Lecture 9 Applications of Toponogor I 3/23/2023
Recell Toponogov triangle comportion (Triangle & Hinge) and comments on proof.
Prelimination:
$$\Gamma = \pi_{4}$$
 A acts freely on the universal covering M ,
and M/Γ_{defn} I. Lifting a Riem. unetric g from M ,
the projection map $p:(M, \tilde{g}) \rightarrow (M, \tilde{g})$ becomes a local
isometry, and the action of Γ on M is isometric,
so M/Γ_{defn} for the action $\Gamma \cap M$ is a
subset $F \subset M$ s.l. $\Gamma \cdot F = M$ and $int(g, F) \cap int(F) = g, \forall g \in \Gamma, g \neq e$.
Fix $F \subset M$ a final domain for the action $\Gamma \cap M$, e.g., fix
 $\sigma \in M$ out take $F = \bigcap_{g \in \Gamma} \{\chi \in M: dist(\sigma, \chi) \leq dist(\sigma, g \cdot \chi)\}$
 $g \in \Gamma$ is Swell if $g \cdot F \cap F \neq g$.
 $F = g \cdot F$ is Swell if $g \cdot F \cap F \neq g$.
 $F = g \cdot F \cap g \cdot F \neq g$ as final domain.
 $Def: g \in \Gamma$ is swell if $g \cdot F \cap F \neq g$.
 $F = g \cdot F \cap g \cdot F \neq g$ as F and $g \in are adjacent$
(but their interiors are disjoint!)
Prop: If M is compact, then $\pi_{3}M$ is finitely generated.
 $R!$ By the triangle megality, $g \cdot F \subset B_{2diam}(F)(\sigma)$ for any small $g \in \Gamma$.
Since $g \in \Gamma$.
Since $g \in \Gamma$.
Claim: Γ is generated by small elements.
Tudeed, given $g \in \Gamma$, choose a minimal geodesic γ from σ to $g \cdot \sigma$.
(1)

Then
$$\gamma$$
 is covered by finitely many findemental domains
is F=F, g, F, g, F, g, F, g, F, g, F, g, F, g, F = J, g, F and g, F = R
adjacent, ie, g; gin f = J is small. Thus, we have that
g = go is g; g, f' = g, -3 m is a product of small elements.
RmK: If M is monempact, then $\pi_{1}M$ might not be finitely generated ...
but these manifolds do not have metrics with sec > 0:
Thus, (Gromov 1978). If (M', g) has sec > 0, then $\pi_{1}M$ can be generated
by $\leq \sqrt{2n\pi} \cdot 2^{n-2}$ elements. If (M', g) has sec > 0, then $\pi_{1}M$ can be generated
by $\leq \sqrt{2n\pi} \cdot 2^{n-2}$ elements. If (M', g) has sec > -k^2 and dism (M) < D, then
 $\pi_{1}M$ can be generated by $\leq \frac{1}{2}\sqrt{2n\pi} (2*2 \cosh(2kD))^{n-2} - \frac{1}{4ks}$ because of the first pro-
field by $\leq \sqrt{2n\pi} \cdot 2^{n-2}$ elements. If (M', g) has sec > 0, then $\pi_{1}M$ can be generated
by $\leq \sqrt{2n\pi} \cdot 2^{n-2}$ elements. If (M', g) has sec > 0, then $\pi_{1}M$ can be generated
by $\leq \sqrt{2n\pi} \cdot 2^{n-2}$ elements. If (M', g) has sec > 0, then $\pi_{1}M$ can be generated
by $\leq \sqrt{2n\pi} \cdot 2^{n-2}$ elements. If (M', g) has sec > 0, then $\pi_{1}M$ can be generated
by $\leq \sqrt{2n\pi} \cdot 2^{n-2}$ elements. If (M', g) has sec > 0, then $\pi_{1}M$ can be generated by $\leq \frac{1}{2}\sqrt{2n\pi} (2*2 \cosh(2kD))^{n-2}$ while $\pi_{1}K \rightarrow 0$, then
 $\pi_{1}M$ can be generated by $\leq \frac{1}{2}\sqrt{2n\pi} (2*2 \cosh(2kD))^{n-2}$ while $\pi_{1}K \rightarrow 0$, then
 $\pi_{1}M$ can be generated by $\leq \frac{1}{2}\sqrt{2n\pi} (2*2 \sinh(2kD))^{n-2}$ while $\pi_{1}K \rightarrow 0$, then
 $\pi_{1}M$ by deck transformations (see preliminaries). Define displacement of π any
 $\beta = \pi_{1}M$, by deck transformations (see preliminaries). Define displacement of π any
 $\beta = \pi_{1}M$, by deck transformations (see preliminaries). Define displacement of π and
 $\beta = \pi_{1}M$, by deck transformations (see preliminaries). Define displacement of π
 $\beta = \pi_{1}M$, by deck transformations (see preliminaries). Define displacement of π
 $\beta = \pi_{1}M$, by deck transformations (see preliminaries). Define displacement of π
 $\beta = \pi_{1}M$, by deck transformations (see $\pi_{1}M = \pi_{1}M = \pi_{1}M = \pi_{1$

gio Set
$$lij = dist (g_i \circ, g_j \circ)$$
 for all $i < j$. Then
 $lij > |g_j|$, for otherwise $\overline{g} = g_i^{-1}g_j$ would have.
 $g_j \circ [g_j] = [ij < |g_j|]$ and $(g_{2,-}g_i,..,g_i) = (g_1,..,g_{i-},\overline{g})$
 $servo$
Note that all sides of the triangles $0, g_i \circ g_j \circ ore$
min geodenes.
 0
 $g_i \circ [g_j] = [g_j] = 0$, we have that $\alpha_{ij} \ge \alpha_{ij}$.
 $g_i \circ g_i \circ g_i \circ g_i \circ g_j \circ g_j$

Recent developments surrainding the above:
• If
$$\Gamma$$
 is finitely generated, fix a function generation for Γ :
 $N_{K}^{G} = \# \{g \in \Gamma : g = g_{1} \dots g_{K}, with g \in G \}$
 $K = \# \{g \in \Gamma : g = g_{1} \dots g_{K}, with g \in G \}$
 $K = \# \{g \in \Gamma : g = g_{1} \dots g_{K}, with g \in G \}$
 $K = g group elevents that can
be written as product of K generators
in the fixed generating set for Γ as above, then
 $N_{K}^{G} \ge N_{CK}^{G}$ and $N_{K}^{G} \ge N_{DK}^{G}$ for some constants $C, D > 0$,
so can ignore choice of gen. set G for questions below
 $G:$ How does N_{K} grow with K ? Polynomially? Exponentiall?
Thum (Mulnor '68). If (M'g) is complete and has $R_{E} \ge 0$, then
any finitely generated subgroup $\Gamma < \pi_{2}M$ has $N_{K} \le C \cdot K^{n}$.
 $R_{E}^{(n)}$ Choose $0 \in M^{n}$, and let $V(r) = Vol(Br(0))$. By Bishop Volume Guep,
 $V(r) \le Vol(B_{r}^{R}(0)) = \frac{\pi^{N/2}}{\Gamma(\frac{N}{2}+4)}$ r. Let $G = \{g_{1}, \dots, g_{P}\}$ be the
fixed generating set for $\Gamma < \pi_{2}M$ and $\mu = \max$ dist($\sigma, g; 0$).
Then $B_{\mu,K}(\sigma)$ has at least N_{K}^{G} distinct points
of the form $g \cdot \sigma_{1}$ with $g \in \Gamma$. Choose $E > 0$ s.t.
 $g \cdot B_{E}(0) \cap B_{E}(0) = \phi$ if $g \neq e$. Then $B_{\mu,K+E}(\sigma)$ has at least
 N_{K}^{G} disjoint subsets of the form $g \cdot B_{E}(0)$, so$

$$\begin{split} & \mathsf{VR}\left(\coprod g \ \mathsf{B}_{\mathsf{E}}(\Theta)\right) = \mathsf{N}_{\mathsf{K}}^{\mathsf{G}}, \mathsf{V}(\mathsf{E}) \leq \mathsf{V}(\mu\mathsf{K} + \mathsf{E}) & (\mathsf{g}^{\mathsf{g}}) \\ & \mathsf{g}^{\mathsf{g}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}}\mathfrak{g}^{\mathsf{e}}}\mathfrak{g}^{\mathsf{e}}\mathfrak{g}}$$

Lecture 10 Applications of Toponogov II 3/30/2023 Recap: Toponogov triangle comparison for sec > K. Hinge: Sec = K be pr bi Vi be pr bi Vi be pr bi pr $\frac{\text{Triangle}}{\text{Sec} > K} \xrightarrow{\beta_{\circ}} \left| \begin{array}{c} \beta_{\circ} \\ \beta_{\circ} \\$ $legth(\gamma) \leq legth(\gamma)$ vigidity... $d \gg d \alpha_i \gg \alpha_i$ Thun (Grounov'78). If (Mig) is a (possibly noncompact) complete monifold with $2c \ge 0$, then $\pi_{J}M$ can be generated by $\le \sqrt{2n\pi} \cdot 2^{n-2}$ elements. (Similar result if $\sec \ge -\kappa^2$, diam $\le D$.) · Discuss Milnor's earlier contributions about 74 M if Ric > 0 and growth function. Using Bishop Volume Comparison, Toponogov Triangle Comparison, <u>Critical point</u> <u>Theory for distance functions</u> and topological constructions, Gromov proved the following: Thm (Gromer '1981). i) If (M^{M}, g) is a complete mfld with sec ≥ 0 , then $\sum_{k=0}^{\infty} b_{k}(M) \le C(n)$. i) If (M^{M},g) is a closed multipled with $\sec \ge -K^{2}$ and diam $\le D$, then $\sum_{k=0}^{\infty} b_{k}(M) \le C(n)$. Cannot replace the hypothesis sec >0 to Ric >0 because: The (Sha-Yang'90s). VLEN, # 52 × 52 and # CP2 # OP2 have Ric > 0. $\frac{1}{100 \pm 0.00 \pm 0.000} = 1 \text{ and } V_{2} = 1. V_{2}$ Thus, since $b_2(\#^{\ell}S^2 \times S^2) = 2\ell$ and $b_2(\#^{\ell}O^{2} \#^{\ell}O^{2}) = K+\ell$, only [Note: seel >0 is finitely many of these manifolds can have sec >0. Currently,] indeed by surgeres of codimension>3. - only S' and OP² are known to have sec >0 and A Related open question; is there a simply connected closed - only $S^2 \times S^2$ and $\mathbb{CP}^2 \# \pm \mathbb{CP}^2$ are known to have sec ≥ 0 . Scal >0 but does not admit Conjecturally, the doore is the complete list of simply-connected 4-mflds (double disk; (double disk with sec > 0 and sec > 0. Note: As l7+0, Perelman's #CP2 converges to B4UB4 flat 67

An application of Toponogon to closed geodexics in surfaces:

Thum (Toponogov). If (M,g) is a closed oriented surface with sec > K and Y is a simple closed geodesic, then $\operatorname{length}(\gamma) \leq \frac{2\pi}{VK}$. Moreover, if $\operatorname{length}(\gamma) = \frac{2\pi}{VK}$ then (Mi,g) is isometric to the vound sphere S(1/1).

<u>Pf:</u> (ut (Mig) along y to obtain a disk D with geoderic boundary (Note that γ bounds a disk because, by Gauss-Bonnet, $M^2 \cong S^2$.) Assume K=1, general case is obtained by rescaling. $\chi^{(1/4)}$ = π $\chi^{(1/2)}$ Suppose $\chi^{(0,1]} \rightarrow M$, so $\chi^{(0)} = \chi^{(1)}$ and $\chi^{(0)} = \chi^{(1)}$. Since sec ≥ 0 , the disk $D \subset M$ with $\partial D = \chi$ is Let Bik be min geod. from y(o) to y(1/2), which is entirely contained in D Since $\beta_{1/2}$ is minimizing, $lugh(\beta_{1/2}) \leq \pi$ by Myers. If $length(\beta_{1/2}) \geq \frac{1}{2} length(\gamma)$, then $lugh(\gamma) \leq 2\pi$ so we are done. If not, then let 1/4 and 133/4 be min. good. from y(0) to y(1/4) and y(3/4), there are also entirely in D. By Toponogor (Hinge) applied to the hinges at D(0) with sides B1/4, B1/2 and B1/2, B3/4, We get a comparison quedrangle in $\mathbb{D}^2(1)$ which has all internel $p_{\Xi\pi} = \frac{d_1}{d_2}$ angles ≤ 77 and is there fore <u>convex</u>. w/ stole lengths: COUVER Sec = 1 guadranche Must be · length (B1/4), 120 • d1 > length (γ|[1/4, 1/2]) contained in q heunisphere Thus hos · dz 7 length (7([1/2,34]) 211 perimeter ≤2π. · lugth (33/4) sec≡1

68

Since twis quadrangle is convex, it must be contained in a heurisphere of
$$S^2(\pm)$$
, thus its perimeter is $\stackrel{\circ}{=} 2\pi$, hence length $(\beta y_{4}) + \log th$ $(\Im[y_{4}, y_{2})) + \log th[\Im[y_{2}, y_{3}]) + \log th[\beta y_{4}] \leq \pi$.
Length $(\beta y_{4}) + \log th$ $(\Im[y_{4}, y_{2}]) + \log th[\Im[y_{2}, y_{3}]) + \log th[\beta y_{4}] \leq \pi$.
If $\beta y_{4} = \Im[0, y_{4}]$ and $\beta = \eta = \Im[3\eta_{4}, 1]$ ithen the above proves dength $(\Im) \leq 2\pi$. If, however, $\Im[0, y_{4}]$ or $\Im[3\eta_{4}, 1]$ are not win.
then we further subdivide, see prictice. Once again, we obtain a composition polygon (hexagon) in S² which is convex by Toponogov, shue interval applies of $\Im[2\eta_{4}]$ if $\beta y_{4} = \Im[2\eta_{4}]$ is the systemed in a Neurophere of $S^{2}(\pm)$. If $\beta y_{4} = \Im[2\eta_{4}]$ is $Sec = 1$ in the system of $S^{2}(\pm)$. If $\beta y_{4} = \Im[2\eta_{4}]$ and $\Im[2\eta_{4}] = \Im[2\eta_{4}]$ is $Sec = 1$.
If $\Im[3\eta_{4}] = \frac{1}{3} = \frac{1}{3}$

$$\begin{array}{c} (\operatorname{Laim} 1. & \operatorname{If} q' \in M \text{ is st.} & \operatorname{dist}(p,q') = \operatorname{diam}(M',q') > \frac{T}{2}, \text{ then } q' = q. \\ \hline \underline{R}: & \underline{B}_{1} & \operatorname{Topologov} & \operatorname{Triangle coup}, \\ \operatorname{if} q, q' \in M & \operatorname{subisf} \\ \operatorname{dist}(p,q) = \operatorname{dist}(p,q') = \operatorname{dism}(M,q) > \underline{T} \\ \text{then the distance from } \\ p \text{ to any } x \text{ in the min.} \\ \operatorname{geod.} & \operatorname{jotning} q \text{ to q' usuald} \\ \operatorname{exceed} & \operatorname{the alianether eld (M',g)}, \quad \operatorname{dist} q = q'. \\ \hline d = \operatorname{dist}(R,p) > \operatorname{dist}(p,q) \\ \operatorname{exceed} & \operatorname{the alianether eld (M',g)}, \quad \operatorname{dist} q = q'. \\ \hline d = \operatorname{dist}(R,p) > \operatorname{dist}(p,q) \\ \operatorname{exceed} & \operatorname{the alianether eld (M',g)}, \quad \operatorname{dist} q = q'. \\ \hline d = \operatorname{dist}(R,p) > \operatorname{dist}(p,q) \\ \operatorname{dist} q = \operatorname{dist}(R,p) > \operatorname{dist}(p,q) \\ \hline d = \operatorname{dist}(R,p) > \operatorname{dist}(p,q) \\ \hline q = \operatorname{dist}(R,p) \\ \operatorname{dist}(q,q) = \operatorname{dist}(R,q) \\ \operatorname{exceed} & \operatorname{the alianether eld (M',g)}, \quad \operatorname{dist} q = q'. \\ \hline d = \operatorname{dist}(R,p) > \operatorname{dist}(p,q) \\ \hline q = \operatorname{dist}(R,q) \\ \operatorname{dist} q = \operatorname{dist}(M,q) \\ \operatorname{fine} q = \operatorname{dist}(R,q) \\ \operatorname{fine} q = \operatorname{dist}(M,q) \\ \operatorname{fine} q = \operatorname{dist}(R,q) \\ \operatorname{fine} q = \operatorname{dist}(R,q) \\ \operatorname{fine} q = \operatorname{dist}(M,q) \\ \operatorname{fine} q = \operatorname{dist}(R,q) \\ \operatorname{fine} q = \operatorname{dist}(M,q) \\ \operatorname{fine} q = \operatorname{dist}(R,q) \\ \operatorname{fine} q = \operatorname{d$$

$$\begin{array}{c|c} E_X: S^n is your Wildlichelde if and only if $N=0,4,3.7$
because \mathbb{R}^{N+1} is a read division algebra iff $N=0,4,3.7$.
$$\begin{array}{c} \text{so the production of general effectives of the optimization of the set of the set$$$$

$$\begin{array}{c|c} & \Lambda^{p}\left(\mathbb{R}^{n}\right)^{k} \\ & \Lambda^{p}\left(\mathbb{R}^{n}\right)^{k} \\ & \Lambda\left(\phi, \dots, \Lambda\phi_{p}\right)\left(u, \dots, \Lambda_{p}\right) = \phi(\Lambda v), \quad \phi(\Lambda v) \\ & budde \quad \phi \quad p-forms \\ & Syn^{p} \mathbb{R}^{n} \\ & \Pi^{=} Syn^{p} id \cap Syn^{p} \mathbb{R}^{n} \\ & \Pi^{=} Syn^{p} id^{n} \cap Syn^{p} \mathbb{R}^{n} \\ & \Lambda^{+}\left(v_{k} v \dots v v\right)_{p} = A_{k} v \dots v A_{kp} \\ & Syn^{p} \mathbb{R}^{n} \\ & \Pi^{=} Syn^{p} id^{n} \cap Syn^{p} \mathbb{R}^{n} \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\mathbb{R}^{n}\right)^{*} \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right) \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\mathbb{R}^{n}\right)^{*} \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\mathbb{R}^{n}\right) \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\mathbb{R}^{n}\right)^{*} \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\mathbb{R}^{n}\right)\left(\mathbb{R}^{n}\right) \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\mathbb{R}^{n}\right) \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\Phi^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\right) \\ & \Lambda^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\left(\Phi^{+}\left(\phi_{k}^{*} v \dots v \phi_{p}\right)\right)\left(\Phi$$

• Sym²(A²TM): Lichnerwis Laplacian.
$$\Delta_{L} = \overline{\nabla}^{*} \overline{\nabla}$$

where $\overline{\nabla}: \Gamma(Sym^{2}(\Lambda^{2}TM)) \rightarrow \Gamma(TM^{*} \otimes Sym^{2}(\Lambda^{2}TM))$ is a
symmetrized (avariant derivative s.t. if $R \in \Gamma(Sym^{2}(\Lambda^{2}TM))$, then
also $\Delta_{L}R \in \Gamma'(Sym^{2}(\Lambda^{*}TM))$.
Q: Why care about these Laplacians?
A: Harmonic sections are geometrically topologically valuant:
For example:
• Hodge Theory: If (M^{*}, g) is a closed Riem muffel, then
 $H^{P}_{dC}(M^{*}, R) \cong \{\omega \in \Omega^{P}M : \Delta_{H} \omega = 0\},$
(de Rham cohomology) (Harmonic p-forms)
In particulor, the pth Betti number is $b_{\mu}(M) = \dim Ker(\Delta_{H}|_{Q}r(m))$
• Killing tensors: Let (M^{*}, g) be a Riem muffel, and $\phi_{1:}M \rightarrow M$ a
1-porometer subgroup of diffeomorphisms, ie, $\phi_{0} = id$, $\phi_{tes} = \phi_{1:} \phi_{ds}$. Then
 $\phi_{1:}(M^{*}, g) \rightarrow (M^{*}, g) = (K, Y),$
 $(\Delta_{Y}g)(Y_{Z}) = 2g(\nabla_{X}X^{2}) - d\Theta(Y^{2})$
submetric
So $A_{Y}g = 0$ If ∇_{X} is skew-symmetric
 ϕ_{2}

$$\triangle = \nabla^* \nabla + t \, \mathsf{k}(\mathsf{R}, \pi)$$

where
$$t \in \mathbb{R}$$
, $\nabla^{k} \nabla$ is the "connection Laplacian" induced by the connection
in $E_{\pi} \rightarrow M$ determined by the Levi-Civita connection of $TM \rightarrow M$, and
identifying $\Lambda^{2} \mathbb{R}^{M} \cong \mathfrak{So}(n)$, letting $\{Xa\}$ be an orthonormal basis,
 $K(\mathbb{R},\pi) = -\sum_{a} d\pi(\mathbb{R},Xa) \circ d\pi(Xa) = -\sum_{a,b} \mathbb{R}_{ab} d\pi(Xa) \circ d\pi(Xb)$

a
where
$$R = \sum_{a,b} R_{ab} X_{a} \otimes X_{b} \in Sym^{2}(\Lambda^{2} \mathbb{R}^{n})$$
,
The the plank, $T: SO(n) \longrightarrow SO(E)$, so $d\pi: So(n) \cong \Lambda^{2}(\mathbb{R}^{n} \longrightarrow So(E))$

In me down
In porticular,
$$d\pi(X): E \rightarrow E$$
 is a skew-symmetric endomorphism
for each $X \in \mathfrak{solu}$, hence $K(R,\pi): E_{\pi} \rightarrow E_{\pi}$ is a symmetric endomorphism:
 $\left(K(R,\pi)\phi, \phi\right) = -\sum_{k=0}^{\infty} R_{k} \int d\pi(X_{k}) d\pi(X_{k})\phi, \phi$

$$\begin{pmatrix} K(R,\pi)\phi,\phi \end{pmatrix} = - \sum_{\substack{q_{1}b}} \operatorname{Rab} \langle d\pi(X_{a}) \circ d\pi(X_{b})\phi,\phi \rangle$$
$$= \sum_{\substack{q_{1}b}} \operatorname{Rab} \langle d\pi(X_{a})\phi,d\pi(X_{b})\phi \rangle$$
76

• Moreover,
$$Sym^{2}(\Lambda^{*}\mathbb{R}^{n}) \supset \mathbb{R} \longrightarrow K(\mathbb{R},\pi) \in Sym^{2}(\mathbb{E}\pi)$$
 is linear and
SO(n) - equivoriant, where SO(n) $\cap Sym^{2}(\mathbb{P}\mathbb{R}^{n})$ via $A \cdot \mathbb{R} = \sum_{a,b} \mathbb{R}_{a} \underbrace{Ad(\Lambda) X_{a} \otimes Ad(\Lambda) X_{b}}_{a,b}$
and $SO(n) \xrightarrow{T} Sym^{2}(\mathbb{E}\pi)$ via $A \cdot \mathbb{T} = d\pi(A) \cdot \mathbb{T} \cdot d\pi(A^{-1})$.
Ad(\Lambda) X_{a} X_{a}^{-1}

$$= -\sum_{a,b} \mathbb{R}_{ab} d\pi (A \Delta(A) X_{b}) \circ d\pi (A \Delta(A) X_{b})$$

$$= -\sum_{a,b} \mathbb{R}_{ab} d\pi (A \Delta(A^{-1})) \circ d\pi (A \Delta(A^{-1}))$$

$$= -\sum_{a,b} \mathbb{R}_{ab} d\pi (A) d\pi (X_{b}) d\pi (A^{-1}) d\pi (A) d\pi (X_{b}) d\pi (A^{-1})$$

$$= d\pi (A) \left(-\sum_{a,b} \mathbb{R}_{ab} d\pi (X_{b}) \circ d\pi (X_{b}) \right) d\pi (A^{-1})$$

$$= A \cdot K(\mathbb{R}, \pi).$$

• Clearly, $K(\mathbb{R}, \pi_{E} \oplus \pi_{2}) = K(\mathbb{R}, \pi_{2}) \oplus K(\mathbb{R}, \pi_{2}) \otimes d\pi (K(\mathbb{R}, \pi) \otimes d\pi (X_{c}))$
• Also from the above, $\frac{if}{\mathbb{R}} \mathbb{R} \ge 0$, then $K(\mathbb{R}, \pi) \gg 0$.
Pl: Since $\mathbb{R}: \Lambda^{2} \operatorname{TM} \to \Lambda^{2} \operatorname{TM}$ is symmetric, we can diagonalize th.
Let $\{X_{a}\}$ be an ourbe of eigenvectors, ce. $\mathbb{R} X_{a} = t_{a} \cdot X_{a}$.
Since $\mathbb{R} \gg 0$, we have $t_{a} \ge 0$, and: $X_{a} \times X_{a} = V_{a} \otimes M_{a}$
 $(K(\mathbb{R}, \pi) \oplus \mathbb{A}) \cong -\sum_{a} (d\pi(\mathbb{R}X_{a}) \circ d\pi(X_{a}) \oplus \mathbb{A}) \oplus \mathbb{A}$
 $(K(\mathbb{R}, \pi) \oplus \mathbb{A}) \cong -\sum_{a} (d\pi(\mathbb{R}X_{a}) \circ d\pi(X_{a}) \oplus \mathbb{A})$
 $= \sum_{a} V_{a} \cdot \| d\pi(X_{a}) \oplus \mathbb{A}\|^{2} \ge 0$
Note: If π has mo fixed vectors, i.e. Ker $d\pi = \frac{5}{2}0$, Hene $\mathbb{R} > 0$ implies $K(\mathbb{R}, \pi) > 0$.
The general, $\mathbb{R} > 0$ only implies $K(\mathbb{R}, \pi) > 0$.

Example: Defining representation
$$\pi = id : SO(n) \longrightarrow SO(n)$$
 is s.t.
 $d\pi = id : SO(n) \longrightarrow SO(n)$
 $K(R, id) = Ric_R$
Pf 1: Computation: $K(R, id) = -\sum_{a} d\pi'(R X_{a}) d\pi(X_{a}) = -\sum_{a} (R X_{a}) \cdot X_{a}$
 $\langle K(R, id) v, w \rangle = \sum_{a} \langle R X_{a} (v), X_{d} w \rangle \rangle = \cdots = Ric_{R}(v, w)$
Pf 2: $S_{vn}^{*} \wedge^{0} R^{m} \Rightarrow R \mapsto K(R, id) \in Sym^{2} R^{m} \Rightarrow SO(n) - equivariant.$
 $R \oplus Sym^{2} R^{m} \oplus W \oplus \Lambda^{4}$
 $R \oplus Sym^{2} R^{m} \oplus H \oplus \Lambda^{4$

Relevance: • Organize " adjubrically representation - theoretically connections could trans.
•
$$\mathcal{J} = \{R \in Sym^2 \Lambda^2 \mathbb{R}^n : K(\mathbb{R}, \pi) \ge 0\}$$
 is a spectrahedrun so optimizing
linear functions on \mathcal{J} is "easy" with semudefinite programming.
Brek to the Bochmer technique: $\Delta = \nabla^* \nabla + t K(\mathbb{R}, \pi)$
 $\delta uppose t > 0$ and $K(\mathbb{R}, \pi) > 0$, or $t < 0$ and $K(\mathbb{R}, \pi) < 0$.
Then if $\emptyset \in \Gamma(\mathbb{E}_{\pi})$ is harmonic:
 $0 = \int \langle \Delta \varphi, \varphi \rangle = \int \langle \nabla^* \nabla \varphi, \varphi \rangle + t \langle K(\mathbb{R}, \pi) \varphi, \varphi \rangle$
 $= \int_{\mathcal{M}} \frac{||\nabla \varphi||^2}{\ge 0} + \frac{t}{>} \langle K(\mathbb{R}, \pi) \varphi, \varphi \rangle$
So $\emptyset \in Ker K(\mathbb{R}, \pi) = \{0\}, is. \varphi = 0.$ "All hormonic sections must vanish identicall!"
 $Example: \mathbb{E}_{\pi} = TM$ ($\pi = id$) $t = 2$ and $K(\mathbb{R}, id) = \mathbb{R}_{\times}$
 $\mathbb{E}_{\pi} = TM^*$ ($\pi = id$) $t = -2$ and $K(\mathbb{R}, id) = \mathbb{R}_{\times}$
Thus, the above implies the following:
 $\frac{Then}{\mathbb{R}}(\mathbb{B}chner'1946)$. If (M , g) is a closed manifold, then:
 \cdot if $\mathbb{R}_{i} > 0$, then all harmonic 1-forms on M usuals identically:
 $in particular, b_{n}(M) = 0$. (\mathbb{R} Mus Then, Hight) = 0 b/c H(M) = ($\pi = M^*$) is finite)
 \cdot if $\mathbb{R}_{i} < 0$, then all killing vector fields vanish identically:
 $in particular, Taso(M', g)$ is finite.

Lectre 12 Bodiner technique II 4/272023
Real basic elements of Badiner technique or Spirith If H is prime
(Mⁿ, g) closed oriented Rem. mfl If H los "spirit holes"
Fr(TM) frame buille (Sah) - principal build)
T: So(n) -> So(E)
without representation
(American) Fr(TM) x_m E
Associated landle
Laplacian:
$$\Delta = \nabla^{e} \nabla + t \ K(R,\pi)$$
 acts on sections of E_π
(connection) (termine)
both are determined
both are determined
both are determined
both or determined
both or determined
both or e determined
by its vehice at a point kell, $\phi(x) = (E_m)$,
sincu $\phi(y)$ is obtained by parallel transport along a path
from x to y, so dim Ker $\Delta \leq \dim E$, voumely, to

The linear map

$$e_{x} : \ker \Delta \longrightarrow (E_{\pi})_{x}$$
 f_{x}
 $g \xrightarrow{} g(x)$
is injective, since $\phi(x) = \gamma f(x)$ for $\phi, \gamma f(x) \in Ker \Delta$ implies
 $\phi = \gamma f(x)$
is injective, since $\phi(x) = \gamma f(x)$ for $\phi, \gamma f(x) \in Ker \Delta$ implies
 $\phi = \gamma f(x)$
is precisely dim Ker $\Delta = \dim E_{\pi}^{r}$, where $E_{x}^{r} \leq E_{\pi}$ is the
maximal parallel distribution in E_{π} .
(i) If, furthermore, $\exists \gamma \in M$ with $t: K(\ell, \pi) > 0$ on $\gamma \in M$,
hence on $B_{\ell}(\rho)$ by continuity, then $\phi \in Ker \Delta$ implies
 $0 = \int_{M} (\Delta \phi, \phi) = \int_{M} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge \int_{B_{\ell}(\phi)} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge \int_{0} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge \int_{0} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge \int_{0} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge \int_{0} 0$

 $\int (\Delta \phi, \phi) = \int_{M} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge \int_{0} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge \int_{0} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge 0$

 $\int (\Delta \phi, \phi) = \int_{M} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge \int_{0} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge 0$

 $\int (\Delta \phi, \phi) = \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge \int_{0} \|\nabla \phi\|^{2} + (tK(\ell, \pi) \phi, \phi) \ge 0$

 $\int (\Delta \phi, \phi) = \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{M} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) \ge 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int \int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int_{0} \|\nabla \phi\|^{2} + (f(\ell, \pi) \phi, \phi) = 0$

 $\int_{0} \|\nabla \phi\|^{2} + (f$

(i) If
$$Ric \ge 0$$
, then every hormonic 1-form is porellel.
In porticular, $b_1(M) \le n$ and $b_1(M) = n$ if and only if M^{M} is a flat torus.

(1i) If $Ric \ge 0$ and $Ric_p \ge 0$, then every harmouic 1-form vanishes identically. In porticular, $b_1(M) = 0$. (of Myer's theorem) Ric : These manifolds also admit metrics w/ Ric > 0 everywhere [Ehrlich, 1976]81

Remark. There are many non-isometric flat tori in every dim,
Namuly the moduli space of flat tori Tⁿ is
$$O(n) \setminus GL(n,Z)$$
;
which is an orbifold of dimension $n(n+4)/2$. Other closed flat
manifolds one quotients of flat tori by a free action of a
finite group, tobentified with the holonomy group (Bieberbach Thm).
Then (Gromov 80, Gallot 81). If (M,g) is a closed oriented Riem mfld,
Ric > $(N-4)$. K and diam $(M) \leq D$, then $b_1(M) \leq C(n, K \cdot D^2)$,
where $C(n, E)$ is a function satisfying from $C(n, E) = n$. In
particular, $\exists E(n) > O$ s.t. $K \cdot D^2 \ge -E(n)$ implies $b_1(M) \leq N$.

Similarly to the above improvements to slightly megative arradice:
Then (Meyer-Gallot 1970s). If
$$R \ge K$$
 Id and diam (M) $\le D$, then
 $b_{p}(M) \le \binom{N}{p} \cdot exp\left(C(N,K,B^{2}) \cdot \sqrt{-K} D^{2} p(N-p)\right)$
In porticular, $\exists \mathcal{E}(N) > 0$ s.t. $K, D^{2} \ge -2(N)$ implies $b_{p}(N) \le \binom{N}{p}$.
Petersen-Wink also improved the above, replacing $R \ge K$ Id by the avealer
hypothesis $J_{2} + \cdots + J_{N-p} \ge (N-p) \cdot K$, where $N \le \cdots \le V_{2}$ are eigenvalues of R
Hapf Question: Does $S^{2} \times S^{2}$ aduct a metric $N \ge Sc_{2} > 0$?
"Naive" Bodiner technique approach would be to try to draw that $\sec_{2} > 0$
implies $K(R, \Lambda^{2}R^{2}) > 0$ hence $b_{2}M^{2} = 0$. However, this is clearly file:
 CP^{2} has $\sec > 0$ and $b_{2} = 1$.
Slightly more refined Bodiner technique approach uses:
Finder-Thorpe trick: $R:\Lambda^{2}R^{4} \to \Lambda^{2}R^{4}$ $R^{2} = \Lambda^{2}_{+}R^{4} \oplus \Lambda^{2}_{-}R^{4}$ then
 $\star = \left(\frac{Id}{0} + \frac{0}{-Id}\right)$
 $K(*, \Lambda^{2}R^{4}) = \pm 4$ Id.
Thus, if $\sec > 0$ and $B > 0$, then, since $S \mapsto K(S, \pi)$ is linear and
 $S > 0 \Rightarrow K(S, \pi) > 0$, we get:
 $K(R, \Lambda^{2}R^{4}) = K(R+2*, \Lambda^{2}R^{4}) - EK(*, \Lambda^{2}R^{4})$
 $= K(R+2*, \Lambda^{2}R^{4}) - EK(*, \Lambda^{2}R^{4}) - EK(*, \Lambda^{2}R^{4})$

Such positivity implies vanishing of harmonic sections of AZTM, called
anti-self-dual 2-forms. Simularly, if instead
$$3 < 0$$
, then use $\Lambda_{\pi}^{*}TM$.
 $b_{\pi}^{\pm}(M) = dim \text{ Ker } \Delta_{J,\SigmaZZ}^{*}(M)$, $b_{\pi}(M) = b_{\pi}^{+}(M) + b_{\pi}^{-}(M)$.
As $S^{2}xS^{2}$ has $b_{\pi}^{\pm} = b_{\pi}^{-} = 1$, it follows that:
 $\sum_{i=1}^{n} (M) = dim Ker \Delta_{J,\SigmaZZ}^{*}(M)$, $b_{\pi}(M) = b_{\pi}^{+}(M) + b_{\pi}^{-}(M)$.
As $S^{2}xS^{2}$ has $b_{\pi}^{\pm} = b_{\pi}^{-} = 1$, it follows that:
 $\sum_{i=1}^{n} (M) = dim Ker \Delta_{J,\SigmaZZ}^{*}(M)$, $b_{\pi}(M) = b_{\pi}^{+}(M) + b_{\pi}^{-}(M)$.
As $S^{2}xS^{2}$ has $b_{\pi}^{\pm} = b_{\pi}^{-} = 1$, it follows that:
 $\sum_{i=1}^{n} (M) = dim Ker \Delta_{J,\SigmaZZ}^{*}(M)$ has see >0 , then the subset
 $\sum_{i=1}^{n} (M) = dim Ker \Delta_{\pi}^{*}(M) = b_{\pi}^{*}(M) + b_{\pi}^{*}(M)$.
 $\sum_{i=1}^{n} (M) = b_{\pi}^{*}(M) + b_{\pi}^{*}(M) + b_{\pi}^{*}(M)$.
 $\sum_{i=1}^{n} (M) = b_{\pi}^{*}(M) + b_{\pi}^{*}(M) + b_{\pi}^{*}(M)$.
 $\sum_{i=1}^{n} (M) = b_{\pi}^{*}(M) + b_{\pi}^{*}(M)$

Lecture 13 Manifolds with symmetries
$$S/4/2023$$

The (Myers-Steened 1939, Palais 1957) II (M^N, g) is a complete Riem. mfld,
(i) $\emptyset: M \to M$ preserves distance \emptyset is a (Riem) isometry, i.e.
re. dist($\phi(x), \phi(x)$) = dist(x, y) $\forall x, y \in M$ \Leftrightarrow \emptyset is a complete Riem. mfld,
(ii) $Jsom(M, g) = \{\emptyset: M \to M \text{ isometry}\}$ is a Lie group, with Lie algebra.
isom (M, g) = $\{\emptyset: M \to M \text{ isometry}\}$ is a Lie group, with Lie algebra.
isom (M, g) = $\{\chi \in \mathcal{X}(M): X \Rightarrow Killing, i.e., g(\nabla_i X, Z) + g(Y, \nabla_2 X) = 0\}$
We have a free 2
we have a free 2
 K :
 \mathbb{P}^{M} has $Jsom(\mathbb{P}^{n}) = \mathbb{R}^{M} \times O(n)$:
 $f(x) = Ax + v$, $A \in O(n)$
 $f(x) = Ax + v$, $A \in O(n)$
 $f(x) = Ax + v$, $A \in O(n)$
 K :
 \mathbb{P}^{M} has $Jsom(\mathbb{S}^{n}) = O(n \cdot 4)$. $F(x) = Ax + v$, $A \in O(n)$
 $Mete: O(n+4) = \{F: \mathbb{P}^{M-1} \to \mathbb{P}^{M-4} : \langle F(x), F(x) \rangle = \langle x, x \rangle \}$
 $Mate: O(n+4) = \{F: \mathbb{P}^{M-1} \to \mathbb{P}^{M-4} : \langle F(x), F(x) \rangle = \langle x, x \rangle \}$
 $More Rie linear isometries of \mathbb{R}^{N-4}
 $H^{M} \subset \mathbb{R}^{N-4}$ has $Jsom(H^{n}) = O(n, 4) = \{F: \mathbb{R}^{N-4} \to \mathbb{R}^{N-4}, \{F(x), F(x)\} = \langle x, x \rangle \}$
where $\mathbb{R}^{M} = \{X \in \{c_{11}, \dots, r_{N}, x_{N}\}\}$ is the Minkowski space of the Lorents
 $matrix \langle i, r \rangle = dx_{1}^{2} + \cdots + dx_{n}^{2} - dx_{n}^{2} s$, $H^{m} = \{X \in \mathbb{R}^{M-4} : \langle X, x \rangle = -4\}$.
 $(U = N-3, these are often called "Lorents transformations")$
 $\widehat{P}_{10}(Y, Y, Y)$ is connected and complete, then dian $Jsom(H^{n}, g) \leq \frac{v_{1}(n+4)}{2}$
 $\widehat{P}_{2}(M, g)$ is connected and complete, then dian $Jsom(H^{n}, g) \leq \frac{v_{1}(n+4)}{2}$
 $\widehat{P}_{2}(M, g)$ has constant curvature (cf. above).
 $\widehat{P}_{2}(X, M, g)$ Theom (H^{n}) , $x \in \mathbb{R}$ is a bundle of Lie groups 1, $\frac{dm}{m}$ is m in M in K in K in K .
 $\widehat{P}_{2}(K: The Joundy f(Tsom(H^{n})), x \in \mathbb{R}$ is one torial a "bundle of Lie groups 1, $\frac{dm}{m}$ is M .
 $\widehat{P}_{2}(K: The Joundy f(Tsom(H^{n})), x \in \mathbb{R} \}$ is one torial a "bundle of Lie groups 1, $\frac{dm}{m}$ is M .$

Moreover if dian ison(M^N, g) =
$$\frac{M(M+1)}{2}$$
, then Fr is also surjective the,
so $\forall T \in no(TpM)$, $\exists X \in \chi(M)$ killing field w/ $Xp = 0$, $(TX)_{p} = T$.
The flow ϕ_X^X fixes P , and $d\phi_X^X(p) = exp(TT)$: $TpM - TpM$.
is = 1-porum. subgroup of orthogenal transformations of TpM ,
with orbitrory infinitesimal generator, so $sec(\sigma) = sec(\sigma')$ for
all 2-planes $\sigma_1 s' \subset TpM$, i.e., $sec \equiv X$.
(con find T s.t. $exp(T)$ maps V, W to V, W' .)
(hence $G = span \xi_{U,W}^X$ to $\sigma' = span \xi_{V',W}^X$.)
 $V = V = V$
(con find T s.t. $exp(T)$ maps V, W to V, W' .)
(hence $G = span \xi_{U,W}^X$ to $\sigma' = span \xi_{V',W}^X$.)
 $V = V = V$
(M, g) is a homogeneous the symmetrics:
 $e.g. (dim Ison(M', g))$. (raw Ison(H', g))
(M, g) is a homogeneous them iff G_{VM} transitively, $G \subset Ison(M, g)$.
 (M, g) is a homogeneous them iff G_{VM} transitively, $G \subset Ison(M, g)$.
(M, g) is a homogeneous them iff G_{VM} transitively, $G \subset Ison(M, g)$.
($M, g \in \xi p \in f$) is $G_p = H \subset G$, and $M = G(p) \cong G/H$
 $Isotrop at $p \in M$ is $G_p = H \subset G$, and $M = G(p) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = G(p) \cong G/H$
 $i' cohomogeneous then iff $H = G(p) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then iff $H = O(D) \cong G/H$
 $i' cohomogeneous then in the orthory is transitive $G_{M} = O(D)$
 $i' cohomogeneous theorem is transitive $G_{M} = O(D)$
 $i' cohomogeneous theorem is transitive $G_{M} = O(D)$
 $i' cohomogeneous theorem is contrast is contrast in the orbits $G_{M} = O(D)$
 $i' cohomogeneous theorem is contrast in the orbits $G_{M} = O(D)$
 $i' cohomogeneous theorem is contrast in the orbits $G_{M} = O(D)$ is i' contrast in theorem is contrast in theorem is contra$$$$$$$$$$$$$$$$$$$

$$\begin{array}{c} \cdot \bigcup(n+1) \cap \mathbb{C}^{N+1} \cong \mathbb{R}^{2n+2} \quad \text{and} \quad hence \quad \bigcup(n+1) \cap \mathbb{S}^{2n+1} \quad (unt splare) \\ This action is also transferrer and how isotrops $\left\{ \left(\begin{array}{c} A \mid 0 \\ \circ \mid 1 \right) \in U(n+1) \right\} \cong U(n) \\ (d \ envire \in \mathbb{C}^{n+1}) \end{array} \right\} \left\{ \left(\begin{array}{c} A \mid 0 \\ \circ \mid 1 \right) \in U(n+1) \right\} \cong U(n) \\ Thus, \\ S^{2n+4} = \bigcup(n+1) / \bigcup(n) \cdot Also, \ tould de The same with SU(nri) \\ \cdots \\ Sp(n+2) \cap H^{n+2} \equiv \mathbb{R}^{4n+4} \quad \text{and} \quad hence \\ Sp(n+2) \cap H^{n+2} \equiv \mathbb{R}^{4n+4} \quad \text{and} \quad hence \\ Sp(n+2) \cap H^{n+2} \equiv \mathbb{R}^{4n+4} \quad \text{and} \quad hence \\ Sp(n+2) \cap H^{n+2} \equiv \mathbb{R}^{4n+4} \quad \text{and} \quad hence \\ Sp(n+2) \cap H^{n+2} \equiv \mathbb{R}^{4n+4} \quad \text{and} \quad hence \\ Sp(n+2) \cap H^{n+2} \equiv \mathbb{R}^{4n+4} \quad \text{and} \quad hence \\ Sp(n+1) \subseteq Sp(n+1) / Sp(n) \\ Thus, \\ S^{4n+3} \equiv Sp(n+1) / Sp(n) \\ Thus, \\ S^{4n+3} \equiv Sp(n+1) / Sp(n) \\ Thus, \\ S^{4n+3} \equiv Sp(n+1) / Sp(n) \\ Sp(n+1) \\ Sp(n+2) \\ Sp(n+1) \\ Sp(n+1) \\ Sp(n+2) \\ Sp(n+1) \\ Sp(n+2) \\ Sp(n+1) \\ Sp(n+2) \\ Sp(n+1) \\ Sp(n+2) \\$$$

Indeed, Ad(H) - invariance is the requirement to coherently define
a tensor on GAH by vivy left-translations from Teth GAH
$$\cong$$
 gr/h.
The GAH \cong gr/h.
The GAH \cong gr/h.
Thus, e.g. on S^{2n+d}, there is a 2-parameter fame, of method
invariant under the transitive U(Ind) - action.
Def. [Berger method]). Let g be the (unit) round metric on S^{2n+d}
according to horizontal/vertical spaces
for the Hopf febration S⁴ - S^{2n+d} - CP^M. Then
 $g_{St} = S2g Har + g_{Har}$, $s, t > 0$, is U(n+d)-invariant.
Up to global recedury (hounthely), consider $g(t) = g_{1,t}$. Geometrically,
 $t S4 - (S2n+d g(t)) - CPm$
it is obtained "shrinking" the fibers of the disf bundle, i.e.,
 $recedury by t the vertical directions.
Simularly for $S^3 - (S6n+3 He) \rightarrow HPm$ and $S2 - (S45, Ke) \rightarrow S8(V_2)$
 $deft-inv metric on S2=SU(2)$
(or. Up to houndhetics, homog, metrics on zephenes are the abave:
 $1 - parameter form g = S2n+d g(V) - S2n+d g(V)$$

;

$$\begin{array}{c} \underline{\mathsf{Thm}} & (\mathsf{Oniscik}' \, 60s). \ \text{The only groups active from the pole below:} \\ \underline{\mathsf{Space}} & \mathsf{CP}^{\mathsf{N}}, \ \mathsf{HP}^{\mathsf{N}}, \ \mathsf{GeP}^2 \ \text{are given in the bolke below:} \\ \underline{\mathsf{Group}} & \underline{\mathsf{Isotropy}} & \mathsf{Proj:} \ \underline{\mathsf{space}} & \underline{\mathsf{Sbdropy}} \ \underline{\mathsf{Nopr}}, \\ \underline{\mathsf{SU}}(\mathsf{n+1}) & \mathsf{S}(\mathsf{U}(\mathsf{n})\mathsf{U}(\mathsf{n})) & \mathsf{CP}^{\mathsf{N}} & \underbrace{\mathsf{Cn}}^{\mathsf{N}} & (\mathsf{irred.}) \ \mathrm{def} \ \mathsf{rep.} \\ \underline{\mathsf{Sp}}(\mathsf{n+1}) & \underline{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) & \mathsf{HP}^{\mathsf{N}} & \mathsf{H}^{\mathsf{N}} & (\mathsf{irred.}) \ \mathrm{def} \ \mathsf{rep.} \\ \underline{\mathsf{Sp}}(\mathsf{n+1}) & \underline{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) & \mathsf{HP}^{\mathsf{N}} & \mathsf{H}^{\mathsf{N}} & (\mathsf{irred.}) \ \mathrm{def} \ \mathsf{rep.} \\ \underline{\mathsf{Sp}}(\mathsf{n+1}) & \underline{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Op}(\mathsf{n}) & \mathsf{HP}^{\mathsf{N}} & \mathsf{H}^{\mathsf{N}} & (\mathsf{irred.}) \ \mathrm{def} \ \mathsf{rep.} \\ \underline{\mathsf{Sp}}(\mathsf{n+1}) & \underline{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{U}(\mathsf{n}) & \mathsf{Cp}^{\mathsf{N}}(\mathsf{n}) & \mathsf{HP}^{\mathsf{N}} & \mathsf{H}^{\mathsf{N}} & (\mathsf{irred.}) \ \mathrm{def} \ \mathsf{rep.} \\ \underline{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) & \mathsf{Sp}(\mathsf{n}) & \mathsf{Sp}(\mathsf{n}) \\ \underline{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \\ \underline{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \\ \mathbf{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \\ \mathbf{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \\ \mathbf{\mathsf{Sp}}(\mathsf{n}) \ \mathsf{Sp}(\mathsf{n}) \ \mathsf$$

As a consequence, "the" hourog. metrics on Sh (even) OP" (even) HP" Cap² are <u>vuique</u> up to homothetics, and <u>Einstein</u>

• Kound metric: S^{N} ; Ric = (n-1)g Fubini-Study metric: $(P^{N}; Ric = 2(n+1)g$ HP^{n} ; Ric = 4(n+2)g $(aP^{2}; Ric = 36g$ $I \le sec \le 4$ $I \le sec \le 4$

Among the remaining homog. metrics on compact row one symmetric opaces (S^M, RPM, CP^M, HP^M, CaP²), we have: Jensen metric g= glhort 1 glver on S4n+3 is Einstein (Sp(n+1)-invariant) Bourguignon-Korcher metric BK = glnor + 3 glver on Stois Einstein (Spin (9) - invorant) Ziller metric gz=gfs/hor + 1/n+1 gfs/ver on CP²ⁿ⁺¹ is Einstein (Sp(n+1) - invariant) Ziller showed these are all possibilities. (Meth. Ann. 1982) Next step down the symmetry ladder, as measured by cohomogeneity: <u>Cohomogeneity</u> one manifolds are those with GAM, GCIsom(H,g) dim $M_{G} = 1$. ($\Longrightarrow M_{G} \cong R$, $[0, +\infty)$, S^{4} or [0, L].) more about this next time ...

Lecture 14 Collourogeneity one name folls
$$5/11/2003$$

GAM isom action, cohomogeneity is dim MG. The direct is the law
or directly or isother is dim MG. The direct Hardy or isother is all rest.
Adjoint action $G(P_{q})$, $Ad_{g}(x) = dL_{g} \circ dR_{g}(x) = \frac{d}{dt} \int critical rest.$
Adjoint action $G(P_{q})$, $Ad_{g}(x) = dL_{g} \circ dR_{g}(x) = \frac{d}{dt} \int critical rest.$
 $Adjoint action $G(P_{q})$, $Ad_{g}(x) = dL_{g} \circ dR_{g}(x) = \frac{d}{dt} \int critical rest.$
 $Adjoint action $G(P_{q})$, $Ad_{g}(x) = dL_{g} \circ dR_{g}(x) = \frac{d}{dt} \int critical rest.$
 $ad_{x}(y) = d(Ad_{e})_{x}(y) = [x,y]$ ($L_{g}(h) = \frac{d}{dt} \int critical rest.$) It is expanded
 $TT: G \rightarrow G/H$ is G -equivariant: $g_{1}(gH) = (g_{2}g)H$. $TT: G \rightarrow G/H$
 $g \mapsto gH$
if helf, then high = hgh⁻¹H, so $Ad_{h}: \mathcal{Y} \rightarrow \mathcal{Y}$ have h inversal.
and, differentiating hexp(tx)H = hexpt x)k⁻¹H in t=0, we get $dL_{h}(x) = \frac{d}{dL_{h}(x)}$
 $\mathcal{Y} = H \oplus n$ $Ad - invariant complement, $M \cong T_{eH} G/H = \frac{d}{dL_{h}(x)}$
 $\mathcal{Y} = H \oplus n$ $Ad - invariant complement, $M \cong T_{eH} G/H = \frac{d}{dL_{h}(x)}$
 \mathcal{G} -inversally, if C_{1} is $Ad_{H} - inver hinter \mathcal{F}
 $\mathcal{G} = \frac{d}{dH} \int critical complements on Miner \mathcal{F}
 $\mathcal{G} = \frac{d}{dH} \int critical complements on Miner \mathcal{F}
 $\mathcal{G} = \frac{d}{dL_{h}(x)} \int \frac{d}{$$$$$$$$

Just like for homog. sp.
$$G/_{H}$$
, the gp. diagram $H \leq K_{\pm} \leq G$ can
be used to compute the topology of M ; e.g., $H^{*}(M, \mathbb{F})$ etc.
e.g., $\chi(M) = \chi(G/_{K-}) + \chi(G/_{K+}) - \chi(G/_{H})$.
Exercise (Hopf - Soundan Thm). $\chi(G/_{H}) \geq O$ for any compact homog. Sp.
and $>O \iff rK H = rKG$
Ex: $SO(n) \cap S^{n}$ $SO(n)$ $K_{\pm} = G$ (sing. orbits are fixed pts!)
 $SO(n)$ $g_{S^{n}} = dt^{2} + sin^{2}t \cdot g_{S^{n-1}}$ unit round ametric gg

Thun (Grove-Ziller, 2002), A compact cohom. 1 mfld
$$(M,g)$$
 has an involute metric with Ric >0 iff $T_{I_1}(M)$ is finite.