is sulf. small, there exists a unique Jacobi field J along γ with $J(0)=v, J(0)=w$.
Pf: Let $J=\{J$ is a Jacobi field along $\gamma, J(0)=0\}$;

$$
\begin{aligned}
& \text { german } 1 \stackrel{\perp}{=}\left\{J(t)=d^{\left.\left(\text {exp }_{\gamma(0)}\right)_{t \gamma^{\prime}(0)} t J^{\prime}(0)\right\} \& \begin{array}{c}
\text { this is e } \\
\text { Vector spoev }
\end{array}}\right. \\
& \text { and } e v_{t}: J \longrightarrow T_{\gamma(t)} M \\
& \operatorname{dim} J=\operatorname{dim} T_{p} M \\
& J \longmapsto J(t)
\end{aligned}
$$

If $t>0$ is small, then $e v_{t}$ is infective: otherwise $J_{1}, J_{2} \in J, J_{1}(t)=J_{2}(t)$ but $J_{1} \neq J_{2}$. Then $J_{1}-J_{2} \in J$ satisfies $0=\left(J_{1}-J_{2}\right)(t)=d\left(\exp _{\gamma(0)}\right)_{t \gamma^{\prime}(0)} t\left(J_{1}-J_{2}\right)^{\prime}(0)$ and for t smell $d(\text { exp })_{t \gamma^{\prime}(0)}$ is invertible, so $\left(J_{1}-J_{2}\right)^{\prime}(0)=0$, hence $\left(J_{1}-J_{2}\right)(0)=0$ and $\left(J_{1}-J_{2}\right)^{\prime}(0)=0$ so $J_{1} \equiv J_{2}$. Since $e v_{t}: J \rightarrow T_{\gamma(t)} M$ is linear and $\operatorname{dim} J=\operatorname{dem} T_{\gamma(t)} M$, $e v_{t}$ is bijective. So $\exists J_{1} \in J$ with $J_{1}(t)=w$.
By the same orgument starting from $\gamma(t), \exists J_{2}$ a Jacobi field along γ with $J_{2}(0)=v$ and $J_{2}(t)=0$. Thus $J=J_{1}+J_{2}$ se this fares $J(0)=v$ and $J(t)=w$.

Raki: In Lemma 2, can replace "L>0 suff. small" with "there is no $0<t_{*} \leq L$ s.t. $\gamma\left(t_{*}\right)$ is conjugate to $\gamma(0)$ along $\gamma(t)$ ".
Def: A point $q=\gamma\left(t_{*}\right)$ is conjugate to $p=\gamma(0)$ along $\gamma(t)$ if there exists a Jacobi field $J(t)$ along $\gamma(t)$ sit. $J(0)=0$ and $J\left(t_{*}\right)=0$.

Ex: Antipodal points on S^{n}.
Prof: $q=\exp _{p}\left(t_{*} v\right)$ is conjugate to p along $\gamma(t)=\exp _{p} t v$ if $t_{*} v$ is a critical point of exp: $T_{p} M \rightarrow M$.
Guolad version of Cartan's Thu:
Thu (Cortan-Ambrose- Hicks). If M and \bar{M} are complete and M is simply-connected, can extend the above argument along piecewise geodesics to get $\varphi: M \rightarrow \bar{M}$ which is a local isometry hence a covering map.
Pl. Essentially the same, using uniform continuity of homotopy between two paths (piecewise geodesics) in M with same endpoints.

Thu (Killing-Hopf). If M^{n} is simply-connected and ha sec pk, then

$$
M^{n} \stackrel{\text { isoni }}{=}\left\{\begin{array}{ll}
\mathbb{S}^{n}(1 / \sqrt{k}) & \text { if } k>0 \\
\mathbb{R}^{n} & \text { if } k=0 \\
H^{n}(1 / \sqrt{-k}) & \text { if } k<0
\end{array} \quad\right. \text { "constant curvature }
$$

PI: Combine the above with simple topological arguments. \leadsto Spaceform problem: Which π act freely and isometrically on the dore, so that M / π is a Smooth manifold with $\sec \equiv k$ and $\pi_{1} \cong \pi$?

Lecture 4 Comparison results for Jaabi fields 2/16/2023
Prop: If $\gamma:[0, L] \rightarrow M$ is a geodetic with $\gamma(0)=p, \dot{\gamma}(0)=v$, $w \in T_{V} T_{p} M$ hos $\|w\|=1$ and $J(t)$ is the Jacobi field along (t) with $J(0)=0$ and $J^{\prime}(0)=w,\|w\|=1$, (ie., $J(t)=d\left(\operatorname{expp}_{p}\right)_{t v} t w$), then $\quad\|J(t)\|^{2}=t^{2}-\frac{1}{3}\langle R(v, w) w, v\rangle t^{4}+O\left(t^{5}\right)$

Pf:

$$
\begin{aligned}
& \langle J, J\rangle(0)=0 \\
& \left\langle J, J^{\prime}\right\rangle^{\prime}(0)=2\left\langle J, J^{\prime}\right\rangle(0)=0 \\
& \langle J, J\rangle^{\prime \prime}(0)=2 \underbrace{\left\langle J^{\prime}, J^{\prime}\right\rangle(0)}_{\|\left.\omega\right|^{2}=1}+2\left\langle J^{\prime \prime}, J_{0}\right\rangle(0)=2
\end{aligned}
$$

Also, $J^{\prime \prime}(0)=-R(J, \dot{\gamma}) \dot{\gamma}(0)=0$ so

$$
\langle J, J\rangle^{\prime \prime \prime}(0)=6\left\langle J^{\prime}, J_{0}^{\prime \prime}\right\rangle(0)+2\left\langle J_{0}^{\prime \prime \prime}, J_{0}\right\rangle(0)=0
$$

Mereverver, for any vector field ω along γ,

$$
\begin{aligned}
& \left\langle\frac{D}{d t} R(J(t), \dot{\gamma}(t)) \dot{\gamma}(t), w\right\rangle=\frac{d}{d t} \underbrace{\langle R(J, \dot{\gamma}) \dot{\gamma}, \omega\rangle}_{=\langle R(\omega, \gamma) \dot{\gamma}, J\rangle}-\left\langle R(J, \dot{\gamma}) \dot{\gamma}, w^{\prime}\right\rangle \\
& =\left\langle\frac{D}{d t} R(\omega, \dot{\gamma}) \dot{\gamma}, J\right\rangle+\underbrace{\left\langle R(\omega, \dot{\gamma}) \dot{\gamma}, J^{\prime}\right\rangle}_{\|} \\
& \text {So at } t=0 \text { : } \\
& -\left\langle R(j, \dot{\gamma}) \dot{\gamma}, w^{\prime}\right\rangle \quad\langle R(j, \tilde{\gamma}) \dot{\gamma}, \omega\rangle \\
& \frac{D}{d t} R(J, \dot{\gamma}) \dot{\gamma}=R\left(J^{\prime}, \dot{\gamma}\right) \dot{\gamma} \\
& \text { (all other terms ore er) }
\end{aligned}
$$

Thus:

$$
\left.\left.\begin{array}{rl}
\langle J, J\rangle^{\prime \prime \prime \prime}(0) & =8\left\langle J^{\prime}, J^{\prime \prime \prime}\right\rangle(0)+6\left\langle J^{\prime \prime}, J^{\prime \prime}\right\rangle(0)+2\left\langle J_{0}^{\prime \prime \prime \prime}, J\right\rangle(0) \\
& =-8\left\langle J_{0}^{\prime}, R\left(J^{\prime}, \dot{\gamma}\right) \dot{\gamma}\right\rangle(0)
\end{array}\right)=-8\langle R(w, v) v, w\rangle\right)
$$

Goal for our frost comparison results (Ravel) is to promote the geometric information
"curvature controls length of Jacobs fields"
from the above "infinitesimal at $t=0$ "version to the more global version "until the first conjugate point."

Let $S C M$ be a submenifold, and

$$
\gamma: S_{x}(-\varepsilon, \varepsilon) \rightarrow M
$$

a family of geodesics:
$\forall s \in S, \quad t \mapsto \gamma(s, t)$ is a geod.
Let $V=\frac{\partial}{\partial t} \gamma(s, t)=d \gamma_{(s, t)}\left(\frac{\partial}{\partial t}\right)$ be the tangent field to the geodericis $J=d \gamma_{(s, t)}(w)$ for any given $w \in T_{s} S$,
which is a Jacobi freed along $t \mapsto \gamma(s, t)$.

Let $A: \nVdash(M) \rightarrow \not(M)$ be the tensor $A=\nabla V$, ie. $A(X)=\nabla_{x} V$. and $R_{V}: \mathcal{X}(M) \rightarrow \mathcal{H}(\mu)$ be the tenor $R_{V}(X)=R(X, V) V$.
Note: $[J, V]=0$ hence $\quad \nabla_{V} J=\nabla_{J} V=A \cdot J$,
Reduce Jacobi equation from $Z^{\text {nd }}$ order ODE to system of $1^{\text {nt }}$ order ODE Es

$$
\begin{aligned}
& J^{\prime \prime}+\underbrace{R(J, V) V}_{=R_{v}(J)}=0 \Longleftrightarrow\left\{\begin{array}{l}
J^{\prime}=A \cdot J \\
A^{\prime}+A^{2}+R_{v}=0
\end{array}\right. \\
& \begin{aligned}
\left(\nabla_{v} A\right) X & =\nabla_{v}(A x)-A \nabla_{v} X \\
& =\nabla_{v} \nabla_{x} V-A(\overbrace{\nabla_{x} V+[V, x]}) \\
& =\overbrace{\nabla_{x} \nabla_{v} V+R(V, x) V+\nabla_{[v, x]} V}-\nabla_{\nabla_{x} V+[v, x]} V \\
& =-R_{v}(X)-A(A(x))
\end{aligned}
\end{aligned}
$$

So: $\quad A^{\prime}=-R_{V}-A^{2}$ ie. $A^{\prime}+A^{2}+R_{V}=0$ "Ricati ${ }_{\text {equation" }}$

- Suppose ∇V is self-edoiont; ie. $\forall x, y,\left\langle\nabla_{x} V, y\right\rangle=\left\langle x, \nabla_{y} V\right\rangle$ Then $V=\nabla f$ locally, because setting $\xi(X)=\langle X, V\rangle$, we here

$$
\begin{aligned}
d \xi(x, y) & =x \xi(y)-y \xi(x)-\xi([x, y]) \\
& =\left\langle\nabla_{x}, y, y\right\rangle+\left\langle y, \nabla_{x} v\right\rangle-\left\langle\nabla_{y} x, v\right\rangle-\left\langle x, \nabla_{y} v\right\rangle-\langle[x, y\}, v\rangle \\
& =\left\langle\nabla_{x} v, y\right\rangle-\left\langle x, \nabla_{y} v\right\rangle=0 \text { so dz is dosed. }
\end{aligned}
$$

Locally, every closed 1 -form ξ is locally exact: $\xi=d f$; ie. $V=\nabla f$.
-Thus $\|V\|^{2}=\langle V, V\rangle$ is constant, b/c

$$
X\langle V, V\rangle=2\left\langle\nabla_{X} V, V\right\rangle \stackrel{D}{=2}\langle X, \underbrace{\left.\nabla_{V} V\right\rangle \triangleq 0}_{=0} \begin{array}{l}
V=\frac{2}{\partial t} \gamma(s, t) \\
\text { is velocity field } \\
\text { of geodesics. }
\end{array}
$$

Assume WLOG $\|V\|=1$, so, up to an oddifive constant, $f(x)=s$-dist (x, S). "signed distance function"

$S=f^{-1}(0) \quad$ "equidistant"

Non-example in \mathbb{R}^{2}

$y=s x$
$\{x(1,3): x \in R\}$
For each sell, the curve
$\operatorname{tr} \gamma^{(s, t)}=(t, t s)$ is

- geodesic in R^{2}, with tamest vector between S_{0} and S_{t}.

2) The equation $A^{\prime}+A+R_{V}=0$ is and $\frac{D V}{d t}=0$, but $\|v\|^{2}=1+s^{2}$ is not costate.... $D V$ is not self-afoint: $\frac{\partial}{\partial t}=\frac{2}{\partial x}, \quad \frac{\partial}{\partial y}=\left(\frac{1}{t} \frac{\partial}{\partial s}+\frac{1}{5} \frac{\partial}{\partial t}\right)$ singularities, celled $\nabla V=\left(\begin{array}{ll}1 & -y y^{2} x \\ 0 & 1 / x\end{array}\right)$ mit symonds. $\left(\begin{array}{l}\frac{\partial}{\partial t}=x \frac{\partial}{\partial y}-\frac{x^{2}}{y} \frac{\partial}{\partial x}=t \frac{\partial}{\partial y}-\frac{t}{s} \frac{\partial}{\partial t}\end{array}\right.$ focal points of S.

Examples:

1. On any (M, g), let $S_{t}=\partial B_{t}(p)=\{x \in M$: $\operatorname{dist}(x, p)=t\}$. Then $A \sim \frac{1}{t} I_{d}$ as $t \searrow 0$ bile M is infinitesimally Euclidean at p.
Note: If $(M, g)=\mathbb{R}^{4}$, then $A=\frac{1}{t} I_{d}$; by next example.
2. If (M, g) has constant curvature $\sec \equiv K$, then $R_{V}=K I d$ and we con solve the Ricati equation explicitly when S_{t} are so-called "umbilical" surfaces, ie., $A=a I_{d}$.

$$
A^{\prime}+A^{2}+R_{v}=0 \stackrel{A=\text { aId }}{\sim} a^{\prime}+a^{2}+k=0
$$

k>0: $\quad a(t)=\sqrt{k} \cot (\sqrt{k} \cdot t)$ $\approx \frac{1}{t}$
concentric circles

with $k=1$
concentric aphereses

K <0 :
(I) $a(t)=\sqrt{-k} \operatorname{coth}(\sqrt{-k} t)$ concentric spheres
(III)
$\approx \frac{1}{t}$ asti
or (II) $a(t)=\sqrt{-k} \tanh (\sqrt{-k} t) \quad$ horospheres $\approx t$ as too

To facilitate comparison, identify $T_{\gamma(t)} M \cong T_{\gamma(0)} M$ via parallel troupport $P_{\gamma(0)}^{\gamma(t)} w \stackrel{\cong}{\leftrightarrows} w$

fixed vector space $E=T_{\text {rim }}$
with this, $A(t) \in \operatorname{Sgm}^{2}\left(T_{\gamma(0)} M\right) \quad \forall t$
$A(0), A(t)<\sim \sim A(t)$
Also, recall $\langle A, B\rangle=$ tr $A B$ in $\operatorname{Syn}^{2} E$
and $A \leqslant B$ if $B-A \geqslant 0$ ie. $((B-A) x, x\rangle \geqslant 0, \forall x \in E$.
Thu. Let $R_{1}, R_{2}: \mathbb{R} \rightarrow$ sym$^{2} E$ be smooth carves with $R_{1}(t) \geqslant R_{2}(t), \forall t$ Let $A_{i}:\left[t_{0}, t_{i}\right) \rightarrow S_{y_{m}}{ }^{2} E$ be the maximal solutions to $A_{i}^{\prime}+A_{i}^{2}+R_{i}=0$ If $A_{4}\left(t_{0}\right) \leqslant A_{2}\left(t_{0}\right)$, then $t_{1} \leqslant t_{2}$ and $A_{1}(t) \leqslant A_{2}(t)$ for all $t \in\left[t_{0}, t_{1}\right)$.

Pl. Let $U=A_{2}-A_{1}$, so $U\left(t_{0}\right) \geqslant 0$.

$$
U^{\prime}=A_{2}^{\prime}-A_{1}^{\prime}=A_{2}^{2}-A_{1}^{2}+\underbrace{R_{1}-R_{2}}_{S}
$$

Define $S=R_{1}-R_{2}$ and $X=-\frac{1}{2}\left(A_{1}+A_{2}\right)$, so that

$$
X U+U X=-\frac{1}{2}\left(A_{1}+A_{2}\right)\left(A_{2}-A_{1}\right)-\frac{1}{2}\left(A_{2}-A_{1}\right)\left(A_{1}+A_{2}\right)=A_{1}^{2}-A_{2}^{2}
$$

So $U^{\prime}=X U+U X+S$, an inhomogeneous linear ODE we can solve by "variation of constants". Namely, let $g ;\left(t_{0}, t^{\prime}\right) \rightarrow S_{y n}{ }^{2} E$ be the solution to the hangeeneors linear ODE $g^{\prime}=X_{g}$, whee $t^{\prime}=\min \left\{t_{1}, t_{2}\right\}$. Then $U=g V g^{\top}$ is the desired solution, where V satisfies $V^{\prime}=g^{-1} S\left(g^{-1}\right)^{\top}$.

Indeed: $V^{\prime}=g^{\prime} V g^{\top}+g V^{\prime} g^{\top}+g V\left(g^{\top}\right)^{\prime}$

$$
\begin{aligned}
& =X g V_{g}^{\top}+g g^{-1} S\left(g^{-}\right)^{\top} g^{\top}+g V_{g}^{\top} X^{\top} \\
& =X U+S+U X .
\end{aligned}
$$

Since $S=R_{1}-R_{2} \geqslant 0$, we have $V^{\prime}=g^{-1} S\left(g^{-1}\right)^{\top} \geqslant 0$.
Since $U\left(t_{0}\right)=g\left(t_{0}\right) V\left(t_{0}\right) g\left(t_{0}\right)^{\top}=A_{2}\left(t_{0}\right)-A_{1}\left(t_{0}\right) \geqslant 0$, we hole $V\left(t_{0}\right) \geqslant 0$.
Thus $V(t) \geqslant 0$ for all $t \in\left(t_{0}, t^{\prime}\right)$ and hence also $A_{2}(t)-A_{1}(t)=U(t)=g(t) V(t) g\left(t^{\top} \geqslant 0\right.$ for all $t \in\left(t, t^{\prime}\right)$; ie. $A_{1}(t) \leqslant A_{2}(t)$ for $t \in\left(t_{0}, t^{\prime}\right)$. Since A_{i}^{\prime} is bounded form dove ($\left.A_{i}^{\prime} \leq-A_{i}^{2}-R_{i} \leq-R_{i}\right)$ the only singularity possible is $-\infty$, so $A_{1} \leqslant A_{2}$ implies $t^{\prime}=t_{1} \leq t_{2}$.
Rok: The above still holds if A_{1}, A_{2} ore singular at to, but $U=A_{2}-A_{1}$ has a continues extension to to. with $U\left(t_{0}\right) \geqslant 0$.

Geometric interpretation: "Principal curvatures of equidistant Mypersurfeces decrease foster on the space of logger curvature."
Thu. Let $A_{1}, A_{2}:\left(t_{0}, t^{\prime}\right) \rightarrow$ Sym $^{2} E$ be smooth curves with $A_{1}(t) \leqslant A_{2}(t)$. Let $J_{i}:\left(t_{0}, t^{\prime}\right) \rightarrow E$ be nonzero sol. to $J_{i}^{\prime}=A_{i} J_{i}$. Then $t \mapsto \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}$ is nonincreasing. Moreover, if $\lim _{t \rightarrow \text { to }} \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}=1$, then $\left\|J_{1}(t)\right\| \leq\left\|J_{2}(t)\right\|$ for all $t \in\left(t_{0}, t^{\prime}\right)$. Equality holds for some $t_{\pi} \in\left(t_{0}, t^{\prime}\right)$ if and only if $J_{i}=j \cdot v_{i}$ on $\left[t_{0}, t^{\prime}\right]$ for some $v_{i} \in E$ with $A v_{i}=\lambda v_{i}, j^{\prime}=\lambda_{j}$, and $\quad A_{1} \leqslant \lambda I_{d} \leqslant A_{2}$.

Pl. Since $\left\|J_{i}(t)\right\|$ is smooth, we can differentiate:

$$
\begin{array}{r}
\frac{\left\|J_{i}\right\|^{\prime}}{\left\|J_{i}\right\|}=\frac{1}{\left\|J_{i}\right\|} \frac{1}{2 \sqrt{\left\langle J_{i}, J_{i}\right\rangle}} 2\left\langle J_{i}^{\prime}, J_{i}\right\rangle=\frac{\left\langle J_{i}^{\prime}, J_{i}\right\rangle}{\left\|J_{i}\right\|^{2}}=\frac{\left\langle A_{i} J_{i}, J_{i}\right\rangle}{\left\|J_{i}\right\|^{2}} \\
\in\left[\lambda_{\text {min }}\left(A_{i}\right)_{1} \lambda_{\operatorname{mox}}\left(A_{i}\right)\right]
\end{array}
$$

The $\left(\log _{2}\left\|J_{1}\right\|\right)^{\prime}=\frac{\left\|J_{1}\right\|^{\prime}}{\left\|J_{1}\right\|} \leq \lambda_{\text {mex }}\left(A_{1}\right) \leq \lambda_{\text {min }}\left(A_{2}\right) \leq \frac{\left\|J_{2}\right\|^{\prime}}{\left\|J_{e}\right\|}=\left(\log \mid J_{2} \|\right)^{\prime}$ $A_{1} \leq A_{2}$
ie. $\left(\log \frac{\left\|J_{1}\right\|}{\left\|J_{2}\right\|}\right)^{\prime} \leq 0$ so $\frac{\left\|J_{1}\right\|}{\left\|J_{2}\right\|}$ is nou-increasing.
By monotonicity, if $\left\|J_{1}\right\|=\left\|J_{2}\right\|$ at $t=t_{0}$, and $t=t_{x}$. then $\left\|J_{1}\right\|=\left\|J_{2}\right\|, \forall t \in\left(t_{0}, t_{k}\right)$ and hence $J_{i}^{\prime}=A_{i} J_{i}=\lambda J_{i}$, from = in the ne wublites. the stated conclusions follow.

The following corollaries are originally due to Berger and Rack:

Thy (Ranch I). Suppose J_{i} are sol to $J_{i}^{\prime \prime}+R_{i} J_{i}=0$ with $R_{1} \geqslant R_{2}$ and $J_{i}(0)=0, \quad\left\|J_{1}^{\prime}(0)\right\|=\left\|J_{2}^{\prime}(0)\right\|$. Then $\left\|J_{1}\right\| \leq\left\|J_{2}\right\|$ up to the first zero of J_{1}.

Lecture 5
Recall:

$$
\begin{aligned}
& J^{\prime \prime}+R_{v}(J)=0 \\
& \text { (Jacobi equation) }
\end{aligned} \Longleftrightarrow\left\{\begin{array}{l}
J^{\prime}=A \cdot J \\
A^{\prime}+A^{2}+R_{v}=0
\end{array} \quad\right. \text { "Ricati equation" }
$$

If ∇A is self-edjoint, then locally $V=\frac{\partial}{\partial t} \gamma(s t)=\nabla f$ and so

- $S_{t}=f^{-1}(t)$ are equidistant hypersarfoces
- A is the shape operator

Family of Jacobi fields comapponding to variations by geodesics starting from S

- Eigenvalues of A ore principal curvatures
- Eigenvectors of A ore principal directions
- $H=\operatorname{tr} A$ is the mean curvature
- Singularities of A ore focal paints

Comparison resents:
Recall: $R_{1}-R_{2} \geqslant 0 \Leftrightarrow\left\langle\left(R_{1}-R_{2}\right) v, v\right\rangle \geqslant 0, \forall v$
Thu 1. If $R_{1}, R_{2}: \mathbb{R} \rightarrow \operatorname{Sym}^{2} E$ satisfy $R_{1} \succsim R_{2}$ and $A_{i}:\left[t_{0}, t_{i}\right] \rightarrow S_{y m}^{2} E$ satisfy $A_{i}^{\prime}+A_{i}^{2}+R_{i}=0$, then $A_{1}(t) \preccurlyeq A_{2}(t)$ for all $t_{0} \leqslant t \leqslant t_{1} \leqslant t_{2}$.
The 2. If $A_{1}(t) \leq A_{2}(t)$ and $J_{i}:\left[t_{0}, t^{\prime}\right] \rightarrow E$ satisfy $J_{i}^{\prime}=A_{i} \cdot J_{i}$, then $t \mapsto \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}$ is nou-increosing. (So if $\lim _{t \rightarrow t \text { to }} \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}=1$, then $\left\|J_{1}(t)\right\| \leq\left\|J_{2}(t)\right\|$ for all $t \in\left(t_{0}, t^{\prime}\right)$.) Equality holds for some $t_{*} \in\left(t_{0}, t^{\prime}\right)$ if and only if $J_{i}=j \cdot v_{i}$ on $\left[t_{0}, t^{\prime}\right]$ for some $v_{i} \in E$ with $A v_{i}=\lambda v_{i}$, $j^{\prime}=\lambda_{j}$, and $A_{1} \leqslant \lambda I_{d} \leqslant A_{2}$.

Thy (Ranch I). Suppose J_{i} are sol to $J_{i}^{\prime \prime}+R_{i} J_{i}=0$ with $R_{1} \geqslant R_{2}$ and $J_{i}(0)=0,\left\|J_{1}^{\prime}(0)\right\|=\left\|J_{2}^{\prime}(0)\right\|$. Then $\left\|J_{1}\right\| s\left\|J_{2}\right\|$ up to the first zero of J_{1}.

R wk: We knew an infinitesimal Version:

$$
\begin{aligned}
& \|J\|=t-\frac{1}{6}\langle R(J), J\rangle t^{2}+O\left(t^{3}\right) \\
& \text { so } R_{1} \geqslant R_{2} \Rightarrow\left\|J_{1}\right\| \leq\left\|J_{2}\right\| \text { for } t \approx 0 .
\end{aligned}
$$

Thy $\left(R_{\text {arch II }}\right)$. Suppose J_{i} are sol to $J_{i}^{\prime \prime}+R_{i} J_{i}=0$ with $R_{1} \geqslant R_{2}$ and $J_{i}^{\prime}(0)=0,\left\|J_{1}(0)\right\|=\left\|J_{2}(0)\right\|$. Then $\left\|J_{1}\right\| s\left\|J_{2}\right\|$ up to the first zero of J_{1}.

Both Ranch I and II follow from comparison theorems doves:
Ranch I: $A_{i}(t) \sim \frac{1}{t}$ Id as $t \sqrt[0]{ }$, ie. use initial condition " $A_{i}(0)=\infty$ "

$$
\begin{aligned}
& J_{i}^{\prime}=A_{i} J_{i} \Rightarrow t J_{i}^{\prime} \sim J_{i} \text { \& } t \neq 0 \rightarrow J_{i}(0)=0 \\
& \left\|J_{1}^{\prime}(0)\right\|=\left\|J_{2}^{\prime}(0)\right\| \Rightarrow \lim _{t \rightarrow 0} \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}=\lim _{t \geqslant 0} \frac{t\left\|J^{\prime}(t)\right\|}{t\left\|J_{2}^{\prime}(t)\right\|}=1
\end{aligned}
$$

Ranch II: use initial condition $A_{i}(0)=0$

$$
\begin{aligned}
& J_{i}^{\prime}=A_{i} \cdot J_{i} \Rightarrow J_{i}^{\prime}(0)=0, \\
& \left\|J_{1}(0)\right\|=\left\|J_{2}(0)\right\| \Rightarrow \lim _{t \rightarrow 0} \frac{\mid J_{1}(t) \|}{\left\|J_{2}(t)\right\|}=1
\end{aligned}
$$

Application of Rack I:
Cor: Let $\left(M^{n}, g\right)$ be a complete Rem. mfld with $\sec \leqslant 0$, and $r>0$ s.t. $\exp _{p}: B_{r}(0) \rightarrow M$ is a diffeam. onto its image. Fix a linear isometry $I: T_{p} M \rightarrow \mathbb{R}^{n}$. Given $\gamma_{i}[0,1] \rightarrow \exp _{p}(\operatorname{Br}(0))$, we hove $\operatorname{length}_{g}(\gamma) \geqslant$ length $_{\mathbb{R}^{n}}\left(I \circ \exp _{p}^{-1}(\gamma)\right)$.

$$
\sec _{M} \leq 0 .
$$

Pf: Let $\tilde{\gamma}=\operatorname{expp}_{p}^{-1} \gamma$, and consider the "rectangle"

$$
\gamma(s, t)=\exp _{p} s \tilde{\gamma}(t)
$$

For fixed $t, \quad s \mapsto \gamma(s, t)$ is a geodesic,
 and $J_{t}(s)=\frac{\partial}{\partial t} \gamma(s, t)$ is a Jacobi field along $s \mapsto \gamma(s, t)$; with $J_{t}(0)=0$ and $J_{t}(1)=\dot{\gamma}(t)$. Since $\sec _{\mu} \leq 0$, by Rauch I, $\left\|J_{t}(s)\right\| \geqslant \underbrace{s\left\|J_{t}^{\prime}(0)\right\|} \underbrace{\text { so length g }(\gamma)}_{s=1}=\int_{0}^{1}\|\dot{\gamma}(t)\| d t=\int_{0}^{1}\left\|J_{t}(1)\right\| d t$
length of comparison $^{s=1} \geqslant \int_{0}^{1}\left\|J_{t}^{\prime}(0)\right\| d t=$ length $\mathbb{R}^{n}\left(I \cdot \exp _{p}^{-1} \gamma\right)$

Indeed, $\quad J_{t}^{\prime}(0)=\left.\frac{D}{d s} J_{t}(s)\right|_{s=0}=\left.\frac{D}{d s} \frac{\partial}{\partial t} \exp _{p} s \tilde{\gamma}^{\prime}(t)\right|_{s=0}$

$$
=\left.\frac{D}{d t} \frac{\partial}{\partial s} \exp _{p} \tilde{s}^{2}(t)\right|_{s=0}=\frac{D}{d t} \underbrace{d\left(\exp _{p}\right)_{0}}_{i d} \tilde{\gamma}(t)=\tilde{\gamma}^{\prime}(t)
$$

and so length $\mathbb{R}^{n}\left(I \circ \exp _{p}^{-1} \gamma\right)=\int_{0}^{1}\|\frac{\partial}{\partial t} \underbrace{I 0 \exp _{p}^{-1}(\gamma)}_{\tilde{\gamma}}\| d t=\int_{0}^{1}\left\|J_{t}^{\prime}(0)\right\| d t$.
(8) In \mathbb{R}^{n}, the Jeabi equation $J^{\prime \prime}=0$ has solutions $J(s)=J(0)+s J^{\prime}(0)$;
so Jacobi fields with $J(0)=0$ are given by $J(s)=s J^{\prime}(0)$.
Thy (Cortan-Hodamard). Lot $\left(M_{1}^{n}, 8\right)$ be a complete Rem. mfld with sec ≤ 0, Then for any $p \in M, \exp _{p}: T_{p} M \rightarrow M$ is a covering map; so $\pi_{k} M=\{1\}$ for all $k \geqslant 2$. In particular, if $\pi_{1} M=\{1\}$, then $M^{n} \xlongequal[\text { diff. }]{\cong} \mathbb{R}^{n}$.

Pl. By Ranch I, given any geodesic $\gamma: \mathbb{R} \rightarrow M$ and a Jacobi field $J: \mathbb{R} \rightarrow M$ along γ with $J(0)=0$, we have $\|J(t)\| \geqslant t\left\|J^{\prime}(0)\right\|>0$ so there are no conjugate points along γ. Thus, $\exp _{p}: T_{p} M \rightarrow M$ hos non singular differatial everywhere, ce. $d\left(\operatorname{expp}_{p}\right)_{V}: T_{V} T_{p} M \rightarrow T_{\operatorname{expp}_{p} v} M$ is invertible for all $v \in T_{p} M$ (because $\left.0 \neq J(t)=d\left(\operatorname{lxp}_{p}\right)_{\underset{v}{\dot{\gamma}(0)}} t J^{\prime}(0), \forall t \neq 0\right)$.
Since $\exp : T_{p} M \rightarrow M$ is a local diffeom., it is a covering mop. If $\pi_{1} M=\{1\}$, then $\exp _{p}$ is a homeomorphism (by Topology), and Since it is smooth and monsinguler, it is a diffleomophliom.

Cor: A geodesic triangle on a complete manifold with sec ≤ 0 satisfies

(i) $l(c)^{2} \geqslant l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma \quad(l=l$ length $)$ (ii) $\alpha+\beta+\gamma \leq \pi$

If $\sec <0$, then get strict inequalities.
Pf:

Let $\bar{a}, \bar{b}, \bar{c}$ in $T_{p} M$ be such that $a=\exp _{p} \bar{a}, \quad b=\exp _{p} \bar{b}, \quad c=\exp _{p} \bar{c}$

Note that \bar{a} and \bar{b} are straight lime segments ($\exp _{p}$ is vodial isometry); with $l(\bar{a})=l(a)$ and $l(\bar{b})=l(b)$. Let c_{*} be the straight lime segment with same endpoints as \bar{C}, so $l(\bar{c}) \geqslant l\left(c_{*}\right)$. By the Application of Ranch I, $l(c) \geqslant l(\bar{c}) \geqslant l\left(c_{*}\right)$. Thus, altogether:

Low of cosines in $T_{p} M \cong \mathbb{R}^{n}$

$$
\begin{aligned}
& l(c)^{2} \geqslant l\left(c_{*}\right)^{2} \stackrel{\downarrow}{=} l(\bar{a})^{2}+l(b)^{2}-2 l(\bar{a}) l(\bar{b}) \cos \gamma \\
& G \text { Gauss Lemma } \stackrel{N}{=} l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma .
\end{aligned}
$$

To compere angles, since $l(a), l(b), l(c)$ satisfy the triangle inequalities
(b / c every, geodesic is minimizing in $\sec \leq 0$, ie., $l(a), ~ e(b), l(c)$ achieve distances) we can build a comparison triangle in \mathbb{R}^{2}, with same side angles, but possibly different angles, see $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$. Then from $l($

$$
\begin{aligned}
l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma & \leq l(c)^{2} \\
& =l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \bar{\gamma} \\
\Rightarrow \cos \gamma & \geqslant \cos \bar{\gamma} \Rightarrow \gamma \leq \bar{\gamma}
\end{aligned}
$$

in $\mathbb{R}^{2} \quad$ Same for α, β and get $\alpha+\beta+\gamma \leq \bar{\alpha}+\bar{\beta}+\bar{\gamma}=\pi$.
 \uparrow Nice topic for a student Take!!

Application of Ranch I:
Corollary: Let (M, g) be a complete Rem. mild with $\sec \geqslant 0$, $\gamma:[0,1] \rightarrow M$ min. geodesic, $V:[0,1] \rightarrow M$ a parallel vector field day $\gamma ;$ with $g(\dot{\gamma}, V)=0$. Consider the rectangle $\gamma(s, t)=\exp _{\gamma(t)} s V(t)$. Then

$$
\operatorname{distg}_{g}(\gamma(s, 0), \gamma(s, 1)) \leq \operatorname{dist}_{2}(\gamma(0,0), \gamma(0,1))
$$

$$
\begin{aligned}
& \text { If sec }>0 \text {, then get } \\
& \text { strict inequality. }
\end{aligned}
$$

Pf: Since both $t \mapsto \gamma(0, t)$ and $t \mapsto \gamma(s, t)$ are parametrized with $t \in[0,1]$, it suffices to show that $\left\|\frac{\partial}{\partial t} \gamma(s, t)\right\| \leq\left\|\frac{\partial}{\partial t} \gamma(0, t)\right\|$. The Jacobi field $J_{t}(s)=\frac{\partial}{\partial t} \gamma(s, t)$ along the geodexic $s \mapsto \gamma(s, t)$ satisfies
(*) $J(s)=J(0)$ is constant length.

Rigieility statement: Exercise (using rogidity in comparison the).

$$
\begin{aligned}
& J_{t}(0)=\frac{\partial}{\partial t} \gamma(0, t)=\dot{\gamma}(t) \text { and } J_{t}^{\prime}(0)=\left.\frac{D}{d s} \frac{\partial}{\partial t} \exp _{\gamma(t)} s V(t)\right|_{s=0}=\left.\frac{D}{d t} \frac{\partial}{\partial s} \exp _{V(1)}{ }^{V}(t)\right|_{s=0} \\
& =\frac{D}{d t} \underbrace{d(\exp (t))_{0}}_{\text {id }} V(t)=\frac{D}{d t} V \stackrel{V \text { purelel }}{=0} \text {. By Ranch } I_{1},\left\|J_{t}(s)\right\| \leq \underbrace{\left\|J_{t}(0)\right\|} \\
& \text { (3) length of comparison } \\
& \text { So } \quad\left\|\frac{\partial}{\partial t} \gamma(s, t)\right\|=\left\|J_{t}(s)\right\| \stackrel{v}{s}\left\|J_{t}(0)\right\|=\left\|\frac{\partial}{\partial t} \gamma(0, t)\right\| \text {. } \\
& \text { Jacobi field in } \mathbb{R}^{n}
\end{aligned}
$$

Lecture 6 (Recall Rauch I, II and Appel of Ravch II) 3/2/2023
Cor. Let $\left(M_{1}^{n}, g\right)$ be a complete Riem. meld with $0<k \leq \sec \leq K$. Then the distance d between consecutive conjugate points along geodesics in $\left(M^{n}, g\right)$ is $\frac{\pi}{\sqrt{K}} \leq d \leq \frac{\pi}{\sqrt{k}}$.

Pl: Let $\gamma:[0, L] \rightarrow M$ be a geodesic, $J_{i}[0, L] \rightarrow M$ a Jacob; field with $J(0)=0$. Let \tilde{J} be a Jacobi field on $S^{n}\left(\frac{1}{\sqrt{K}}\right)$ with $\mathcal{J}(0)=0$ and $\left\|\tilde{J}^{\prime}(0)\right\|=\left\|J^{\prime}(0)\right\|$. Then, by Ranch II, $\|J(t)\| \geqslant\|\tilde{J}(t)\|>0$ for all $t \in\left(0, \frac{\pi}{\sqrt{K}}\right)$, bic $\tilde{J}(t)=\tilde{J}^{\prime}(0) \cdot \frac{\sin (t \sqrt{K})}{\sqrt{K}}$, so $d \geqslant \frac{\pi}{\sqrt{K}}$.
Similarly, if $d>\frac{\pi}{\sqrt{k}}$, then by Rack II, the round spluece $S^{n}\left(\frac{1}{\sqrt{k}}\right)$ would only hove conjugate points after distance $\frac{\pi}{\sqrt{k}}$, a contradiction.
Thu (M gers, 1941). If (M, g) is a complete Riem. meed with sec $\geqslant k>0$, then $\operatorname{diam}(M, g) \leq \frac{\pi}{\sqrt{k}}$. In particular, M is compact and $\pi_{1} M$ is finite.
Pl. Let $p, q \in M$ and $\gamma:[0, L] \rightarrow M$ be a minimizing geodesic with $\gamma(0)=p$ and $\gamma(L)=q$. It suffices to show length $(\gamma)=L \leqslant \frac{\pi}{\sqrt{k}}$. Suppose $L>\frac{\pi}{\sqrt{k}}$, and let $J(t)$ be a Jacobi field along $\gamma(t)$ with $J(0)=0$. Then by Ravch I, $\|J(t)\| \leq\left\|J^{\prime}(0)\right\| \frac{\sin t \sqrt{k}}{\sqrt{k}}$ for all $t \in\left(0, \frac{\pi}{\sqrt{k}}\right)$, and the first conjugate point along γ hoppers before distance $\frac{\pi}{\sqrt{k}}$. Therefore the geodesic γ is not minimizing from $\gamma(0)=p$ to $\gamma(L)=q$, which is the dexiced contradiction. Thus $\operatorname{diam}(M, g)=\operatorname{supp}_{\text {pip }} \operatorname{dist}(p, q) \leq \frac{\pi}{\sqrt{k}}$; and M is compact. Applying the same argument on (\widetilde{M}, \vec{g}), we find that \tilde{M} is also compact, so $\pi_{1} M$ is finite $\pi_{1} M \rightarrow \tilde{M} \rightarrow M$.
© γ is not minimizing from $\gamma(0)$ to $\gamma(L)$, ie., $L>\operatorname{dist}(\gamma(0), \gamma(L))$, if and only if $\exists t_{*} \in(0, L)$ s.t. $\gamma\left(t_{*}\right) \in \operatorname{Cut}(\gamma(0))$: So either

- $\gamma(0)$ is conjugate to $\gamma\left(t_{*}\right)$; or
- $\exists \alpha \neq \gamma$ geodesic with $\alpha(0)=\gamma(0)$ and $\alpha\left(t_{k}\right)=\gamma\left(t_{k}\right)$.
 ie., M is compact and $\partial M=\varnothing$.
Thu (Synge, 1936). Let $\left(M^{4}, g\right)$ be a closed Riem. mild with sec >0. If n is even, then M orientable $\Rightarrow \pi_{1} M \cong\{1\}$
M non-orientoble $\Rightarrow \pi_{1} M \cong \mathbb{Z}_{2}$
If n is odd, then M is orientable.
Pd. Let $\gamma:[0, L] \rightarrow M$ be a closed geodesic, ie. $\begin{aligned} & \gamma(0)=\gamma(L)=P \\ & \dot{\gamma}(0)=\dot{\gamma}(L)\end{aligned}$ $\dot{\gamma}(0)=\dot{\gamma}(L)$.
Parallel transport along γ gives a linear isometry P of $T_{p} M$, with $P \dot{\gamma}(0)=\dot{\gamma}(L)=\dot{\gamma}(0)$. Moreover, P reforicts to a linear isometry $P: E \rightarrow E$, where $E=\operatorname{span}(\dot{\gamma}(0))^{\perp} \subset T_{p} M$.
If n is even and M^{n} is orientoble, then $\operatorname{dim} E$ is odd and parallel transport along any loop preserves orientation; so $\left.\operatorname{det} P\right|_{E}>0$. Thus, $\left.P\right|_{E}$ must have an eigenvector with eigenvalue 1^{*}, soy $w \in E$, $\|w\|=1$. Then let $\omega(t)$ be the proellel vector field along $\gamma(t)$ with $w(0)=w(L)=w$, and set

$$
\gamma(s, t)=\exp _{\gamma(t)} s w(t)
$$

By Application of Ravch II, we know that

$$
\operatorname{luggth}_{g}(\gamma(s, t))<\operatorname{lenghh}_{j}(\gamma(0, t))
$$

* In the apporiponate bins of E, the orthogonal matrix seprresenting P is:

Thus, if M^{u} is not simply-counectied, let γ be a shortest curve in a nontrivial free homotopy class. Then γ is a closed geodesic of least length among curves in that homotopy clos $[\gamma]$. Lavever $\gamma_{s}=\gamma(s, \cdot)$ has smaller luyth and $\gamma_{s} \in[\gamma]$, contradiction. If n is even and M^{n} is non-orientable, apply the above argument to its orientable dobble-cover $\left(\tilde{M}^{n}, \tilde{\mathcal{g}}\right)$ and fined that \widetilde{M} is simply-connected, so $\mathbb{Z}_{2} \rightarrow \tilde{M} \rightarrow M$ is the universal cover of M, le., $\pi_{1} M \cong \mathbb{Z}_{2}$.
If u is odd and mon-orientable, then $\operatorname{dim} E$ is even and there exists a closed geodesic γ (unimimizing length among non contractible loops) such that $P: E \rightarrow E$ has $\left.\operatorname{det} P\right|_{E}<0$. Thus $\left.P\right|_{E}$ must have an eigenvector with eigenvalue $+1^{*}$, say $w \in E$, $\|w\|=1$. Reasoning as before, get a contradiction with γ being of shortest length among such logs, since $\gamma(s, t)=\exp _{\gamma(t)} s w(t)$ wald be even shorter for $s \neq 0$ smell.
Remark: Closed memifalels (M^{h}, g) with U odd and sec >0 may hove a large $\pi_{1} M$; e.j, consider $\mathbb{Z}_{p} \curvearrowright S^{3}$ and Lens epee S^{3} / \mathbb{Z}_{p}; which hos $\sec \equiv 1$ and $\pi_{1} M \cong \mathbb{Z}_{p}$.
Chern Problem (1965): If $\left(M^{4}, g\right)$ is a closed Rem. meld with sec >0 and $\Gamma<\pi_{1} M$ is an Abelian subgroup, is it true that Γ is cydic?
A: (K. Shankar 1997) No; there exist examples with $n=7$ and $\Gamma \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
Note: So for, we have shown T^{n} does not admit $\sec <0$ (Pressman) Nor $\mathrm{Sec}>0$ (Myers / Synge). 42

Average comparison. Theorems
Def. The Ricci tensor of $\left(M^{n}, g\right)$ is the bilinear symmetric tensor Ric: $X(M) \times \mathcal{X}(M) \rightarrow C^{\infty}(M)$ given by $R_{i c}(X, Y)_{p}=\underbrace{\left.\sum_{i=1}^{n}\left\langle R\left(e_{i}, X\right) Y, e_{i}\right\rangle\right)}_{\text {tr } R(0, X) Y}$
where $\left\{e_{i}\right\}$ is an or thonormal basis of $T_{p} M$.

In particular, $\operatorname{Ric}(V)=R_{i c}(V, V)=\operatorname{tr} R_{V}$, since $R_{V}: \mathscr{X}(M) \rightarrow X(M)$ $R_{V}(X)=R(X, V) V$
Geometrically, $\operatorname{Ric}(V)=\sum_{i=1}^{n-1} \operatorname{Sec}\left(V, e_{i}\right)$ is an "average" of sectional curvatures of planes that contain V.

Def. $\left(M^{n}, g\right)$ is Einstein if $R_{i c}=\lambda_{1} g . \longleftarrow$ "constant Riccio curvature"
Trace the Ricatti equ. for self-eodjoint A : "Einstein constant" (cosmological constr...)

Since $A(V)=\nabla_{V} V=0$, con restrict A to $V^{\perp}, \quad A: V^{\perp} \rightarrow V^{\perp}$, and $A \in \operatorname{Syn}^{2} V^{\perp}$. Let $a=\frac{\operatorname{tr} A}{n-1}$, and note that "tree free pert"

$$
A=a I d+A_{0} \text {, where tr } A_{0}=0
$$

So $\left\langle A_{0}, I\right\rangle=0$. recall $\langle A, B\rangle=\operatorname{tr} A B$
Then $\operatorname{tr}\left(A^{2}\right)=\|A\|^{2}=a^{2}\|I d\|^{2}+\left\|A_{0}\right\|^{2}=(n-1) a^{2}+\left\|A_{0}\right\|^{2}$ so gives $\quad a^{\prime}+a^{2}+r=0$, where $r=\frac{1}{n-1}\left(\left\|A_{0}\right\|^{2}+\operatorname{Ric}(v)\right) \geqslant \frac{\operatorname{Ric}(v)}{n-1}$

Geometrically, $a(t)=\frac{H}{n-1}$ where $H=\operatorname{tr} A$ is the mean curvature of S_{t}.
Thu. Suppose $A:\left[t_{0}, t_{1}\right) \rightarrow S_{y} m^{2} V^{\perp}$ is the maximal solution to $A^{\prime}+A^{2}+R=0$, where $R: \mathbb{R} \rightarrow$ Syn $^{2} V^{\perp}$ is given. Suppose $\exists k \in \mathbb{R}$ s.t.
(i) to $R \geqslant(n-1) k$
(ii) $\operatorname{tr} A\left(t_{0}\right) \leq(n-1) \bar{a}\left(t_{0}\right)$
where $\bar{a}_{:}\left[t_{0}, t_{2}\right) \rightarrow \mathbb{R}$ is the maximal solution to $\bar{a}^{\prime}+\bar{a}^{2}+k=0$. Let $a=\frac{\operatorname{tr} A}{n-1}$ Then $t_{1} \leq t_{2}$ and $a(t) \leq \bar{a}(t)$ for all $t \in\left[t_{0}, t_{1}\right)$.

Rank: Above result remains true if \bar{a} has a pole at to; namely

$$
A(t) \sim \frac{1}{t-t_{0}} I_{d}, \quad \bar{a}=\frac{s n_{k}^{\prime}}{s n_{k}} \text { where }\left\{\begin{array}{l}
s n_{k}^{\prime \prime}+K s n_{k}=0 \\
s n_{k}\left(t_{0}\right)=0 \\
s n_{k}^{\prime}\left(t_{0}\right)=1
\end{array}\right.
$$

Let J_{1}, \ldots, J_{n-1} be $J_{a c o b i}$ fields along γ that form a basis of solutions to

$$
J^{\prime}=A J
$$

and set $j=\operatorname{det}\left(J_{1}, J_{2}, \ldots, J_{n-1}\right)$.

Since $\left(J_{1} \wedge \ldots \wedge J_{n-1}\right)^{\prime}=\sum_{k=1}^{n-1} J_{1} \wedge \ldots \wedge J_{k}^{\prime} \wedge \ldots \wedge J_{n-1}$

$$
=\sum_{k=1}^{n-1} J_{1} \wedge \ldots \wedge A J_{k} \wedge \ldots \wedge J_{n-1}
$$

we hove $j^{\prime}=(n-4) a j$; because $j=\left\langle J_{1} \wedge \ldots \wedge J_{n-1}\right.$, vol \rangle.

Than. Let $A:\left[t_{0}, t_{1}\right) \rightarrow$ Sym $^{2} V^{\perp}$ and $a=\frac{1}{m-1}+A$ be s.t. $a \leq \bar{a}$, and $j^{\prime}=(n-1) a_{j}$. Choose \bar{j} st. $\bar{J}^{\prime}=(n-1) \bar{a} \bar{j}$. Then j / \bar{j} is nonincreesing.

P1: Once again, apply ODE comparison from before!

Lecture 7
$3 / 9 / 2023$
Thu (Bishop Volume Comparison). Let $\left(M^{n}, g\right)$ be a Rem. mild with Tic $\geqslant(n-1) k$ and \bar{M} be the simply-wnnected Rem. meld with $\sec _{\bar{M}} \equiv K$. Then $\forall p \in M$, $\operatorname{Val}(\operatorname{Br}(p)) \leq V_{\&} \mathcal{B}\left(\overline{B_{r}}\right)$, where $\operatorname{Br}(p) \subset M$ and $\overline{B_{r}} \subset \bar{M}$ are bulls of radius r. Moreover, equality holds if and only if $B_{r}(p) \cong \overline{B_{r}}$.
Pf: We will show that $r \mapsto \frac{V_{0}(B r(p))}{V_{0}\left(\overline{B_{r}}\right)}$ is non increasing; the conclusion follows since $\lim _{r \downarrow 0} \frac{V_{0 l}\left(B_{r}(p)\right)}{V_{0} l\left(\overline{B_{r}}\right)}=1$ because both approach Euclidean balls as $r \downarrow 0$.
Let cut $(v)=\max \left\{t_{*}>0: \operatorname{expp}_{p} t v\right.$ is min. geod. on $\left.\left[0, t_{*}\right]\right\}$ and $C_{p}=\{t v: t \leq \operatorname{art}(v),\|v\|=1\} \subset T_{p} M$. Then $\exp _{p}: C_{p} \rightarrow M$ is a diffeom. onto its image, so:

$$
\begin{aligned}
& V d\left(B_{r}(p)\right)=\int_{B_{r}(p)} 1 d v a l=\int_{\exp _{p}\left(B_{r}(0) \cap c_{p}\right)} 1 d v o l \\
& \text { Change of } \\
& \text { vardeles }=\int_{B_{r}(0) \cap c_{p}} \operatorname{det}\left(d\left(\exp _{p}\right)_{\mu}\right) d u \\
& \text { formuven } \\
& \text { Poler } \\
& \text { cord. } \stackrel{D}{=} \int_{S^{n-1}(1)} \int_{0}^{r(v)} \operatorname{det}\left(d\left(\exp _{p}\right)_{t v}\right) t^{n-1} d t d v
\end{aligned}
$$

 Recall: cut locus of P

$$
\operatorname{Br}(p)=\exp _{p}(\operatorname{Br}(0))=\exp _{p}\left(\operatorname{Br}_{r}(0) \cap C_{p}\right)
$$

where $r(v)=\min \{r, \operatorname{cut}(v)\}$ for $v \in T_{p} M,\|v\|=1$, le. $v \in S^{n-1}(1) \subset T_{p} M$.

Since $d\left(\exp _{p}\right)_{t v} e_{i}=\frac{1}{t}\left(d\left(\exp _{p}\right)_{t v}\right.$ tee $)=\frac{1}{t} J_{i}(t)$ is the Jacobi field along $t \mapsto \operatorname{expp}_{p} t v$ with $J_{i}(0)=0$ and $J_{i}^{\prime}(0)=e_{i}$, it follows that $\operatorname{det}\left(A\left(\exp _{p}\right)_{t v}\right)=\frac{1}{t^{n-1}} \operatorname{det}\left(J_{1}(t), \ldots, J_{n-1}(t)\right)$ and hence:

$$
V_{0}(\operatorname{Br}(p))=\int_{S^{n-1}(1)} \int_{0}^{r(v)} \underbrace{\operatorname{det}\left(J_{1}(t), \ldots, J_{n-1}(t)\right)}_{\hat{V}_{V}(t)} d t d v
$$

if needed, extend $j_{v}(t)$ as $\dot{j}_{v}(t)=0$ for $t>\operatorname{cut}(v)$.

By previous result, $j v(t) / \bar{j}(t)$ is non increasing on $[0, r]$, where
$\bar{J}(t)=\operatorname{det}\left(\bar{J}_{1}, \ldots, \bar{J}_{n-1}\right)$, for corresponding Jacobi fields $\overline{J_{i}}$ or \bar{M}.
Set $q(t)=\frac{1}{v_{0}\left(\left(S^{n-1}(1)\right)\right.} \int_{S^{n-1}(1)} \frac{j_{v}(t)}{\bar{J}(t)} d v$, which is also non-increasing (because it is an average of nonincreaseng quantities). As before,

Thus,

$$
\begin{aligned}
& \text { Gus, } \\
& \frac{\operatorname{VQ}\left(B_{r}(p)\right)}{\operatorname{Vol}\left(\overline{B_{r}}\right)}=\frac{\int_{S^{n-1}(1)} \int_{0}^{r} j_{u}(t) d t d v}{\operatorname{Vol}\left(S^{n-1}(1)\right) \cdot \int_{0}^{r} \bar{J}(t) d t} \stackrel{\text { Fubini }}{=} \frac{\int_{0}^{r} q(t) \cdot \bar{j}(t) d t}{\int_{0}^{r} \bar{J}(t) d t}
\end{aligned}
$$

is monincreesing, because RHS is the (\bar{J}-weighted) average ${ }^{(2)}$ of the nouincreasing function $q(t)$ over growing intervals.
(*) More explicitly: if $\phi, \psi>0$, and $t \mapsto \frac{\phi(t)}{\psi(t)}$ is non increasing, then $r \mapsto \frac{\int_{0}^{r} \phi(t) d t}{\int_{0}^{r} \psi(t) d t}=\frac{\int_{0}^{\bar{r}} \frac{\phi(s)}{\psi(s)} d s}{\int_{0}^{\bar{r}} d s}$ is non increasing, where $\left\{\begin{array}{l}d s=\psi(t) d t \\ \bar{r}=s(r) .\end{array}\right.$
Rigidity statement follows from rigiolity statements in ODE comparison: if $\forall v \in S^{n-1}(1), \forall 0 \leq t \leq r, \dot{J}_{v}(t)=J(t)$, then $a(t)=\bar{a}(t)$, for all $0 \leq t \leq r$; so $R(t)=\bar{R}(t)=k I d$. Thus $B_{r}(p)$ has constant curvature sec $\equiv k$ and is hence isometric to $\overline{B_{r}}$.
Remark: Similarly, one can prove $r \mapsto \frac{V_{0 l}\left(\partial B_{r}(p)\right)}{V_{0 l}\left(\partial \overline{B_{r}}\right)}$ is nonincreaxing.
Geometrically:

$$
\begin{aligned}
\operatorname{Vol}\left(B_{r}(p)\right) & \leq \operatorname{Vol}\left(\overline{B_{r}}\right) \\
& = \\
\pi & \\
B_{r}(p) & \cong \overline{B_{r}}
\end{aligned}
$$

With stronger control on arrature $\sec \geqslant k$ we know that:
 so "integrating" get the above.

But
$R_{i c} \geqslant K(n-1)$ is "enough for this "integral" control.

Another situation in which "integral"/ "average" control is enough:
Thu (Myers, 1941). If (M, η) is a complete Rem. mfld $w /$ Sic $\geqslant k(n-1)$, with $K>0$, then $\operatorname{diam}\left(M^{n}, g\right) \leq \frac{\pi}{\sqrt{k}}$. In particular, $\left(M^{n}, g\right)$ is compact and $\pi_{1} M$ is finite.

To prove this, need more about variational structure of geoderics:
Fix pi, M and $X=\left\{\gamma \in W^{1,2}([0, l], M): \gamma(0)=p, \gamma(e)=q\right\}$ This is a thiebert
 manifold locally modeled on Hilbert space $W^{1,2}\left([0,1], \mathbb{R}^{n}\right)$
Given $\gamma \in X$, can identify

$$
\begin{aligned}
& T_{\gamma} X=\left\{V \in W^{1,2}([0, l], T M): \begin{array}{l}
\text { vector field along } \gamma \text { with } \\
V(0)=0 . V(l)=0
\end{array}\right\}
\end{aligned}
$$

Define the energy functional $E: X \rightarrow \mathbb{R}$

$$
E(\gamma)=\frac{1}{2} \int_{0}^{l} g(\dot{\gamma}, \dot{\gamma}) d t
$$

\leftarrow Aeteruativaly, con consider function.

Then $\gamma \in X$ is a critical point, ie. $\delta E(\gamma)=0$, if γ is a geoderic. Indeed: on curves $\gamma \in W^{1,1}$ (more on this later!)
First Variation: $\delta E(\gamma)(v)=\left.\frac{d}{d s} E\left(\gamma_{s}\right)\right|_{s=0}=\left.\frac{1}{2} \int_{0}^{l} \frac{d}{d s} g\left(\dot{\gamma}_{s}, \dot{\gamma}_{s}\right)\right|_{s=0} d t$

$\left(\right.$ e.g. $\left.\gamma_{s}(t)=\exp _{\gamma_{0}(t)} s V(t).\right)$

$$
=\int_{0}^{l} g\left(\left.\frac{D}{d s} \dot{\gamma}_{s}\right|_{s=0}, \dot{\gamma}\right) d t=\int_{0}^{l} g\left(\frac{D V}{d t}, \dot{\gamma}\right) d t
$$

int by

$$
\begin{gathered}
\text { int. by } \\
\text { ports } \\
=0 \\
=0 / c \\
\left.g(V, \dot{\gamma})\right|_{0} ^{l} \\
\underbrace{l}_{0} g\left(V, \frac{D \dot{\gamma}}{d t}\right) d t . \int_{0}^{l} g(t) \\
\hline
\end{gathered}
$$

boundary
condition
conditions ore

$$
V(0)=0, V(e)=0
$$

So $\delta E(\gamma)(V)=\left.\frac{d}{d s} E\left(\gamma_{s}\right)\right|_{s=0}=0$ for all variations $\gamma_{s} \frac{\text { if and only if }}{}$
$\frac{D \dot{\gamma}}{d t}=0$ ie. γ is a geodesic. (and hence $\|\dot{\gamma}\|=$ const.)

Fundamental Lemma of the Calculus of Variations:

$$
\int \phi \psi=0, \forall \psi \Leftrightarrow \phi=0
$$

$$
\text { ie. }\langle\phi, \psi\rangle_{L^{2}}=0, \forall \psi \Leftrightarrow \phi=0
$$

Second Variation: Suppose γ is a geodesic. Then the "Hessian" of E at γ is (being sloppy about regularity. use test function $\psi \in C_{c c}^{\infty}$ etc..)

$$
\begin{aligned}
& \underbrace{\delta^{2} E(\gamma)}(V, V)=\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{s=0}=\left.\frac{1}{2} \int_{0}^{l} \frac{d^{2}}{d s^{2}} g\left(\dot{\gamma}_{s}, \dot{\gamma}_{s}\right)\right|_{s=0} d t \\
& \delta^{2} E(\gamma) ; T_{\gamma} X \times T_{\gamma} X \rightarrow \mathbb{R} \\
& \text { symmetric "bilinear form } \\
& \text { called the "Index Form", } \\
& =\left.\int_{0}^{l} \frac{d}{d s} g\left(\frac{D}{d s} \dot{\gamma}_{s}, \dot{\gamma}_{s}\right)\right|_{s=0} d t \\
& \text { or } \delta^{2} E(\gamma): T_{\gamma} X \rightarrow T_{\gamma} X \\
& \text { symmetric endomorphism } \\
& =\int_{0}^{l} g\left(\left.\frac{D^{2}}{d s^{2}} \dot{\gamma}_{s}\right|_{s=0}, \dot{\gamma}\right)+g\left(\frac{D}{d s} \dot{\gamma}_{s}, \frac{D}{d s} \dot{\gamma}_{s}\right)_{s=0} d t \\
& V=\frac{\partial}{\partial S} \gamma_{s} \stackrel{\rightharpoonup}{=} \int_{0}^{l} g\left(\frac{D}{d S} V^{\prime}, \dot{\gamma}\right)+g\left(V^{\prime}, V^{\prime}\right) d t \\
& V^{\prime}=\frac{D V}{d t}=\frac{D}{d t} \frac{\partial}{\partial s} \gamma_{s}=\frac{D}{d s} \frac{\partial}{\partial t} \gamma_{s}=\frac{D}{d s} \dot{\gamma}_{s} \\
& =\int_{0}^{l} g\left(\frac{D}{d t} \frac{D}{d s} V+R(V, \dot{\gamma}) V, \dot{\gamma}\right)+g\left(V^{\prime}, V^{\prime}\right) d t \\
& =\int_{0}^{l} g\left(\frac{D}{d t} \frac{D}{d s} V, \dot{\gamma}\right)-g(R(V, \dot{\gamma}) \dot{\gamma}, V)+g\left(V^{\prime}, V^{\prime}\right) d t
\end{aligned}
$$

int. by

$$
\begin{aligned}
& +\underbrace{\left.g\left(V^{\prime}, V\right)\right|_{0} ^{l}}_{=0 b / c V(0)=0, V(l)=0}-\underbrace{\int_{0}^{l} g\left(V^{\prime \prime}, V\right)}_{49}+g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t
\end{aligned}
$$

$$
\begin{aligned}
& =-\int_{0}^{l} g\left(V^{\prime \prime}, V\right)+g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t \\
& =-\int_{0}^{l} g(\underbrace{V^{\prime \prime}+R(V, \dot{\gamma})} \dot{\gamma}, V) d t
\end{aligned}
$$

This vanishes if V is a Jacob field:

$$
V^{\prime \prime}+R(V, \dot{\gamma}) \dot{\gamma}=0
$$

Note: If $\sec _{M}>0$, then $g(R(V, \dot{\gamma}) \dot{\gamma}, V)>0$, so using a parallel vector field V along a geodesic γ, get

$$
\begin{aligned}
& \delta^{2} E(\gamma)(V, V)=-\int_{0}^{l} g\left(V_{0}^{\prime \prime}, V\right)+\underbrace{g(R(V, \dot{\gamma}) \dot{\gamma}, V)}_{>0}<0 \\
& \gamma \text { is unstable; small variations of } \gamma \text { decrease }
\end{aligned}
$$

i.e. γ is unstable; small variations of γ decrease its energy (and its length). Recall/cf. application of Ranch II

$$
\sec >0
$$

Remarks about Energy v. Leith of curves:

- Critical points of E come parametrized w/ constant speed, ie. $\delta E(\gamma)=0$ implies $\|\dot{\gamma}\|=$ constr., while the length functional is invariant under reparametrizations of γ_{i} in particular critical points meed not have constant speed.
- Apply Cauchj-Schwortz inequality $\left(\int_{0}^{l} \phi \cdot \psi\right)^{2} \leq \int_{0}^{l} \phi^{2} \cdot \int_{0}^{l} \psi^{2}$ with $\phi \equiv 1$ to get $L(\gamma)^{2}=\left(\int_{0}^{l}\|\dot{\gamma}\| d t\right)^{2} \leq l \cdot \int_{0}^{l}\|\dot{\gamma}\|^{2} d t=2 l E(\gamma) \quad$ and $"="$ if $\|\dot{\gamma}\| \equiv 1$. So if γ is a unit speed min. geod. from p to q, and β is a curve from γ to q, then $E(\gamma)=\frac{1}{2 l} L(\gamma)^{2} \leq \frac{1}{2 l} L(\beta)^{2} \leq E(\beta)$, with $E(\gamma)=E(\beta)$ if and only if β is unit speed and hence $L(\beta)=L(\gamma)$ so β is a unit speed min. gear. from p to q.
Uphot: γ is a critical point of $E \Longleftrightarrow \gamma$ is a unit speed geodesic.
γ is a minimizer of $E \Longleftrightarrow \gamma$ is a unit speed min. geodesic - redizes distance W/ boundary conditions: $E: X \rightarrow \mathbb{R}, X=\left\{\gamma \in W^{1,2}([0, e], M), \gamma(0)=p, \gamma(l)=f\right\}$.

Useful for later: if $\gamma:[0, \ell] \rightarrow M$ is unit speed, then given any variation V, ie. a vector field V along γ, we hove:

$$
\delta L(\gamma)(V)=\frac{1}{l} \delta E(\gamma)(V)=\frac{1}{l}\left(\left.g(V, \dot{\gamma})\right|_{0} ^{l}-\int_{0}^{l} g\left(V, \frac{D \dot{\gamma}}{d t}\right) d t\right)
$$

If $\delta L(\gamma)=0$ (equivalently $\delta E(\gamma)=0$), then

$$
\begin{aligned}
\delta^{2} L(\gamma)(V, V) & =\frac{1}{e} \delta^{2} E(\gamma)(V, V) \\
& =\frac{1}{e}\left(\left.g\left(\nabla_{V} V, \dot{\gamma}\right)\right|_{0} ^{l}+\int_{0}^{l} g\left(V^{\prime}, V^{\prime}\right)-g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t\right)
\end{aligned}
$$

If of Myers Thu: Suppose M has $R_{i c} \geqslant k(n-1)>0$, and let $\gamma:[0, l] \rightarrow M$ be a unit speed geodesic, ie. $\delta E(\gamma)=0$.
If γ is min., ie. $\operatorname{dist}(\gamma(0), \gamma(l))=l$, then $\delta^{2} E(\gamma)(v, v) \geqslant 0$ for all V along γ with $V(0)=0$ and $V(l)=0$. Let $\left\{E_{i}\right\}$ be a parallel on. b. of vector fields along γ_{1} ie, $g\left(E_{i}, \tilde{\gamma}\right)=0, g\left(E_{i}, E_{j}\right)=\delta_{i j} ;$ and Set

$$
\begin{aligned}
& V_{i}(t)=\sin \left(\frac{\pi t}{l}\right) E_{i}(t) \text {, so } V_{i}(0)=0 \text { and } V_{i}(l)=0 \\
& V_{i}^{\prime}(t)=\frac{\pi}{l} \cos \left(\frac{\pi t}{l}\right) E_{i}(t)+\sin \left(\frac{\pi t}{l}\right) \underbrace{E_{i}^{\prime}(t)}_{=0} \\
& V_{i}^{\prime \prime}(t)=-\frac{\pi^{2}}{l^{2}} \sin \left(\frac{\pi t}{l}\right) E_{i}(t)+\frac{\pi}{l} \cos \left(\frac{\pi t}{l}\right) \underbrace{E_{i}^{\prime}(t)}_{=0}=\int_{0}^{l} \sin \left(\frac{\pi t}{l}\right)^{2}\left(\frac{\pi^{2}}{l^{2}}-g\left(R\left(V_{i}, V_{i}\right)=-\int_{0}^{l} g\left(V_{i}^{\prime \prime}\right) V_{i}\right)+g\left(R\left(V_{i}, \dot{\gamma}\right) \dot{\gamma}, V_{i}\right)\right) d t \\
& \hline
\end{aligned}
$$

Thus, adding from $i=1$ to $i=n-1$:

$$
\begin{aligned}
0 \leq \sum_{i=1}^{n-1} \delta^{2} E(\gamma)\left(V_{i}, V_{i}\right) & =\sum_{i=1}^{n-1} \int_{0}^{l} \sin \left(\frac{\pi t}{l}\right)^{2}\left(\frac{\pi^{2}}{l^{2}}-g\left(R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}, E_{i}\right)\right) d t \\
& =\int_{0}^{l} \sin \left(\frac{\pi t}{l}\right)^{2}((n-1) \frac{\pi^{2}}{l^{2}}-\underbrace{\sum_{i=1}^{n-1} g\left(R\left(E_{i}, \dot{\gamma}\right) \dot{\gamma}, E_{i}\right)}_{\operatorname{Ric}_{i c}(\dot{\gamma}, \dot{\gamma}) \geqslant K(n-1)}) d t \\
& \leq \int_{0}^{l} \sin \left(\frac{\pi t}{l}\right)^{2}(n-1) \underbrace{\left.\frac{\pi^{2}}{l^{2}}-k\right)}_{<0 \text { if }} d t
\end{aligned}
$$

So such minimizing unit speed geod. $\gamma:[0,0] \rightarrow M$ must have length $\ell \leqslant \frac{\pi}{\sqrt{k}}$, for otherwise we get a contradiction above.

Rigidity in Myers Theorem
(Originally by Shiv-Yuen ching, with different proof) L student of S.S chem

Tum. Let $\left(M_{1}^{n}, g\right)$ be a complete Riem. meld with Vic $\geqslant K \cdot(n-1)>0$ and $\operatorname{diam}\left(M^{n}, g\right)=\operatorname{diam}\left(S^{n}(1 / \sqrt{k})\right)=\frac{\pi}{\sqrt{k}}$. Then $\left(M^{n}, g\right) \underset{\text { ison. }}{\cong} S^{n}(1 / \sqrt{k})$.

Pf: Let $p, p \in M$ be points at maximal distance, ie. $\operatorname{dist}(p, q)=\frac{\pi}{\sqrt{k}}$ Then, for all $r>0$, the balls $B_{r}(p)$ and $B_{\frac{\pi}{\sqrt{k}}-r}(q)$ are disjoint: if $d(p, x)<r$ and $d(x, q)<\frac{\pi}{\sqrt{k}}-r$, then

$$
\frac{\pi}{\sqrt{k}}=d(p, q) \leq d(p, x)+d(x, q)<\frac{\pi}{\sqrt{k}}
$$

so no such x can exist. Thus, $M \supseteq B_{r}(p) \dot{U} B_{\frac{\pi}{\sqrt{k}}-r}(q)$ (disjoint union)
hence $V_{o l}(M) \geqslant V_{\theta l}^{\otimes}\left(B_{r}(p)\right)+V_{0 l}\left(B_{\frac{\pi}{\sqrt{k}}-r}(q)\right)$. From Bishop Vol. Comp., $r \longmapsto \frac{\operatorname{Vol}\left(\operatorname{Br}_{r}(x)\right)}{\operatorname{Vol}\left(\overline{B_{r}}\right)}$ is now increasing; in particular,

$$
\frac{V_{\theta}\left(B_{r}(x)\right)}{V_{o l}\left(\overline{B_{r}}\right)} \geqslant \frac{V \operatorname{Vol}\left(B_{\frac{\pi}{\sqrt{k}}}(x)\right)}{V_{\theta l}\left(\overline{B_{\frac{\pi}{\sqrt{k}}}}\right)}=\frac{\operatorname{Vol}(M)}{\operatorname{Vol}\left(S^{n}(1 / \sqrt{k})\right)} b / c\left\{\begin{array}{l}
\overline{B_{\sqrt{k}}}=S^{n}(1 / \sqrt{k}) \\
B_{\frac{\pi}{\sqrt{k}}}(x)=M
\end{array}\right.
$$

ie. $\quad \operatorname{Vol}\left(B_{r}(x)\right) \geqslant \frac{\operatorname{Vol}(M)}{\operatorname{Val}\left(S^{n}(1 / \sqrt{k})\right)} \operatorname{Vol}\left(\overline{B_{r}}\right)$. Thus, applying this in \#:

$$
\operatorname{Val}(M) \geqslant \frac{\operatorname{Val}(M)}{\operatorname{Val}\left(S^{n}(1 / \sqrt{k})\right)}(\underbrace{\operatorname{V} l\left(\overline{B_{r}}\right)+\operatorname{Val}\left(\overline{B_{\frac{\pi}{k}}}-r\right.}_{V_{\theta} l\left(S^{n}(1 / \sqrt{k})\right)}))=\operatorname{Val}(M) \text {; so all }
$$

the inequalities using Bishop Vol. Comp above are equalities. Thus, from rigidity in the equity case of Bishop Vol. Comp., we have $B_{r}(p) \cong \overline{B_{r o m}}$ and $B_{\frac{\pi}{\sqrt{k}}-r}(q) \underset{\text { isom }}{\cong} \overline{B_{\frac{\pi}{\sqrt{k}}}}$, thus $M \cong S^{n}(y / \sqrt{k})$.
 Indeed, there is no room for any $M \backslash \overline{\left(B_{r}(p) \cup B_{\frac{\pi}{\sqrt{k}}-r}(q)\right)}$ because that would increase the diameter.

Open problem: If $\left(M^{n}, z\right)$ has $R i c \geqslant(n-1) K>0$ and $\operatorname{Vol}(M, g)>\frac{1}{2} \operatorname{Vgl}\left(S^{n}(1 / \sqrt{k})\right)$, then $M \underset{\text { home o ? }}{\cong} S^{n}$ diff o?
Exercise: a) Find counter-example with $V_{O l}(M, g)=\frac{1}{2} \operatorname{Vol}\left(S^{n}(1 / \sqrt{k})\right)$.
b) Prove that (M^{n}, g) as above is simply-connected. Hint: if M is not simply connected, take its universal corer.

Lecture 8
Sol to Exercise
a) $\mathbb{R} P^{n}\left(\frac{1}{\sqrt{k}}\right)=\mathbb{S}^{n}\left(\frac{1}{\sqrt{k}}\right) / \mathbb{Z}_{2}$, where $\mathbb{Z}_{2} \curvearrowright \mathbb{S}^{n}\left(\frac{1}{\sqrt{k}}\right)$ has a metric $\pm 1 \cdot x= \pm x$ with $\sec \equiv K$, hence $R_{i c}=(n-1) k$, and $\operatorname{Vol}\left(\mathbb{R} P^{n}(1 / \sqrt{k})\right)=\frac{1}{2} \operatorname{Val}\left(\mathbb{S}^{n}(1 / \sqrt{k})\right)$. Clearly, $\pi_{1} \mathbb{R} P^{n}=\mathbb{Z}_{2}$.

b) If $\left(M^{\prime}, g\right)$ has $R_{i c} \geqslant(n-1) k$, and $[\gamma] \in \pi_{1} M$, let $\Gamma=<[\gamma]><\pi_{1} M$ be the subgroup generated by $[\gamma]$, set $d=|\Gamma|$. Then let $\tilde{M}^{n} \rightarrow M^{n}$ be the covering space corresponding to Γ, recall it is a degree d covering. In porticuler, with the pullback metric, by Fubini, and our assumption,

$$
\operatorname{Vol}(\widetilde{M}, \tilde{g}) \stackrel{r}{=} d \cdot \operatorname{Vol}(M, \delta)>\frac{d}{2} \operatorname{Vol}\left(S^{n}(1 / \sqrt{k})\right)
$$

Since $\left(\tilde{M}_{1}^{n}, \tilde{g}\right)$ also has $R_{i c} \geqslant(n-1) k$, by Bishop Volume Comparison, $\operatorname{Vol}(\tilde{M}, \tilde{g}) \leq \operatorname{Vol}\left(\mathbb{S}^{n}(1 / \sqrt{k})\right)$, so $d<2$, ie. $|\Gamma|=d=1$ so $[\gamma]$ is trivial, hence $\pi_{1} M=\{1\}$.

Toponogov Triangle Comparison
Triangle Version
If $\left(M_{1}, g\right)$ has sec $\geqslant k, \quad \sigma_{1} p_{0}, p_{1} \in M$, $\gamma:[0,1] \rightarrow M$ geod from p_{0} to p_{1}, β_{i} min. geod from θ to p_{i}, then $d=\operatorname{dist}_{g}(\sigma, \gamma(t)) \geqslant \tilde{d}=\operatorname{dist}_{\tilde{\tilde{g}}}(\tilde{\gamma}, \tilde{\gamma}(t))$ for all $t \in[0, L]$ and $\alpha_{i} \geqslant \tilde{\alpha}_{i}$.

Here and throughout: if $k>0$, then assume all lengths ore $<\frac{\pi}{\sqrt{k}}$.

Hinge Version
If $\left(M^{*}, 8\right)$ has $\sec \geqslant k, \quad \theta, p_{0}, p, M$,
β_{i} min. gaol from θ to γ_{i}, Then $l(\gamma) \leq l(\tilde{\gamma})$; where $\gamma, \tilde{\gamma}$ are the min. geod. that close the hinge: $l(\gamma)=\operatorname{dist}^{\prime}\left(p_{0}, p_{1}\right)$
original triangle
 $\mathrm{sec} \geqslant k$

Comp. triangle w/ same hinge: $l\left(\beta_{i}\right)=l\left(\vec{\beta}_{i}\right), \alpha=\tilde{\alpha}$

sec $\equiv k$

Corollary: A geodesic triangle on a manifold with sec $\geqslant 0$ satisfies

(i) $l(c)^{2} \leq l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma$
$l=$ length
(ii) $\alpha+\beta+\gamma \geqslant \pi \quad$ If $\sec >0$, then get strict inequalities.

Pt: (i) is immediate:
Gauss Lemma

$$
\begin{gathered}
l\left(\left.a\right|^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma \stackrel{y}{=} l(\bar{a})^{2}+l(\bar{b})^{2}-2 l(\bar{a}) l(\bar{b}) \cos \gamma\right. \\
\begin{array}{c}
\text { Lew of cosines } \\
\text { in } \not \mathbb{R}^{2}
\end{array} l(\bar{c})^{2} \\
\text { Toponogov (Hinge) }
\end{gathered}
$$

(ii) Follows from (i) as in the sec ≤ 0 case: build companion triangle in \mathbb{R}^{2} with side lengths $l(a), l(b), l(c)$, and angles $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$. Then $l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma \geqslant l(c)^{2}$

So $\cos \gamma \leq \cos \bar{\gamma}$ hence

$$
=l(a)^{2}+e(b)^{2}-2 l(2) l(b) \cos \bar{x}
$$

$\gamma \geqslant \bar{\gamma}$. Similarly for α, β and get
Combining above w/
earlier work on sec
Cor: $\left(M^{n}, \delta\right)$ has $\sec \geqslant 0(\leq 0)$ iff $\forall p \in M$, $\exp _{p}: C_{p} \subset T_{p} M \stackrel{\text { As before }}{\sim} M$ is distance Mon-increasing (nor-decreasing).

In \mathbb{R}^{2}, build comparison triangles for each of the 3 triangles containing poj then sum of angles at \hat{p}_{0} is:

$$
\theta \leq 2 \pi
$$

Thu. On a Riem mold; each of the above characterizes sec $\geqslant K$:
Sec $\geqslant K \Longleftrightarrow$ Triangle Version \Longleftrightarrow Hinge Version \Longleftrightarrow Four point Version. Metric space where distances are resized by lengths of curves
Note: The four point version maker sense on any length space (M, d), and is sometimes written curv $\geqslant k$, if M is not a manifold. If M is a locally compact complete length space with curv $\geqslant k$ then it is celled an Alexandrov space: \longleftarrow Very useful to study Rem. mfles w/ sec $\geqslant k$ of. "distributions" to study solutions to PDES...

An aside about length spaces:
Def: $\gamma:[0, L] \rightarrow M$ is rectifiable if it has finite length:

$$
l(\gamma)=\sup _{0=t_{0}<t_{1}<\cdots<t_{n}=L \underbrace{\sum_{k=1}^{n} d\left(\gamma\left(t_{k}\right), \gamma\left(t_{k-1}\right)\right)}, ~}^{\sum^{n}}
$$

Def: (M, d) is a length space if $\forall x, y \in M$,
$d(x, y)=\inf \{l(\gamma): \gamma$ rectifiable curve joining x and $y\}$.
It is complete if $\forall x, y \in M$ there exists a minimizing rectifieble curve realizing $d(x, y)$ ie. achieving the above inf.
Example: Any Riem. mfld. Non-exauple: $\mathbb{S}^{1} \subset \mathbb{R}^{2} w /$ chordal metric.

Proof of Toponogov Triangle Comparison (Triangle Version):
Proof by Kercher, mot the orgind Toponogor proof. Other prays posable
Preliminaries: $\rho(x)=\operatorname{dist}_{g}(x, \theta)$ is C^{∞} on $M \backslash(\theta \cup \operatorname{Cut}(\theta))$ using Raved.
$\nabla_{\rho} \nabla_{\rho}$ is the unit radial vector field, $\rho\left(\exp _{\sigma}(v)\right)=\|v\|$. $S_{r}=\rho^{-1}(r)=2 B_{r}(\theta)$ are equidistant hypersorfaces.
If $\sec \geqslant k$, then Ricatti comparison gives $A \leq \tilde{A}=\frac{s n_{k}^{\prime}}{S n_{k}} I d$, where $A=\nabla(\nabla \rho)=$ Hess ρ and $\quad s u_{k}^{\prime \prime}+k \operatorname{sun}_{k}=0, \quad \operatorname{sn}(0)=0, \quad \operatorname{sn}_{k}^{\prime}(0)=1$.
So $\left.A\right|_{\nabla_{p}} \leq \frac{\delta n_{k}^{\prime}}{S n_{k}}$ Id and $\left.A\right|_{\nabla_{p}}=0 \sim \mathrm{lc} \rho$ grows linearly along integral curves of ∇_{p}. Moreover, $\tilde{A}_{\nabla \tilde{p}^{1}}=\frac{S n_{k}^{\prime}}{S n_{k}} I d$ and

$$
\left.\tilde{A}\right|_{\nabla_{p}}=0
$$

Very common trick in
Consider fop, where f is to be chosen later. Then, by Chain Rule,

$$
\begin{aligned}
\nabla(f o p)=f^{\prime}(\rho) \nabla_{\rho} \Rightarrow \quad \text { Hess } & \left(f_{0} \rho\right)\left(X_{1}, y\right)=\left\langle\nabla_{x} \nabla(f \circ \rho), Y\right\rangle \\
& =\left\langle X\left(f^{\prime}(\rho)\right) \nabla_{\rho}+f^{\prime}(\rho) \nabla_{x} \nabla \rho, Y\right\rangle \\
& =f^{\prime \prime}(\rho) d_{\rho}(X) d_{\rho}(y)+f^{\prime}(\rho) \operatorname{Hess} \rho(X, Y)
\end{aligned}
$$

So, on $\nabla_{\rho} \frac{1}{1}$, since first term vanishes, Hess $(f o \rho)=f^{\prime}(\rho)$ Hess ρ

$$
\leq f^{\prime}(p) \frac{s n_{k}^{\prime}}{s n_{k}} I d
$$

and an $\operatorname{span}\left\{\nabla_{\rho}\right\}, H_{\operatorname{ess}}\left(f_{\rho} \rho\right)\left(\nabla_{\rho}, \nabla_{\rho}\right)=f^{\prime \prime}(\rho) \underbrace{\nabla_{\rho} \|^{4}}_{=1}+f^{\prime}(\rho) \underbrace{\operatorname{Hess} \rho\left(\nabla_{\rho}, \nabla_{\rho}\right)}_{=0}=f^{\prime \prime}(\rho)$.

Choose f so that $f^{\prime}=s n_{k}$ so $s n_{k}^{\prime \prime}+k s n_{k}=0 \Rightarrow f^{\prime \prime \prime}+k f^{\prime}=0$ integrate
$f^{\prime \prime}+k f=C$, so $f^{\prime \prime}(\rho)=-k f(\rho)+C$. Thus, This choice makes both bounds $\prime^{\prime} n^{\prime}$ so get a bound on the wheres space.

$$
\left\{\begin{array}{l}
\text { Hess }(f \circ \rho) \leq \frac{f^{\prime} s n_{k}^{\prime}}{s n_{k}} I d=s n_{k}^{\prime} I d=f^{\prime \prime}(\rho) I d=-k f(\rho)+C \text { on } \nabla_{\rho} \perp^{\text {so }} \text { get a bound on the whee spa } \\
\text { Hess } \left.(f o p) \leq f^{\prime \prime}(\rho)=-k f(\rho)+C \text { on span\{ } \nabla_{\rho}\right\} .
\end{array}\right.
$$

Upshot: Hess $\left(f_{0} \rho\right) \leq-K(f \circ \rho) I d+C$; andogoosly, Hos $(f \circ \tilde{\rho}) \leq-K(f \circ \tilde{\rho}) I_{d}+C$
Let $\left.\delta(t):=f\left(\operatorname{dist}_{g}(\theta, \gamma(t))\right)-f(\widetilde{\operatorname{dis} t}(\tilde{\theta}, \tilde{\gamma}(t)))=(f \circ \rho \circ \gamma)(t)-(f \circ \tilde{\rho} \circ \tilde{\gamma})(t)(b k) 5 n>0\right)$
We wart to show that $\delta(t) \geqslant 0$ for all $t \in[Q L]$. Note: f is is increasing, so $\delta \geqslant 0$
If not, $\exists t_{*} \in[0, L]$ with $\delta\left(t_{*}\right)<0$, and $m=\min \delta(t)<0$.
If $k>0$; Let $k^{\prime}>k$ be suff. Close and $6>0$ s.t.

$$
L<\frac{\pi}{\sqrt{k^{\prime}}}-6
$$

so that the comp. triangle $w /$ length $L+Z$ still exists in sec $\equiv K^{\prime}$. If $K \leq 0$, ignore.
Let a_{0} be sol. to $a_{0}^{\prime \prime}+k^{\prime} a_{0}=0$ s.t. $a_{0}(-6)=0, \quad a_{0} \mid[0,1] \leq m$; ie. $a_{0}(t)=-\mu \cdot \sin _{k^{\prime}}(t+6)$ supp. large constant $\mu>0$. Then $\exists \lambda>0$ st. $a=\lambda a_{0}$ satisfies

$$
a \leq \delta \text { and } a\left(t_{0}\right)=\delta\left(t_{0}\right) \text { for some } t_{0} \in(0, L) \text {. }
$$

Similarly, on \tilde{M} with sec $\equiv k$, we hove "Upshot" above

$$
\frac{d^{2}}{d t^{2}} f(\operatorname{dist}(\tilde{\theta}, \tilde{\gamma}(t)))=\operatorname{Hess}(f \circ \tilde{\rho} \circ \tilde{\gamma})\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) \leq-K(f \circ \tilde{\rho} \circ \tilde{\gamma})(t)+C
$$

Thus, $\delta^{\prime \prime}=\frac{d^{2}}{d t^{2}}\left(f \circ \rho \circ \gamma-f \circ \tilde{\rho} \circ \gamma^{2}\right) \leq-k[f \circ \rho \circ \gamma-f \circ \tilde{\rho} \circ \dot{\gamma}]=-K \delta$.
On the other hond, $a^{\prime \prime}=-K^{\prime} a$ and $\delta\left(t_{0}\right)=a\left(t_{0}\right)<0$

$$
(\delta-a)^{\prime \prime}\left(t_{0}\right) \leq-k \delta\left(t_{0}\right)+k^{\prime} \underbrace{a\left(t_{0}\right)}_{=\delta\left(t_{0}\right)}=\underbrace{\delta\left(t_{0}\right)}_{<0} \cdot \underbrace{\left(k^{\prime}-k\right)}_{>0}<0
$$

which contradicts the fact that to is a minimum for $\delta(t)-a(t)$
Case 2: $\gamma\left(t_{0}\right) \in \operatorname{Cut}(\theta)$. Let β be a min. geod. from θ to $\gamma\left(t_{0}\right)$
 Choose $\sigma_{\varepsilon}=\beta(\varepsilon)$, replace $\rho=\operatorname{diot}(,, \theta)$ with $\rho_{\varepsilon}=\operatorname{dist}\left(., \theta_{\varepsilon}\right)+\operatorname{dist}\left(\theta_{\varepsilon}, \theta\right)$. By the triangle inequality, $\quad \rho_{\varepsilon}\left(\gamma \mid t_{0}\right) \geqslant \rho\left(\gamma\left(t_{0}\right)\right)$, and $\rho_{\varepsilon}\left(\gamma\left(t_{0}\right)\right)=\rho\left(\gamma\left(t_{0}\right)\right)$, Since β is min. from θ_{ε} to $\gamma\left(t_{0}\right)$, we have $\gamma\left(t_{0}\right) \notin \operatorname{Cut}\left(\theta_{\varepsilon}\right)$. Reasoning as before with $f_{0} / \rho_{\varepsilon}$, and sending $\varepsilon \searrow \gg$, get

$$
\left(f \circ \rho_{\varepsilon} \circ \gamma\right)^{\prime \prime} \leq-k\left(f \circ \rho_{\varepsilon} \circ \gamma\right)+C+\text { error }
$$

Then fo ρ_{ε} is upper support function for fop at $\gamma\left(t_{0}\right)$, and hence $\delta_{\varepsilon}=f \circ \rho \varepsilon \circ \gamma-\rho_{0} \stackrel{\sim}{\rho} \circ \vec{\gamma}$ is st. $\delta_{\varepsilon}-a$ is upper support function for δ at to. Thus, it also attains a minimum et to, contradicting $\left(\delta_{\varepsilon}-a\right)^{\prime \prime}\left(t_{0}\right)<0$.

Finally, in order to prove that $\alpha_{i} \geqslant \tilde{\alpha}_{i}$, we again argue by contradiction. Suppose $\alpha_{0}=$ angle between β_{0}^{\prime} and $\gamma^{\prime}(0)$

$$
\tilde{\alpha}_{0}=\underline{U}=\tilde{\beta}_{0}^{\prime} \text { and } \tilde{\gamma}^{\prime}(0)
$$

satisfy $\alpha_{0}<\tilde{\alpha}_{0}$. Assume $p_{0} \notin \operatorname{Cut}(\theta)$, so $\exp _{0}$ is invertible near p_{0}. Let β_{t} be the shortest curve joining θ to $\gamma(t)$, and similarly $\tilde{\beta}$. Assume $\beta_{t}:[0,1] \rightarrow M$ for each $t_{\text {; }}$

$\sec \equiv k$
 Men, Taylor series expansions give:

$$
\begin{aligned}
& \operatorname{dist}_{g}(\theta, \gamma(t))=L\left(\beta_{t}\right)=\operatorname{dist}\left(\theta, \gamma_{0}\right)+\left.t \frac{d}{d t} L(\beta t)\right|_{t=0}+O\left(t^{2}\right) \\
& \operatorname{dist}(\tilde{\theta}, \tilde{\gamma}(t))=L\left(\tilde{\beta}_{t}\right)=\operatorname{dist}\left(\tilde{\theta}, \tilde{\rho_{0}}\right)+\left.t \frac{d}{d t} L\left(\stackrel{\beta_{t}}{)}\right)\right|_{t=0}+O\left(t^{2}\right)
\end{aligned}
$$

While, by first variation of length,
no contribution from θ nor $\tilde{\theta}$ Since endpoint is fired there: $V(1)=0$. $V(1)=0$
$\delta L\left(\beta_{0}\right)(V)=\left.\frac{d}{d t} L\left(\beta_{t}\right)\right|_{t=0}=-\underbrace{g\left(\gamma^{\prime}(0), \rho_{0}^{\prime}(1)\right)}_{\pi-\alpha_{0}} / \begin{array}{r}\text { where } \begin{array}{r}V \text { is a variational field } \\ \text { along } \beta_{t} \omega / V(1)=\gamma^{\prime}(0)\end{array} \\ \sim\end{array}$ $\delta L\left(\tilde{\beta_{t}}\right)(\tilde{V})=\left.\frac{d}{d t} L\left(\tilde{\beta}_{t}\right)\right|_{t=0}=-\tilde{\rho}\left(\tilde{\gamma}^{\prime}(0), \tilde{\beta}_{0}^{\prime}(1)\right) \quad$ where \tilde{V} is a variational field along $\tilde{\beta}_{t} w / \vec{V}(1)=\tilde{\gamma}^{\prime}(0)$.
Since $\alpha_{0}<\tilde{\alpha}_{0}$, for small t, we get from the dove Taylor expansion $L\left(\beta_{t}\right)<L\left(\tilde{\beta}_{t}\right)$, contradicting the previous conclusion the $L\left(\beta_{t}\right) \geqslant L\left(\tilde{\beta}_{t}\right)$ i.e. $\delta(t) \geqslant 0$. If $p_{0} \in \operatorname{Cut}(\theta)$, use $\theta_{\varepsilon}^{\theta_{\varepsilon}=\beta_{0}(\varepsilon) \text { instead ... }}$ similar to the above perturbation argument.

