Lecture 9 Applications of Toponoger I

- Recall Toponogar triangle comparison (Triangle \& Hinge) and comments on proof.

Preliminaries: $\Gamma=\pi_{1} M$ acts freely on the universal covering M, and $\tilde{M} \Gamma_{\text {deficit }}^{\cong} M$. Lifting a Riem. metric of from M, the projection mop $p:(\tilde{M}, \tilde{g}) \rightarrow(M, g)$ becomes a local isometry, and the action of Γ on \tilde{M} is isometric, so $M / \Gamma_{i \text { som }}^{\cong} M$.
Def: A fundamental domain for the action $\Gamma \curvearrowright \tilde{M}$ is a subset $F \subset \widetilde{M}$ s.t. $\Gamma . F=\tilde{M}$ and $\operatorname{int}(g . F) \cap \operatorname{int}(F)=\phi, \forall g \in \Gamma, g \neq e$.
Fix $F \subset \widetilde{M}$ a fund. domain for the action $\Gamma \Omega \tilde{M}$, e.g., fix $\theta \in \widetilde{M}$ and take $F=\bigcap_{g \in \Gamma}\{x \in \tilde{M}: \operatorname{dist}(\theta, x) \leq \operatorname{dist}(\theta, g \cdot x)\}$
"Dirichlet Fundamental domain"

Exercise: Verify that F is a fund domain.
Def: $g \in \Gamma$ is small if $g \cdot F \cap F \neq \phi$.
-F g.F $F \phi \Leftrightarrow F$ and g.F are adjacent (but their interiors ore alisjoint!)

Prop: If M is compact, then $\pi_{1} M$ is finitely generated.
Pf. By the triangle inequality, $g . F \subset B_{2 \operatorname{diam}(F)}(\theta)$ for any small $g \in \Gamma$.
Since $\{g .(\operatorname{int} F)\}_{g \in \Gamma}$ are disjoint and have equal volume, only finitely many can fit inside $B_{\text {diam }}(F)(\theta)$, so there are only finitely many smell elements $g \in \Gamma$.
Claim: Γ is generated by small elements.
Indeed, given $g \in \Gamma$, choose a minimal geodesic γ from θ to $g \cdot \theta$.

Then γ is covered by finitely many fundamental domains $g_{0} F=F, g_{1} F, g_{2} F, \ldots, g_{N} F=g F$ s.t. $g_{i} F$ and $g_{i+1} F$ are adjacent, ie., $g_{i}^{-1} g_{i+1} \in \Gamma$ is small. Thus, we have that $g=\underbrace{g_{0}^{-1} g_{1}} g_{1}^{-1} g_{2} g_{2}^{-1} \cdots g_{N-1} g_{N-1}^{-1} g_{N}$ is a product of smell elements.

RMK: If M is noncompact, then $\pi_{1} M$ might not be finitely generated...
but these manifolds do not have metrics with $\mathrm{sec} \geqslant 0$:
Thu (Gromov 1978). If $\left(M^{\prime \prime}, g\right)$ has $\sec \geqslant 0$, then $\pi_{1} M$ can be generated by $\leqslant \sqrt{2 n \pi} \cdot 2^{n-2}$ elements. If $\left(M^{n}, g\right)$ has $\sec \geqslant-K^{2}$ and $\operatorname{diam}(M) \leq D$, then $\pi_{1} M$ can be generated by $\leq \frac{1}{2} \sqrt{2 n \pi}(2+2 \cosh (2 k D))^{\frac{n-1}{2}}$ © Note: If $k \rightarrow 0$, then

Pf: (Case $k=0$). Fix $\theta \in \widetilde{M}$ and consider the isometric action of $\Gamma=\pi_{1} M$, by deck transformations (see preliminaries). Define displa cement of $g \in \Gamma$:
$|g|=\operatorname{dist}(\theta, g \cdot \theta)$. Clearly, a min. geod. from θ to $g \cdot \sigma$ in \widetilde{M} projects g.or to geodesic loop based at $p(\theta) \in M$, which has
minimal length in its homotopy class. For any minimal length in its homotopy class. For any
given $R>0$, there ore only finitely many $g \in \Gamma$ with $|g| \leqslant R$, because otherwise an
 p lg' ${ }^{\prime \prime}$)

Thus, we can define $g_{1} \in \Gamma$ s.t. $\left|g_{1}\right|=\min _{g \in \Gamma}|g|$, and $g_{2} \in \Gamma$ with $\left|g_{2}\right|=\min _{g \in \Gamma \backslash\left(g_{1}\right)}|g|$; inductively, define a sequence $g_{1}, g_{2}, \ldots \in \Gamma$ of generators $g \in \Gamma \backslash\left(g_{1}\right)$ with $\left|g_{1}\right| \leq\left|g_{2}\right| \leq \ldots$ and $\left|g_{i+1}\right|=\min _{g \in \Gamma \backslash\left(g_{1}, \ldots, g_{i}\right)}|g|$. (Keep adding elements g_{i} untie a $g \in \Gamma \backslash\left(q_{1}, \ldots, g_{i}\right)$ set of generators is achieved!)

$\sec \geqslant 0$

Set $l_{i j}=\operatorname{dist}\left(g_{i} \cdot \theta, g_{j} \cdot \theta\right)$ for all $i<j$. Then $l_{i j} \geqslant\left|g_{j}\right|$, for otherwise $\bar{g}=g_{i}^{-1} \cdot g_{j}$ would have $|\bar{g}|=l_{i j}\langle | g_{j} \mid$ and $\left\langle g_{1},-g_{i}, \ldots, g_{j}\right\rangle=\left\langle g_{1}, \ldots, g_{i}, \ldots, \bar{g}\right\rangle$ hence contradict the min. choice of g_{j} above. Note that all sides of the triangles $\theta, g_{i} \cdot \theta, g_{j} \cdot \theta$ are min geodesics.
By Toponogov, applied to the hinge based at $g_{i} \cdot \theta$, wise have that $\alpha_{i j} \geqslant \widetilde{\alpha}_{i j}$. Law of cosines in \mathbb{R}^{2} :

$$
\begin{aligned}
& l_{i j}^{2}=\left|g_{i}\right|^{2}+\left|g_{j}\right|^{2}-2\left|g_{i}\right|\left|g_{j}\right| \cos \widetilde{\alpha}_{i j} \\
& \Rightarrow \cos \left(\widetilde{\alpha}_{i j}\right)=\frac{\left|g_{i}\right|^{2}+\left|g_{j}\right|^{2}-l_{i j}^{2}}{2\left|g_{j}\right| \leq l_{i j}|\cdot| g_{j} \mid} \leqslant \frac{\left|g_{i}\right|^{2}+\left(\left|g_{j}\right|^{2}-\left|g_{j}\right|^{2}\right)}{2 \cdot\left|g_{i}\right|^{2}}=\frac{1}{2} \\
& \Rightarrow \quad \alpha_{i j} \geqslant \widetilde{\alpha}_{i j} \geqslant \frac{\pi}{3} .
\end{aligned}
$$

Let $v_{i} \in T_{\theta} \tilde{M}$ be the unit vector tangent to the min. geod. from σ to $g_{i} \cdot \sigma$. By the above, the distance (on the unit sphere in $T_{\theta} \tilde{M}$) between v_{i} and v_{j} is $\alpha_{i j} \geqslant \frac{\pi}{3}$, so the balls of radius $\frac{\pi}{6}$ centered at v_{i} and v_{j} must be disjoint. (This already proves there can be only finitely many v_{i} 's, hence finitely many g_{i}^{\prime} s so $\Gamma=\pi_{1} M$ is finitely generated.) Moreover, as $\left|g_{i}^{-1}\right|=\left|g_{i}\right|$, we must also have that distance from $-v_{i}$ to v_{j} is $\geqslant \frac{\pi}{3}$ if $i<j$, therefore the number of v_{i} 's is:

Volume of spherical boll of radius r is
Standard computations give:

$$
\begin{aligned}
& \text { - } \operatorname{Val}\left(B_{\pi / 6}^{\mathbb{S}^{n-1}}(v)\right) \geqslant \operatorname{Vol}(B_{\underbrace{\mathbb{R}^{n-1}}_{=1 / 2}}^{\sin ^{\pi / 6}}(0))=\frac{\pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n+1}{2}\right) 2^{n-1} \quad \quad(\Gamma=\text { Gamma function })} \quad \text { log-concavity of } \Gamma: \\
& \cdot \operatorname{Vol}\left(\mathbb{R} P^{n-1}(1)\right)=\frac{1}{2} \operatorname{Vol}\left(5^{n-1}(1)\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} \\
& \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \leq \sqrt{\frac{n}{2}} \\
& \text { So \# } \left.\# g_{i}\right\}=\#\left\{v_{i}\right\} \leqslant \frac{\pi^{n / 2} \Gamma\left(\frac{n+1}{2}\right) 2^{n-1}}{\Gamma\left(\frac{n}{2}\right) \cdot \pi^{\frac{n-1}{2}}}=\sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} 2^{n-1} \leq \sqrt{2 n \pi} \cdot 2^{n-2} \text {. }
\end{aligned}
$$

For case $\sec \geqslant-k^{2}$, adept the argument above $\omega /$ Law of Cosines in the comparison space of constant curvature $-K^{2}$:

$$
\begin{aligned}
& \cos \left(\tilde{\alpha}_{i j}\right)=\frac{\cosh \left(k\left|g_{i}\right|\right) \cosh \left(k\left|g_{j}\right|\right)-\cosh \left(k l_{i j}\right)}{\sinh \left(k\left|g_{i}\right|\right) \sinh \left(k\left|g_{j}\right|\right)} \leqslant \frac{\cosh ^{2}\left(k\left|g_{j}\right|\right)-\cosh \left(k\left|g_{j}\right|\right)}{\begin{array}{c}
\text { need } \\
\text { bound diameter }
\end{array}} \sinh ^{2}\left(k\left|g_{j}\right|\right) \\
&=\frac{\cosh \left(k\left|g_{j}\right|\right)}{\cosh \left(k\left|g_{j}\right|\right)+1}
\end{aligned}
$$

Thus, by Toponogov, $\alpha_{i j} \geqslant \tilde{\alpha}_{i j} \geqslant \arccos \left(\frac{\cosh (2 k D)}{\cosh (2 k D)+1}\right)$.
Estimate volume of spherical ball of the above radius (from below) by volume of Euclidean ball of radius $\sin \left[\frac{1}{2} \arccos \left(\frac{\cosh (2 k D)}{\cosh (2 k D)+1}\right)\right]$ to get estime te on $\#\{q i\}$.
Rok: Bounds above are never sharp.
Rmk: $\sum_{g}^{2}=$ orientable hyperbolic surface of genus g. Then $\sec \equiv-1$ and $\pi_{1}\left(\sum_{g}^{2}\right)=\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots, g_{g} b_{g} \mid\left[a_{1}, b_{1}\right] \ldots\left[a_{g}, b_{j}\right]=1\right\rangle$ hos $2 g$ generators. As $g^{a}+\infty$, then Keeping $\sec \equiv-1$ forces diam $\lambda+\infty$. (or if diam $\equiv D$ then $\sec \equiv-k^{2} \lambda-\infty$)

Recent development surrounding the above:

- If Γ is finitely generated, fix a finite generating set G, with $e \in G$ and $G^{-1}=G$. Then define growth function for Γ :

$$
N_{k}^{G}=\#\left\{g \in \Gamma: g=g_{1} \cdots g_{k} \text {, with } g_{i} \in G\right\}
$$

- of group elements that con be written as product of k generators
in the fixed generating set G.
- If G^{\prime} is another clivice of generating set for Γ as above, then $N_{K}^{G^{\prime}} \geqslant N_{C k}^{G}$ and $N_{k}^{G} \geqslant N_{D_{k}}^{G^{\prime}}$ for some constants $C_{1} D>0$, so can ignore choice of gen. set G for questions below.
- Q: How does N_{k} grow with K? Polynomially? Exponentially?

Tum (Miner '68). If $\left(M^{h}, g\right)$ is complete and hos $R_{i c} \geqslant 0$, then any finitely generated subgroup $\Gamma<\pi_{1} M$ has $N_{k} \leq C \cdot k^{n}$.

Pf: Choose $\theta \in \tilde{M}^{n}$, and let $V(r)=\operatorname{Vbl}(\operatorname{Br}(\theta))$. By Bishop Volume Comp., $V(r) \leqslant \operatorname{Val}\left(\mathcal{B}_{r}^{\mathbb{R}_{r}^{n}}(0)\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} r^{n}$. Let $G=\left\{g_{1}, \ldots, g_{p}\right\}$ be the fixed generating set for $\Gamma<\pi_{1} M$ and $\mu=\operatorname{mex} \operatorname{dist}\left(\sigma_{1}, g i \theta\right)$.
Then $B_{\mu \cdot k}(\sigma)$ hos at least N_{k}^{G} distinct points of the form $g \cdot \sigma$, with $g \in \Gamma$. Choose $\varepsilon>0$ s.t. $g \cdot B_{\varepsilon}(\theta) \cap B_{\varepsilon}(\theta)=\phi$ if $g \neq e$. Then $B_{\mu \cdot k+\varepsilon}(\theta)$ hos at leet N_{k}^{G} disjoint subsets of the form $g \cdot B_{\varepsilon}(0)$, so

$$
V \operatorname{Ve}\left(\underset{\substack{g=g_{1 \cdots} \ldots g_{k} \\ g_{i} \in G}}{\left.\Perp g_{\varepsilon}(\theta)\right)} N_{k}^{G} \cdot V(\varepsilon) \leq V(\mu k+\varepsilon)\right.
$$

Thus $\quad N_{k}^{G} \leq \frac{V(\mu k+\varepsilon)}{V(\varepsilon)} \leqslant \frac{\widetilde{C}(\mu k+\varepsilon)^{n}}{V(\varepsilon)} \leq C \cdot k^{n}$.
The (Miluor '68). If (Mig) is a closed Riem. mfld with $\sec <0$, and $\pi_{1} M=\langle 6\rangle,|G|<\infty$, then $N_{k}^{G} \geqslant a^{k}$ for some $\left.a\right\rangle 1$.

Ex: Fundamental group of hyperbolic manfold Σ^{n} hos exponential growth; thus, cannot be π_{1} of meld $w /$ Tic $\geqslant 0$. So, cannot "improve" the above The to sal >0, as $\sum^{2} x S^{n-2}(\varepsilon)$ has sal >0 for $n \geqslant 4$ and $\varepsilon>0$ supp. small, if Σ^{2} is a hyperbolic surface.

- The following is currently still open for $n \geqslant 4$:

Conjecture (Milluor). If $\left(M^{n}, g\right)$ is complete and has Tic $\geqslant 0$, then $\pi_{1} M$ is finitely generated.

- For $n=3$, it was proven by $[\operatorname{Lim}, 2013]$ and inolep. [Pan, 2017].

Inventions popes, uses minimal surfaces
m Geometric Group Theory

- Crelle paper, uses Cheer- Cording
theory oud Raccoon limit spaces

Thu $\left(G_{\text {romov }}\right.$ ' 81$)$ If Γ is finitely generated and has frolynomial growth, then Γ is virtually nilpotent: $\exists N \triangleleft \Gamma$ nilpotent with $[\Gamma: N]<\infty$.
Remark (Willing 2000): If there is a counter-example M to Miluor's conj;, then it has a covering space $\hat{M} \rightarrow M$ with $\pi_{1} \widehat{M}$ abelian and not finitely generated.

Lecture $10 \quad$ Applications of Topenoger II
Recap: Toponogov triangle comparison for $\sec \geqslant k$.
Triangle:

$$
x \geqslant k
$$

$d \geqslant \tilde{d} \alpha_{i} \geqslant \tilde{\alpha}_{i}$

Hinge:

$$
\text { lough }(\gamma) \leq \text { laugh }(\gamma) \quad \text { rigidity... }
$$

Tum (Goomov'78). If (M_{1}^{n}) is a (possibly noncoup act) complete manifold with $\sec \geqslant 0$, then $\pi_{1} M$ can be generated by $\leq \sqrt{2 n \pi} \cdot 2^{n-2}$ elements. (Similar resist if sec $\geqslant-x^{2}$, diam $\leqslant D$.)

- Discuss Milner's earlier contributions about $\pi_{1} M$ if Tic $\geqslant 0$ and growth function.

Using Bishop Volume Comparison, Toponogov Triangle Coumporson, Critical point theory for distance functions and topological, constructions, Gromor proved the following:
The (Gromov ' 1981).
i) If $\left(M^{n}, g\right)$ is a complete med with $\sec \geqslant 0$, then $\sum_{k=0}^{n} b_{k}(M) \leq C(n)$
ii) If $\left(M^{n}, g\right)$ is a closed meld with sec $\geqslant-k^{2}$ and $\operatorname{diam} \leq D$, then $\sum_{k=0}^{n} b_{k}(M) \leq C(n)^{1+k D}$.

Cannot replace the hypothesis sec $\geqslant 0$ to $R_{i c}>0$ because:
Thu (Sha-Youg' $9 o_{s}$). $\forall l \in \mathbb{N}, \#^{l} \mathbb{S}^{2} \times \mathbb{S}^{2}$ and $\#^{k} \mathbb{C P}^{2} \#^{l} \overline{\mathbb{P}}^{2}$ have Ric>0.
Thm.(Perelman' 197). $\forall l \in N$, \# $\mathbb{C}^{P} P^{2}$ has a metric with $R_{i c}>0$, diam $=1$ and $V k \geqslant V>0$.
Thus, since $b_{2}\left(\#^{l} s^{2} \times s^{2}\right)=2 l$ and $b_{2}\left(\#^{k} \mathbb{Q}^{2} \#^{l} \bar{ه}^{2}\right)=k+l$, only preserved by \#; finitely many of these manifolds can have sec $\geqslant 0$. Currently, , indeed by bunverines - only S^{4} and $\mathbb{C P}^{2}$ are known to hove $\sec >0$ and $\frac{1}{2}$ Related of open unevition is is
 Conjecturally, the dove is the complete list of simply-connected 4 -mfleds with $\sec >0$ and $\sec \geqslant 0$.

An application of Toponogor to closed geodesics in surfaces:
The (Toponogov). If $\left(M^{2}, g\right)$ is a closed oriented surface with sec $\geqslant k$ and γ is a simple closed geoderic, then length $(\gamma) \leq \frac{2 \pi}{\sqrt{k}}$. Moreover, if length $(\gamma)=\frac{2 \pi}{\sqrt{k}}$ then $\left(M^{2}, g\right)$ is isometric to the round sphere $\mathbb{S}^{2}\left(\frac{1}{\sqrt{k}}\right)$.
Pf: Cut $\left(M^{2}, g\right)$ along γ to obtain a disk D with geodesic boundary. (Note that γ bounds a disk because, by Gauss-Bonnet, $M^{2} \cong \mathbb{S}^{2}$.) Assume $K=1$, general case is obtained by rescaling.

$\sec \geqslant 1$

Suppose $\gamma:[0,1] \rightarrow M$, so $\gamma(0)=\gamma(1)$ and $\dot{\gamma}(0)=\dot{\gamma}(1)$. Since $\sec \geqslant 0$, the disk $D \subset M$ with $\partial D=\gamma$ is Convex: min. geod. between $x, y \in D$ are contained in D. Indeed, if not, then can produce a variation of geodesics by application of Ranch II by "pushing inure" and these would have shorter length, contradicting minimality of the geodesic
 minincannot be if sec $\geqslant 0.0$

Let $\beta_{1 / 2}$ be min geod. from $\gamma(0)$ to $\gamma(1 / 2)$, which is entirely contained in D. Since $\beta_{1 / 2}$ is minimizing, length $\left(\beta_{1 / 2}\right) \leq \pi$ by Myers. If length $\left(\beta_{1 / 2}\right) \geqslant \frac{1}{2}$ length (γ), then lugth $(\gamma) \leq 2 \pi$ so we ore done. If not, then let $\beta_{1 / 4}$ and $\beta_{3 / 4}$ be min. geod. from $\gamma(0)$ to $\gamma(1 / 4)$ and $\gamma(3 / 4)$, there are also entirely in D. By Toponogor (Hinge) applied to the hinges at $\gamma(0)$ with sides $\beta_{1 / 4}, \beta_{1 / 2}$ and $\beta_{1 / 2}, \beta_{3 / 4}$, we get a companion quadrangle in $S^{2}(1)$ which has all internal
 angles $\leq \pi$ and is therefore convex; w/ side lengths:

$$
\text { - length }\left(\beta_{1} / 4\right) \text {, }
$$

- $d_{1} \geqslant \operatorname{length}\left(\left.\gamma\right|_{[1 / 4,1 / 2]}\right)$
- $d_{2} \geqslant$ length $(\gamma \mid[1 / 2,3 / 4])$
- $\operatorname{lng} t h(\beta 3 / 4)$

convex quodrengle contained hemispher! Thus hos perimeter $\leq 2 \pi$.

Since this quadrangle is convex, it must be contained in a hemisphere of $S^{2}(1)$, thus its perimeter is $\stackrel{(\otimes)}{\leftrightarrows} 2 \pi$; hence

$$
\begin{gathered}
\text { length }(\beta 1 / 4)+\text { length }(\gamma \mid[1 / 4,1 / 2])+\text { length }(\gamma \mid[1 / 2,3 / 4])+\text { length }\left(\beta_{3 / 4}\right) \leq \\
\text { Topongov } \leq \log t h\left(\beta_{1 / 4}\right)+d_{1}+d_{2}+\text { length }\left(\beta_{3 / 4}\right) \stackrel{\circledast}{\leq} 2 \pi
\end{gathered}
$$

If $\beta_{1 / 4}=\gamma \mid[0,1 / 4]$ and $\beta 3 / 4=\gamma \mid[3 / 4,1]$, then the clove proves length $(\gamma) \leq 2 \pi$. If, however, $\gamma \mid[0,1 / 4]$ or $\gamma \mid[3 / 4,1]$ are not min. then we further subdivide, see picture. Once again, we obtain a comparison polygon (hexagon) in $\2 which is convex by Toponogov,

$\sec \geqslant 1$
 and hes perimeter $\leq 2 \pi$ $b l c$ if is convex neuce contained in a hemisphere of $\mathbb{S}^{2}(1)$. If $\beta_{1 / 8}=\left.\gamma\right|_{[0,1 / 8]}$ and $\beta_{7 / 8}=\left.\gamma\right|_{[7 / 8,1]}$, then we are done, since length $(\gamma) \leq\left(\begin{array}{c}\text { perimeter of } \\ \text { compass } \\ \text { hexagon }\end{array}\right) \leq 2 \pi$ If not, keep subdividing. Eventually, the min. geod. $\beta \frac{1}{2 n}$ and $\left.\beta_{1-1 / 2^{n}} \frac{\text { will agree with }}{} \frac{\gamma i^{\text {region }}}{}\right|_{\left[0,1 / 2^{n}\right]}$ and $\left.\gamma\right|_{\left[1-1 / 2^{n}, 1\right]}$ and then we will have louth $(\gamma) \leq$ labeled "?primes sent er of companion polygon $\leq 2 \pi$ by Topronogon and convexity of the companion polygon, which, itself, also follows from Toponogor (comparison angles are $\leq m$ meld angles $\leq \pi$).
The rigidity statement in the equality case follows from rigidity in Toponoger (we did not discuss this) applied to the alisk DCM and then to M\D.
Rok: This result has been reproven recently with PDE techniques, in a way that allows to show stability of the conclusion under Gromor-Hausdorff \& Intrinsic Flat convergence (see paper of Hunter Stufflebeam)

Final application of Toponogor: critical point theory for distance functions
Goal: Apply Morse theory to $\rho(x)=\operatorname{dist}(x, \theta)$:

$$
\binom{\text { critical points of }}{p: M \rightarrow \mathbb{R}} \leftrightarrow(\text { Topology of } M)
$$

Problem: ρ is not smooth, ∇_{ρ} does not hove active flow...
Def: A point $q \in M$ is regular for $\rho(x)=\operatorname{dist}(x, p)$ if $\exists v \in T_{q} M$ sit. all min. geod. from p to o make an angle $>\frac{\pi}{2}$ with v.

ie. if $\gamma:[0,1] \rightarrow M$ is min. geod from o to p, then $\langle\dot{\gamma}(0), v\rangle<0$. The point q is called critical if it is not regular, ie, if there does not exit t a direction v to move farther away from p.

Lemme. Regular points for $\rho(x)$ form an open subset (d. Sard's Theorem).
Within any region between sublevelsets $\rho^{-1}([a, b])$ without critical points for ρ_{1}^{\prime} can define a grodient-like vector field for ρ, which gives an isotopy from $\rho^{-1}((-\infty, b))$ to $\rho^{-1}((-\infty, a))$.
Rok: No analogue to Morse Lemme, which says how to "build" $\rho^{-1}((-\infty, b])$ from $\rho^{-1}((-\infty, a))$ if there is a critical point of P in $\rho^{-1}((a, b))$; namely attach a cell of dimension given by the
index of the critical print.
 index of the critical point.
Thu (Grove-Shidhama '77). If $\left(M^{4}, f\right)$ is a Riem. meld. with $\sec \geqslant K>0$ and $\operatorname{diam}(M, g)>\frac{1}{2} \operatorname{diam}\left(S^{n}(1 / \sqrt{k})\right)=\frac{\pi}{2 \sqrt{k}}$, then $M_{\text {named }}^{\cong} S^{n}$.
(Sharp bbc of $\mathbb{R}^{\left.P^{n}(1 / \sqrt{k}) \text {). }\right) ~}$
Pf: Up to rescaling, assume $k=1$, and let $p, q \in M$ be points sit. $\operatorname{dist}(p, q)=\operatorname{diam}\left(M^{n}, q\right)$ realize the diameter of M.

Claim 1. If $q^{\prime} \in M$ is sit. $\operatorname{dist}\left(p, q^{\prime}\right)=\operatorname{diam}\left(M^{\prime \prime}, \delta\right)>\frac{\pi}{2}$, then $q^{\prime}=q$.

Pf: By Toponogor Triangle comp., if $q, q^{\prime} \in M$ satisfy

$$
\operatorname{dist}(p, q)=\operatorname{dist}\left(p, q^{\prime}\right)=\operatorname{diam}(M, g)>\frac{\pi}{2}
$$

then the distance from p to any x in the \min. geod. joining of to q^{\prime} would
 exceed the diameter of ($M^{\prime \prime}, g$), thus $q=q^{\prime}$.

$\tilde{d}=\tilde{\operatorname{dist}(\tilde{x}, \tilde{p})}>\operatorname{dist}(\tilde{p}, \tilde{q})$

Claim 2. If $x \neq p$ and $x \neq q$, then x is regular for $p(x)=\operatorname{dist}(x, p)$.
Pf. If $x \neq p$ and $x \neq q$, then join x to p and to q by min. geod. of length l_{2} and $l_{\text {; }}$ both

$$
\text { are } \leq l_{1}=\operatorname{diam}(M, S) \text {. }
$$

Since $l_{1}>\frac{\pi}{2}$, the
 $\tilde{\alpha}>\frac{\pi}{2}$ by spherical trigonometry, so $\alpha \geqslant \vec{\alpha}>\frac{\pi}{2}$ by Toponogov.
Thus the velocity rector of the mum. geod. from x to q proves x is regular. \&
$\tilde{\alpha}>\frac{\pi}{2}$ by law of cosines on S^{2} : $\cos \tilde{\alpha}=\frac{\cos l_{1}-\cos l \cdot \cos l_{2}}{\sin l \cdot \sin l_{2}}<0$ What if multiple min.
geod fou p ?
By Lemma, can build a grodient-like vector field on $M \backslash B_{\varepsilon}(p) \cup B_{\varepsilon}(q)$ which is never zero, so $M \backslash\left(B_{\varepsilon}(p) \cup B_{\varepsilon}(q)\right) \cong \cong[a, b] \times \mathbb{S}^{n-1}$ and hence $M_{\text {now no }}^{\cong} \cong \mathbb{S}^{n}$.

Rok: It is not known if such M is diffeomorphlic to S^{n}, since above proof only shows it is a "twisted sphere". Currently, no exotic sphere is known to have sec >0. However, Gromoll-Meyer sphere Σ^{7} has $\sec \geqslant 0$; actually $\operatorname{Sec}>0$ on open dense subset.

Cor. If $\left(M^{n}, g\right)$ has $\sec \geqslant k>0$ and $\operatorname{Vol}(M, g)>\frac{1}{2} \operatorname{Vol}\left(S^{n}(1 / \sqrt{k})\right)$, then $M_{\text {nuwoo }}^{N} S^{n}$. Pl: Exerase (Bishop Volume Couppenson!)

Thm (Perelman' 144) $\forall n \geqslant 2, \exists \delta_{n}>0$ st. if $\left(M^{n}, g\right)$ has $R_{i c} \geqslant(n-1) g$ and $V_{0} l(M, g) \geqslant\left(1-\delta_{n}\right) \cdot V_{0} l\left(\mathbb{S}^{n}(1)\right)$, then $M_{\text {names }}^{n} \frac{\cong}{S^{n}}$.
As mentioned before, the following is open:
Conjecture. If $\left(M^{n}, g\right)$ hos $R_{i c} \geqslant(x-1) \cdot g$ and $V_{l}(M, g)>\frac{1}{2} V_{l}\left(S^{n}(1)\right)$, then $\left(M^{n}, s\right)$ is homeomorphic? differmorphic? to \mathbb{S}^{n}.

A trivial step towards it is to show that such $\left(M^{n}, g\right)$ is simply-connected (Exercise we discussed earlier, using Bishop Volume Comparison).
Also, there cont be an "almost maximal" diameter theorem with Tic $\geqslant n-1$:
Thu (Anderson). \exists Rem. metrics on $\mathbb{C} P^{n}$ with $R_{i c} \geqslant(n-1) g$ and $\operatorname{diam} \geqslant \pi-\varepsilon$.

Lecture 11
Bochner technique

Def: Given an oriented Rem. marifedd $\left(M^{n}, g\right)$, define the orthogond frame bundle $F_{r}(T M) \rightarrow M$ where the fiber $F_{r}(T M)_{p}=\left\{\left(e_{1}, \ldots, e_{n}\right) \in\left(T_{P} M\right)^{n} ; g\left(e_{i}, e_{j}\right)=\delta_{i j}\right\}$ is the set of or orientenormal bases of $T_{p} M$.

Note this is a principal So(n)-bundle, since SOOn) acts freely and transitively on the set of oriented orthonormal bases of \mathbb{R}^{n}. As a bundle, $S O(n) \rightarrow F_{r}(T M) \rightarrow M$
Example: $\left(M^{n}, g\right)=\left(S^{n}\right.$, ground $)$ then $F_{r}(T M) \cong S O(n+1)$, since $S O(n) \rightarrow S O(n+1) \rightarrow S^{n}$ and $S O(n+1) \ni\left(\begin{array}{rrrr}1 & 1 & 1 \\ p_{1} & e_{1} & \ldots & e_{n} \\ \mid & \mid & 1\end{array}\right] \mapsto\left(e_{1}, \ldots, e_{n}\right)$ orthonormal frame of $T_{p} S^{n}=p^{\perp}$. Ex: $S O(2) \rightarrow \operatorname{Fr}\left(T S^{2}\right) \rightarrow S^{2}$ is equivalent to the

Note: M is povellelizable (ie. $T M=M \times \mathbb{R}^{n}$ is trivial) if and only of $F_{r}(T M)$ has a global section.

EX: S^{n} is porallelizable if and only if $x=0,1,3,7$ because \mathbb{R}^{n+1} is a real division algebra off $n=0,1,3,7$.

See [Bott-Milnory] 3-page roper "On the porcllelizability of the sphere"".

Eg. $n=3 \quad S^{3} \subset \mathbb{H} \cong \mathbb{R}^{4}=\operatorname{span}\{1, i, j, k\}$. indeed, $z=a+b i+c j+d k$ then $i z=a i-b+c k-d j$ If $z \in S^{3}, T_{z} S^{3} \triangleq z^{\perp}=\operatorname{span}\{i z, j z, k z\}$ So $\langle z, i z\rangle=-a b+a b-c d+c d=0$ similorly $\langle z, j z\rangle=\langle z, K z\rangle=0$; and
So we get a global section: $S^{3} \ni z \mapsto(i z, j z, k z) \in F_{V}\left(T S^{3}\right)$, $\{i z, j z, k z\}$ is on. .b. showing that $T S^{3}=S^{3} \times \mathbb{R}^{3}$.
Associated bundle construction ${ }^{-}$
Let E be a vector space and $\pi ; S O(n) \rightarrow S O(E)$ be a representation of $S O(n)$, ie, a linear action $\operatorname{SO}(n) \curvearrowright E$. Then we con define the associated bundle $E \rightarrow E_{\pi} \rightarrow M$, where $E_{\pi}:=\operatorname{Fr}_{r}(T M) x_{\pi} E=\operatorname{Fr}(T M) \times E$
is the quotient space of the action $S O(n) \curvearrowright F_{r}(T M) \times E$

$$
g \cdot(f, v)=\left(f \cdot g, \pi\left(g^{-1}\right) v\right) \quad f \in \operatorname{Fr}(\pi M), v \in E
$$

Examples:

etc etc etc,
e.g., given two such bundles $E_{\pi_{1}}, E_{\pi_{2}}$, we can construct

$$
\begin{array}{ll}
E_{\pi_{1}} \oplus E_{\pi_{2}}=E_{\pi_{1} \oplus \pi_{2}} & \text { Sym u }^{P} E_{\pi}=E_{s_{j u} P \pi} \\
E_{\pi_{1}} \otimes E_{\pi_{2}}=E_{\pi_{1} \otimes \pi_{2}} & \Lambda^{p} E_{\pi}=E_{\lambda^{p} \pi}
\end{array}
$$

and iterate these, e.g., $\Lambda^{2} E_{\pi_{1}} \oplus \operatorname{Sym}^{2}\left(\operatorname{Sym}^{4}\left(\Lambda^{2} E_{\pi_{1}} \otimes E_{\pi_{2}}^{\oplus S}\right)\right) \ldots$
Note: Since we have a Rem. metric, we often identify $T M^{*} \cong T M$ hence also $A^{P} T M \cong \Lambda^{P} T M^{*}$, $S_{y m}{ }^{P} T M \cong S_{y m}{ }^{P} T M^{*}$, etc.
(so $\Omega^{P} M=\Gamma\left(\Lambda^{P} T M\right)$.)
Laplacians $\Delta: \Gamma\left(E_{\pi}\right) \rightarrow \Gamma\left(E_{\pi}\right)$
The above bundles often have a "natural" Laplace operator; e.g.,

- $\Omega^{P} M$: Hodge Loplacien $\Delta_{H}=d \delta+\delta d=(d+\delta)^{2}$ $0 \leqslant p \leqslant n$ where d: $\Omega^{p} M \rightarrow \Omega^{p+1} M$ exterior derivative
$\delta: \Omega^{r} M \rightarrow \Omega^{\varphi-1} M \quad$ codifferential $\quad \delta=(-1)^{n(p-1)+1} * d *$
- SyM PTM: Lichnerowicz Leplacien: $\Delta_{L}=\bar{\nabla}^{*} \bar{\nabla}$ formal L^{2}-adjoint of D is D^{*} : where $\bar{\nabla}: \Gamma\left(S_{y m}{ }^{p} T M\right) \rightarrow \Gamma\left(S_{\text {gan }}{ }^{p+1} T M\right)$ is the (fully) symmetrized covariant derivative. 74
- $\operatorname{Sym}^{2}\left(\Lambda^{2} T M\right):$ Lichnerowicz Leplacian: $\Delta_{L}=\bar{\nabla}^{*} \bar{\nabla}$ where $\bar{\nabla}: \Gamma\left(\operatorname{Sym}^{2}\left(n^{2} T M\right)\right) \rightarrow \Gamma\left(T M^{*} \otimes \operatorname{Sym}^{2}\left(n^{2} T M\right)\right)$ is a symmetrized covariant derivative st. if $R \in \Gamma\left(S_{j u m}^{2}\left(\Lambda^{2} T M\right)\right.$, then also $\Delta_{L} R \in \Gamma\left(S_{y_{n}}{ }^{2}\left(\Lambda^{2} T M\right)\right)$.

Q: Why care about these Laplacions?
A: Harmonic sections are geometrically/topologically relevant: For example:

- Hodge theory: If $\left(M^{n}, g\right)$ is a closed Riem. mfld, then

$$
H_{d \mathbb{R}}^{p}\left(M^{n}, \mathbb{R}\right) \cong\left\{\omega \in \Omega^{p} M: \Delta_{H} \omega=0\right\}
$$

(de Rham cohomologj) (Harmonic p-forms)
In particular, the $p^{\text {th }}$ Betti number is $b_{p}(M)=\operatorname{dim} \operatorname{ker}\left(\Delta_{H} \mid \Omega^{P}(M)\right)$

- Killing tensors: Let $\left(M^{n}, \delta\right)$ be a Riem. mflel, and $\phi_{t}: M \rightarrow M$ a 1 -parameter subgrap of diffeowarpluisms, ie., $\phi_{0}=i d, \phi_{t+s}=\phi_{t} \circ \phi_{s}$. Then

$$
\phi_{t}:\left(M^{n}, g\right) \rightarrow\left(M^{n}, g\right)
$$

are isometries:
ce. $\phi_{t}^{*} g=g$
© indeed, letting $\theta(Y)=g(X, Y)$,

$$
\underbrace{\left(\alpha_{X} g\right)(Y, Z)}_{\text {symmetric }}=2 g\left(\nabla_{Y} X, Z\right)-\frac{d \theta(Y, Z)}{\text { stew symmetric }}
$$

so $\alpha_{x} g \equiv 0$ inf ∇X is skew-symmetric
is a killing field:
$\mathcal{L}_{X} g=0$, or, equivalently ${ }_{*}$ ∇X is shew symmetric, ie.,

$$
g\left(\nabla_{y} X, Z\right)+g\left(Y, \nabla_{z} X\right)=0
$$

for all $Y, Z \in \mathcal{X}(M)$; ie.,

$$
\Delta_{L} X=0
$$

In particular, $\operatorname{dim} I_{s o}\left(M_{1}^{n}, g\right)=\operatorname{dim}\left\{X \in \Gamma(T M): \Delta_{L} X=0\right\}$.
Rok: In fact, if $\left(M^{n}, g\right)$ is complete, then $I_{\text {so }}(M, g)$ is a Lie group and $\left\{x \in \mathcal{X}(M): \mathcal{L}_{x} g=0\right\}$ is its Lie algebra. (Note $\mathcal{L}_{[x, y]} g=\left[\alpha_{x}, \mathcal{L}_{y}\right] g$.)

- Harmonic curvature operators $\left(M^{n}, g\right)$ with $R: \Lambda^{2} T M \rightarrow \Lambda^{2} T M$ s.t. $\Delta R=O$ are special cases of Yang-Mills fields.

Bochner-Weitzenböch formulae
Each of the above Laplaciens on the associated bundle $E_{\pi} \rightarrow M$ satisfies

$$
\Delta=\nabla^{*} \nabla+t K(R, \pi)
$$

where $t \in \mathbb{R}, \nabla^{*} \nabla$ is the "connection Laplacian" induced by the connection in $E_{\pi} \rightarrow M$ determined by the Levi-Civito connection of $T M \rightarrow M$, and identifying $\Lambda^{2} \mathbb{R}^{n} \cong$ so (n), letting $\left\{X_{a}\right\}$ be an orthonormal basis,

$$
K(R, \pi)=-\sum_{a} d \pi\left(R \cdot X_{a}\right) \cdot d \pi\left(X_{a}\right)=-\sum_{a, b} R_{a b} d \pi\left(X_{a}\right) \cdot d \pi\left(X_{b}\right)
$$

where $R=\sum_{a, b} R_{a b} X_{a} \otimes X_{b} \in \operatorname{Sym}^{2}\left(n^{2} \mathbb{R}^{n}\right)$.

- In the dove, $\pi: S O(n) \rightarrow S O(E)$, so $d \pi:$ so $(n) \cong \Lambda^{2} \mathbb{R}^{n} \longrightarrow$ so (E) In particular, $d \pi(X): E \rightarrow E$ is a skew-symmetric endomorphism for each $X \in$ so (n), hence $K(R, \pi): E_{\pi} \rightarrow E_{\pi}$ is a symmetric endomorphism:

$$
\begin{aligned}
\langle K(R, \pi) \phi, \phi) & =-\sum_{a, b} R_{a b}\left\langle d \pi\left(X_{a}\right) \cdot d \pi\left(X_{b}\right) \phi, \phi\right\rangle \\
& =\sum_{a, b} R_{a b}\left\langle d \pi\left(X_{a}\right) \phi, d \pi\left(X_{b}\right) \phi\right\rangle
\end{aligned}
$$

- Moreover, $\operatorname{Sym}^{2}\left(\Lambda^{2} \mathbb{R}^{n}\right) \ni R \mapsto K(R, \pi) \in \operatorname{Sym}^{2}\left(E_{\pi}\right)$ is linear and SO(n)-equivariant, where $S O(n) \Omega \operatorname{Syman}^{2}\left(n^{2} \mathbb{R}^{n}\right)$ via $A \cdot R=\sum_{a, b} R_{a b} \underbrace{A_{d}(A) X_{a}}_{T} \otimes A d(A) X_{b}$ and $S O(n) \stackrel{\pi}{\curvearrowright} S_{y m n}^{2}\left(E_{\pi}\right)$ via $A \cdot T=d \pi(A) \cdot T \cdot d \pi\left(A^{-1}\right)$.

Pf:

$$
\begin{aligned}
K(A \cdot R, \pi) & =-\sum_{a, b} R_{a b} d \pi\left(A_{d}(A) X_{e}\right) \cdot d \pi\left(A d(A) X_{b}\right) \\
& =-\sum_{a, b} R_{a b} d \pi\left(A X_{a} A^{-1}\right) \cdot d \pi\left(A X_{b} A^{-1}\right) \\
& =-\sum_{a, b} R_{a b} d \pi(A) d \pi\left(X_{a}\right) d \pi\left(A^{-1}\right) d \pi\left(A^{\prime}\right) d \pi\left(X_{b}\right) d \pi\left(A^{-1}\right) \\
& =d \pi(A)\left(-\sum_{a, b} \operatorname{Rab} d \pi\left(X_{a}\right) \cdot d \pi\left(X_{b}\right)\right) d \pi\left(A^{-1}\right) \\
& =A \cdot K(R, \pi) .
\end{aligned}
$$

- Clearly, $K\left(R, \pi_{1} \oplus \pi_{2}\right)=K\left(R, \pi_{1}\right) \oplus K\left(R, \pi_{2}\right)$ and $K\left(R, \pi^{*}\right)=K(R, \pi)^{*}$.
- Also fran the cove, if $R \geqslant 0$, then $K(R, \pi) \geqslant 0$.

Pf: Since $R: \Lambda^{2} T M \rightarrow \Lambda^{2} T M$ is symmetric, we can diagondize it.
Let $\left\{X_{a}\right\}$ be an o.n.b. of eigenvectors, ce. $R X_{a}=\nu_{a} \cdot X_{a}$.
Since $R \geqslant 0$, we have $\nu_{a} \geqslant 0$; and: Note: X_{a} need not be "decomposable"
ie. $X_{a}=v \wedge w$ for some $v, w \in \mathbb{R}^{n}$.
In general, $X_{a}=v_{l} \wedge w_{1}+\cdots+v_{k} \wedge w_{k}$

$$
\begin{aligned}
\langle K(R, \pi) \phi, \phi) & =-\sum_{a}\left\langle d \pi\left(R X_{a}\right) \cdot d \pi\left(X_{e}\right) \phi, \phi\right) \\
& =\sum_{a} \nu_{a} \cdot\left\|d \pi\left(X_{e}\right) \phi\right\|^{2} \geqslant 0
\end{aligned}
$$

Note: If π has no fixed vectors, ie. Fer $d \pi=\{0\}$, then $R>0$ implies $K(R, \pi)>0$. In gencul, $R>0$ only implies $K(R, \pi) \geqslant 0$.

Example: Defining representation $\pi=i d i \operatorname{So}(n) \longrightarrow S(n)$ is s.t.

$$
d \pi=i d: \text { so }(n) \longrightarrow \text { so }(n)
$$

$$
K(R, i d)=R_{i c}
$$

Pf 1: Computation: $K\left(R_{1}\right.$ ie $)=-\sum_{a} d \pi\left(R X_{a}\right) d \pi\left(X_{a}\right)=-\sum_{a}\left(R X_{a}\right) \cdot X_{a}$

$$
\left\langle K\left(R_{1}, d\right) v, w\right\rangle=\sum_{a}\left\langle R X_{a}(v), X_{a}(w)\right\rangle=\cdots=\operatorname{Ric}_{R}(v, w)
$$

Pl 2: $\operatorname{Sym}^{2} \Lambda^{2} \mathbb{R}^{n} \ni R \mapsto K(R, i d) \in \operatorname{Sym}_{11}^{2} \mathbb{R}^{n}$ is $S O(n)$-equiveriart.

so by Schur's Lemme, $K(R, i d)=a$ scal $\cdot I d+b R_{i c}^{0}$ for some $a, b \in \mathbb{R}$. Compute it at $R=I d$ and another example with $R_{i c} \neq 0$ and $s c l=0$, egg., $R=(1-10, \ldots) \notin$ Id to find out $a=\frac{1}{n}, b=1$, so that $K(R, i d)=R_{\text {ic }}$. Kulfarmi-Nourizu product
Bonus discussion of research related to algebraic mature of $K(R, \pi) \geqslant 0$:
Thm (Hitchin). $R>0 \Longleftrightarrow K(R, \pi)>0$ for all nontrivial finite-dim irreducible

$$
S O(n) \text {-representations } \pi: S O(n) \rightarrow S O(E) \text {. }
$$

The (B - Mandes $) . \sec _{R}>0 \Longleftrightarrow K\left(R, S_{y_{m}} p R^{n}\right) \geqslant 0, \forall p \geqslant 2$.
Trivially, $\quad R_{i C_{R}}>0 \Longleftrightarrow K\left(R_{1}\right.$ id $) \geqslant 0$
Actually, $K(R, i d)=R_{i_{R}}$ $K\left(R, \pi_{s}\right)=\frac{\mathrm{scol}}{8} I_{d}$.
$\operatorname{scal}_{R}>0 \Longleftrightarrow K\left(R, \pi_{s}\right) \geqslant 0$, where $\pi_{s}: \operatorname{Spin}(n) \rightarrow S$ is the spimor representation.
Q: What other curvature conditions can be characterized in terms of $K(R, \pi) \geqslant 0$ for some family of representations π ?

Relevance: "Organize" algelaraicall/representation - theoretically curvature conditions.

- $J=\left\{R \in \operatorname{Sym}^{2} \Lambda^{2} \mathbb{R}^{n} ; K(R, \pi) \geqslant 0\right\}$ is a spectrahedron, so optimizing linear functions on D is "easy" with semidefinite programming.

Back to the Bochner technique: $\Delta=\nabla^{*} \nabla+t K(R, \pi)$
Suppose $t>0$ and $K(R, \pi)>0$, or $t<0$ and $K\left(R_{1} \pi\right)<0$.
Then if $\phi \in \Gamma\left(E_{\pi}\right)$ is harmonic:

$$
\begin{aligned}
0=\int_{M}\langle\Delta \phi, \phi\rangle & =\int_{M}\left\langle\nabla^{*} \nabla \phi, \phi\right\rangle+t\langle K(R, \pi) \phi, \phi\rangle \\
& =\int_{M} \underbrace{\|\nabla \phi\|^{2}}_{\geqslant 0}+\underbrace{t\langle K(R, \pi) \phi, \phi)}_{\geqslant 0}
\end{aligned}
$$

so $\phi \in \operatorname{ker} K(R, \pi)=\{0\}$, ie. $\phi=0$. "All harmonic sections must vanish identically!"
Example: $E_{\pi}=T M \quad(\pi=i d) \quad t=2$ and $K(R, i d)=R_{i c}$

$$
E_{\pi}=T M^{*} \quad\left(\pi=i d^{*}\right) \quad t=-2 \text { and } \quad K\left(R_{1}, d^{*}\right)=R_{i c}^{*}
$$

Thus, the above implies the following:
The (Bochner 1946). If $\left(M^{n}, g\right)$ is a closed manifold, then:

- if Tic >0, then all harmonic 1 -forms on M vanish identically; in particular, $b_{1}(M)=0$. (By Meres ${ }^{\prime} T h m, H_{d R}^{1}(M)=0 b / c H^{1}(M)=\left(\pi_{1} M\right)^{\text {ab }}$ is finite)
- if Tic <0, then all killing vector fields vanish vdentically; in particulor, $I_{\text {so }}\left(M^{4}, g\right)$ is finite.

Lecture 12
Bochner technique II
Recall basic elements of Boduner technique $\left(M^{n}, \delta\right)$ closed oriented Rem. mold or G-bundle, $G \subset S O(n)$

Fr(TM) frame bundle (So(n)-principal bundle)

$$
\begin{aligned}
& \operatorname{cor} G \subset \operatorname{So}(n) \text {, or Spin (n) } \\
& \text { unitary } \quad \text { representation }
\end{aligned} \longrightarrow
$$

$$
\begin{aligned}
& E_{\pi}=\operatorname{Fr}(T M) x_{\pi} E \\
& \text { associated bundle }
\end{aligned}
$$

Laplacian: $\Delta=\underbrace{\nabla^{*} \nabla}+t \underbrace{K(R, \pi)}_{\sigma}$ acts on sections of E_{π}

both are determined by Levi-Cinte connection, so ultimately, by metric g.

$$
\begin{aligned}
K(R, \pi)=-\sum_{a} d \pi\left(R X_{a}\right) \cdot d \pi\left(X_{a}\right), \quad & \left\{X_{a}\right\} \text { a.m.b. of } \delta(n) \cong \Lambda^{2} R^{n} \\
& d \pi: \text { so (n) } \rightarrow \infty(E)
\end{aligned}
$$

Prop: (i) If $t \cdot K(R, \pi) \geqslant 0$, then $\operatorname{Ker} \Delta=\left\{\phi \in \Gamma\left(E_{\pi}\right): \nabla \phi \equiv 0\right\}$. In particular, $\operatorname{dim} \operatorname{ker} \Delta \leq \operatorname{dim} E$.
(ii) If $t \cdot K(R, \pi)>0$, or, more generally, $t \cdot K(R, \pi) \geqslant 0$ and $\exists p \in M$ with $(t \cdot K(R, \pi))_{p}>0$, then her $\Delta=\{0\}$.

Pe. (i) If $\phi \in$ her Δ, then $0=\int_{M}\langle\Delta \phi, \phi\rangle=\int_{M} \frac{\|\nabla \phi\|^{2}+\langle t K(R, \pi) \phi, \phi\rangle}{\geqslant 0}$.
Thus $\nabla \phi \equiv 0$, and $\phi \in \operatorname{kert} K(R, \pi)$. Note $\phi \in \Gamma\left(E_{\pi}\right)$ is determined by its value at a point $x \in M, \phi(x) \in\left(E_{\pi}\right)_{x}$, since $\phi(y)$ is obtained by parallel transport along a path from x to y, so dim Ger $\Delta \leq \operatorname{dim} E$; namely,

The linear map

$$
e v_{x}: \operatorname{ker} \Delta \longrightarrow\left(E_{\pi}\right)_{x}
$$

$$
\phi \longmapsto \phi(x)
$$

is infective, since $\phi(x)=\psi(x)$ for $\phi, \psi \in$ her \triangle implies $\phi=\psi$ everywhere on M, by parallel fromsport from X.
More precisely dim her $\Delta=\operatorname{dim} E_{\pi}^{\prime}$, where $E_{\pi}^{\prime} \subseteq E_{\pi}$ is the maximal parallel distribution in E_{π}.
(ii) If, furthermore, $\exists r \in M$ with $t \cdot K(R, \pi)>0$ on $p \in M$, hence on $B_{\varepsilon}(p)$ by continuity, then $\varnothing \in \operatorname{ker} \Delta$ implies

$$
0=\int_{M}(\Delta \phi, \phi)=\int_{M}\|\nabla \phi\|^{2}+\langle t K(R, \pi) \phi, \phi\rangle \geqslant \int_{B_{\varepsilon}(p)}\|\nabla \phi\|^{2}+\underbrace{\left\langle t K\left(R_{i}, \pi\right) \phi, \phi\right)}_{>0}
$$

M thus $\phi \equiv 0$ on $B_{\varepsilon}(p)$, otherwise the dove RHS world be >0. Since $\nabla \phi=0$, in particular $\|\phi\|^{2}=$ cost, it follows $\phi \equiv 0$ on M.

Applications to p-forms: $S O(n) \curvearrowright \Lambda^{P} \mathbb{R}^{n}$ Hodge Laplacian Δ has $t=2$ Hodge theory: $\left.H_{d R}^{P}(M, \mathbb{R}) \cong \operatorname{Ker} \Delta\right|_{\Omega P}(M)$, so $b_{p}(M)=\left.\operatorname{dim} \operatorname{Ker} \Delta\right|_{\Omega^{P}(M)}$

$$
p=1: \quad K\left(\mathbb{R}, \Lambda^{1} \mathbb{R}^{n}\right)=R_{i c}
$$

Bodiner: If $\left(M^{n}, f\right)$ is a closed oriented Riem. mfld. Hen
(i) If $R_{i c} \geqslant 0$, then every harmonic 1-form is parallel. In particular, $b_{1}(M) \leq n$ and $b_{1}(M)=n$ if and only if M^{h} is a flat tons.
(ii) If $R_{i c \geqslant 0}$ and Ricp>0, then every harmonic 1-form vanishes identically. In particular, $b_{1}(\mu)=0$. (of Myers's theorem)
\rightarrow Rub: These manifolds also admit metrics w/ Tic >0 everguluere [Elrelidh, 1976]

Pp: Only the last statement in (i) requires proof, the rest follows from the proceeding discussion.
If $b_{1}(M)=n$, then there ore n linearly independent parallel 1 forms on $\left(M^{n}, g\right)$, hence n linearly independent parallel vector fields on $\left(M^{n}, g\right)$. Thus $\left(M^{n}, g\right)$ is flat. Puling beck these vector fields to $(\tilde{M}, \tilde{g})=\mathbb{R}^{n}$, we have n constant vector fields that are invariant under the deck fnonsformations action $\pi_{1}(M) \curvearrowright \mathbb{R}^{n}$. Therefore, $\pi_{1}(M)$ must consist entirely of translations, for any other isometry of \mathbb{R}^{n} does not preserve n linearly independent constant vector fields. Thus $\pi_{1} M$ is finitely generated, abelion, and forsion-free, so $\pi_{1} M \cong \mathbb{Z}^{K}$ for some $k \leq n$. If $k<n$, then $\pi_{1} M \curvearrowright \mathbb{R}^{n}$ would not be cocompect, so $k=n$ and $M^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}=T^{n}$.

Remark. There are many nou-isometric flea tori on ever, dim., namely the moduli space of flat tori T^{n} is $\left.O(u)\right)^{G L(u)} / G L(u, \mathbb{Z})$; which is an orbifold of dimension $n(n+1) / 2$. Other closed flat manifolds are quotients of flat tori by a free action of a finite group, identified with the holonomy group (Bieberbach Thu).
Thu (Gromov 80, Galoot 81). If $\left(M^{n}, g\right)$ is a closed oriented Rem. mfed, $R_{i c} \geqslant(u-1) \cdot K$ and $\operatorname{diam}(M) \leq D$, then $b_{1}(M) \leq C\left(n, K \cdot D^{2}\right)$, where $C(n, \varepsilon)$ is a function satisfying $\lim _{\varepsilon \rightarrow 0} C(n, \varepsilon)=n$. In particular, $\exists \varepsilon(a)>0$ s.t. $K \cdot D^{2} \geq-\varepsilon(n)$ implies $b_{1}(M) \leq n$. ie., can also handle some manifolds w/ slightly negative Ricci!
$p \geqslant 2$: $K\left(R, \Lambda^{P} \mathbb{R}^{n}\right)$ is more complicated to write down (but there are explicit formulas using Kulkarni-Nomizu product) was a faculty Member at
Special cases: $\underset{(\geqslant 1)}{R>0} \Rightarrow K\left(R_{1} \wedge^{P} \mathbb{R}^{n}\right)>(\geqslant) \quad$ [Galoot, Meyer]
so if $\left(M^{n}, g\right)$ is a closed oriented Rem. meld with:

- $R>0$, then $b_{p}(M)=0$ for all $1 \leqslant p \leqslant n$;
ie., M^{n} is a rational homology sphere.
- $R \geqslant 0$, then $b_{p}(M) \leq\binom{ n}{p}$ for all $1 \leq p \leq n$.

Note: There are examples of rational homology spheres w/ $s e c>0$ that ore not spherical =pacoforms $5 / 5$, eg. Berger spec $B^{7}=50(5) / 5$

These results have been improved substantially using Ricci flow:
Thu (Böhm-Wilking 2006). If $R>0$, then $\widetilde{M} \frac{\simeq}{d i f f} S^{n}$.
(If $R \geqslant 0$, then \widetilde{M} is isometric to a product of Evelidear space, sphere $w / R \geqslant 0$, compact irreducible symmetric Apace, compact Kïhler manifold biholomerpluc to $\mathbb{C P u}$ with $R \geqslant 0$ on real (1,1)-forms.) A very recent refinement is the following:
Thu (Peterse n-Wink, 2021). Given $1 \leqslant p \leq\left\lfloor\frac{n}{2}\right\rfloor$, suppose that R is $(n-p)$-positive, ie., the som of any $n-p$ eigenvalues of R is positive. Then $b_{p}(M)=b_{n-p}(M)=0$. In particular, if R is $\left\lceil\frac{n}{2}\right]$-positive, then M^{n} is a rational homology sphere.

Of Course, there are also versions for Non negative curvature and $b_{p}(\mu) \leq\binom{ n}{y}$. Even more recently, the above was generalized to other representation:
Thu (B. - Goodman' Zoz2). If $\pi_{i} S O(n) \rightarrow$ so(E) is irreducible, with highest weight λ, then $K(R, \pi) \geqslant\|\lambda\|^{2} \cdot\left(\nu_{1}+\cdots+\nu_{[r s}+(r-L r s) \nu_{(r s+1}\right)$. Id, where $r=\frac{\left(\lambda_{1} \lambda+2 \rho\right)}{\|\lambda\|^{2}}$, ρ is the half -sum of positive roots, and $\nu_{1} \leq \cdots \leqslant \nu_{(2)}$, the eigeandelusp ρR.

Similarly to the above improvements to slightly negative curvatice:
Thu (Meyer-Gallot 1970s). If $R \geqslant K$. Id and diam (M) $\leq D$, then

$$
b_{p}(M) \leq\binom{ n}{p} \cdot \exp \left(C\left(n, k \cdot D^{2}\right) \cdot \sqrt{-k D^{2} p(n-p)}\right)
$$

In particular, $\exists \varepsilon(n)>0$ s.t. $K \cdot D^{2} \geqslant-\varepsilon(n)$ implies $b_{p}(M) \leqslant\binom{ n}{p}$.
Petersen-Wink also improved the above, replacing $R \geqslant k$. Id by the weaker hypothesis $\nu_{1}+\cdots+\nu_{n-p} \geqslant(n-p) \cdot k$, where $\nu_{1} \leq \cdots \leq \nu_{\binom{(2)}{2}}$ are eigenvalues of R.

Hop Question: Dos $S^{2} \times S^{2}$ admit a metric w/ $\mathrm{sec}>0$?
"Naive" Buchner technique approach would be to try to show that $\sec R>0$ implies $K\left(R, \Lambda^{2} \mathbb{R}^{4}\right)>0$ hence $b_{2} M^{4}=0$. However, this is clearly false: $\mathbb{C} P^{2}$ has $\sec >0$ and $b_{2}=1$.

Slightly more refined Bochner technique approach uses:
Finagler - Thorpe trick.

$$
\begin{array}{|l}
R: \Lambda^{2} \mathbb{R}^{4} \rightarrow \Lambda^{2} \mathbb{R}^{4} \\
\text { hes } \sec >0
\end{array} \Leftrightarrow \begin{aligned}
& \exists 6 \in \mathbb{R} \text { st. } \\
& R+6 *>0
\end{aligned}
$$

and the computation that, splitting $\Lambda^{2} \mathbb{R}^{4}=\Lambda_{\text {sseff-dul" }}^{2} \mathbb{R}^{4} \oplus \Lambda_{\text {"auti-sel-sedef" }}^{2} \mathbb{R}^{4}$ then

$$
K\left(*, \Lambda^{2} \mathbb{R}^{4}\right)= \pm 4 \mathrm{Id} .
$$

$$
*=\left(\begin{array}{c|c}
I d & 0 \\
\hline 0 & -I d
\end{array}\right)
$$

egg, $*\left(e_{1} e_{2} \pm e_{3} e_{4}\right)= \pm\left(e_{1} e_{2} e_{2} e_{3} e_{4}\right)$
Thus, if $\sec >0$ and $6>0$, then, since $S \mapsto K(S, \pi)$ is linear and $S>0 \Rightarrow K(S, \pi)>0$, we get:

$$
\begin{aligned}
K\left(R_{1} \Lambda_{-}^{2} \mathbb{R}^{4}\right) & =K\left(R_{+2 *}, \Lambda_{-}^{2}-\mathbb{R}^{4}\right)-\frac{6 \cdot K\left(*, \Lambda^{2}-\mathbb{R}^{4}\right.}{-4 I d} \\
& =K(\underbrace{R+6 *}_{>0}, \Lambda_{-}^{2} \mathbb{R}^{4})+46 I d>0
\end{aligned}
$$

Such positivity implies vanishing of harmonic sections of $\Lambda_{-}^{2} T M$, called anti-self-dual 2-forms. Similarly, if instead $6<0$, then use $\Lambda_{+}^{2} T M$.

$$
b_{2}^{ \pm}(M)=\left.\operatorname{dim} \operatorname{Ker} \Delta\right|_{\Omega_{ \pm}^{2}(M)}, \quad b_{2}(M)=b_{2}^{+}(M)+b_{2}^{-}(M)
$$

As $S^{2} \times S^{2}$ has $b_{2}^{+}=b_{2}^{-}=1$ it follows that. acme for any "indefinite" 4-mped, leg. $\mathbb{C P}^{2} \# \overline{\mathbb{C}}^{2}$
Thu (B. - Menders, 2022). If $\left(S^{2} \times S^{2}, 8\right)$ hos sec >0, then the subset $\left\{p \in S^{2} \times S^{2}: R_{p}\right.$ is not positive-definite $\} \subset S^{2} \times S^{2}$ has at least 2 connected components of mon-empty interior.

Pf: Because $b_{2}^{ \pm}>0, \quad z: M \rightarrow \mathbb{R}$ must change sign, so $\{z=0\} \neq \phi$. On a neighborhood of $\{r=0\}$, we have $R>0$.

Other result towards answering the Hoof Question:
The (Hsiang-Kliner, Grove-Wilking). If $\left(M^{4}, g\right)$ is closed, simply-conn,

If $\left(M^{4}, g\right)$ is closed, simply-conM., $\sec \geqslant 0$ and $S^{1} \curvearrowright M^{4}$ isometrically, then $M^{4} \cong S^{4}, \mathbb{C P}^{2}, \underbrace{S^{2} \times S^{2}, \mathbb{C} P^{2} \# \overline{\mathbb{C}} P^{2} \text { or } \mathbb{C P}^{2} \# \mathbb{C} P^{2}}_{\text {diff }}$

- All are known to have $\mathrm{sec} \geqslant 0$ and S^{1} PM M^{4}

Cor: If $\left(S^{2} \times S^{2}, g\right)$ hos $\sec >0$, then $\left|\operatorname{Isom}\left(S^{2} \times S^{2}, g\right)\right|<\infty$.

Thy (Myers-Stecurod 1939, Palais 1957). If $\left(M^{\prime \prime}, g\right)$ is a complete Diem. meld,
(i) $\varnothing: M \rightarrow M$ preserves distances re. $\operatorname{dist}(\phi(x), \phi(y))=\operatorname{dist}(x, y) \quad \forall x, y \in M \Leftrightarrow \begin{aligned} & \phi \text { is a (Rem. isometry, } \\ & \phi \text { is smooth and } \forall_{p} \in M, v, \omega \in T M,\end{aligned}$

$$
g_{\phi(v)}\left(d \phi_{p} v, d \phi_{p} w\right)=g_{r}(v, w) .
$$

(ii) $\operatorname{Isom}(M, g)=\{\phi: M \rightarrow M$ isometry $\}$ is a Lie group, with Lie algebra $\operatorname{isom}(M, g)=\left\{X \in X(M): X\right.$ is killing, ie., $\left.\begin{array}{r}g\left(\nabla_{y} X, Z\right)+g\left(Y, \nabla_{z} X\right)=0 \\ \forall Y, z\end{array}\right\}$ we discussed these 9 we discussed levis lectures.
Ex:

- $\mathbb{R}^{n} \quad$ hos $\operatorname{Isom}\left(\mathbb{R}^{n}\right)=\frac{\mathbb{R}^{n} \times \frac{O(n)}{\text { trousbetions }} \quad}{\begin{array}{l}\text { rotations/ } \\ \text { reflections }\end{array}} \quad F(x)=A x+v, \quad A \in O(n)$
- $S^{n} \subset \mathbb{R}^{n+1}$ hes $\operatorname{Isom}\left(\mathbb{S}^{n}\right)=O(n+1) . \quad F(x)=A x, \quad x \in O(n+1)$

Note: $O(n+1)=\left\{F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}:\langle F(x), F(x)\rangle=\langle x, x\rangle\right\}$ Evelidean are the linear isometries of \mathbb{R}^{n+1}

- $H^{n} \subset \mathbb{R}^{n_{1} 1}$ has $\operatorname{Irom}\left(H^{n}\right)=O(n, 1)=\left\{F: \mathbb{R}^{n, 1} \rightarrow \mathbb{R}^{n_{1} 1},\langle F(x), F(x))=\langle x, x)\right\}$ where $\mathbb{R}^{n \cdot 1}=\left\{x=\left(x_{1}, \rightharpoondown x_{n}, x_{n+1}\right)\right\}$ is the Minhowski space w/ the Lorentz metric $\langle\cdots\rangle=d x_{1}^{2}+\cdots+d x_{n}^{2}-d x_{n+1}^{2}, \quad H^{n}=\left\{x \in \mathbb{R}^{n, 1}:\left\langle x_{1} x\right\rangle=-1\right\}$. (if $n=3$, there ore often called "Lorentz transformations")

Prop: If $\left(M^{n}, g\right)$ is connected and complete, then $\operatorname{dim} \operatorname{Isom}\left(M_{1}^{n}, g\right) \leq \frac{n(n+1)}{2}$. Equality holds iff $\left(M^{n}, g\right)$ has constant curvature ($c f$. above).
 K made le $\operatorname{po} \cdot \mathrm{w} / \sec E x$

Lemme (from Diff Gean Qual Course). If $\phi, \psi:(M, g) \rightarrow(M, g)$ are isometries and $\exists p \in M$ s.t. $\phi(p)=\psi(p)$ and $d \phi(p)=d \psi(p)\left(i e . d \phi_{p}(v)=d \psi_{p}(v), \forall v \in T_{p} M\right)$ then $\phi=\psi$. Equivalently, if X, Y are killing fields on (M, g) and $\exists p \in M$ s.t. $X_{p}=Y_{p}$ and $(\nabla X)_{p}=(\nabla Y)_{p}$, then $X=Y$.

Pl: The set $\{x \in M ; \quad \phi(x)=\psi(x), \quad d \phi(x)=d \psi(x)\}$ is clearly closed and nonempty. Moreover, as exp $x: T_{x} M \rightarrow M$ is a local differ and

$$
\phi\left(\exp _{x} v\right)=\exp _{\phi(x)} d \phi(x) v=\exp _{\psi(x)} d \psi(x) v=\psi\left(\exp _{x} v\right)
$$

it follows this set is dis open, thus all of M by connectedness.
For Killing field version, recall X is Willing $\Leftrightarrow \nabla X$ is skew $\Leftrightarrow \mathcal{\alpha}_{X} g=0$, Since $\left\{x \in X(M) ; \alpha_{x} g=0\right\}$ is a vector space, it
suffices to show $X_{p}=0,(\nabla X)_{p}=0 \Rightarrow X \equiv 0$. Again, by connectedness, can do this locally around p. Sima $X_{p}=0$, the flow $\phi_{t} X$ fixes p; bile $\frac{d}{d t} \phi_{t}^{X}(p)=X_{p}=0$. Moreover, $d\left(\phi_{t}^{X}\right)_{p}=i d, \quad \forall t \in \mathbb{R}$; indeed:

$$
[x, y]_{p}=\left(\nabla_{x} y-\nabla_{y} x\right)_{p}=0 \text { and so } O=\left(\alpha_{x} y\right)_{p}=\lim _{t \rightarrow 0} \frac{d \phi_{t}^{x} v-v}{t}, \quad v=Y_{p} .
$$

This with $V=d \phi_{t_{0}}^{x}(y)$,

So $d \phi_{t}^{X}$ is constant int, ie. $d \phi_{t}^{X}(p)=d \phi_{0}^{X}(p)=i \alpha$; as claimed.
By previous port, $\phi_{t}^{X} \equiv i d, \forall t$, since $\phi_{t}^{x}(\varphi)=\varphi$ and $d \phi_{t}^{X}(p)=i d$, hence $X \equiv 0$.
Pf of Prop. Let $F_{p} i \operatorname{isom}\left(M_{1}^{n}, g\right) \rightarrow T_{p} M \oplus \operatorname{so}\left(T_{p} M\right)$. Note that F_{p} is

$$
X \longmapsto\left(X_{p},(\nabla X)_{p}\right)
$$

a well-defined linear map (∇X is skew $L / c X$ is Killing) and, by the Lemme, F_{p} is infective. Thus $\operatorname{dim} \operatorname{isom}\left(M^{n}, g\right) \leq n+\frac{n(n-1)}{2}=\frac{n(n+1)}{287}$.

Moreover if $\operatorname{dim} \operatorname{isom}\left(M^{n}, g\right)=\frac{x(n+1)}{2}$, then F_{p} is also surgective \forall_{p}, so $\forall T \in s_{s}\left(T_{p} M\right), \exists X \in \notin(M)$ killing field $w / X_{p}=0,(\nabla X)_{p}=T$. The flow ϕ_{t}^{X} fixes p, and $d \phi_{t}^{X}(p)=\exp (t T): T_{p} M \rightarrow T_{p} M$. is a 1-param. subgroup of orthogonal transformations of TPM, with orbitury infoniterimal generator, so $\sec (\sigma)=\sec \left(\sigma^{\prime}\right)$ for all 2 -planes $\sigma_{1} \delta^{\prime} \subset t_{p} M$, ie., $\sec \equiv k$. $\binom{$ con find T s.l. $\exp (T)$ maps v, w to $v_{1}^{\prime} w^{\prime}$, }{ hence $\sigma=\operatorname{spon}\{v, w\}$ to $\sigma^{\prime}=\operatorname{span}\left\{v^{\prime}, w^{\prime}\right\}}$.

Slowly tone down the symmetries:
e.g., $\operatorname{dim} \operatorname{Isom}\left(M^{M}, g\right)$
vent $\operatorname{ISom}\left(M^{4}, g\right)$
$\operatorname{dim} M / G$ "cohomogenceity"
$\left(M^{n}, g\right)$ is a homogeneous space if $G \curvearrowright M$ transitively, $G \subset \operatorname{Isom}\left(M^{M}, g\right)$.
ie. $M / G=\{p t\}$; so $\operatorname{dim} M / G=0$ "chomogeneity zero"
Isotropy at $p \in M$ is $G_{p}=H \subset G$, and $M=G(p) \cong G / H$ $\{g \in G: g \cdot p=p\}$
Isotropy action/representation: $H \curvearrowright T_{p} M$ H -orbits
Could also
Example: $G=O(n+1) \curvearrowright S^{n}, \quad A \cdot v=A v$ is transitive

$$
H=G_{e_{n+1}}=\left\{\left(\frac{A}{}|0| \in O(n+1)\right\} \cong O(n)\right.
$$

At other points, isotropy is conjugate to H.

$S^{e_{n+1}} S^{n} O(n+1) / O(n)$

- $U(n+1) \curvearrowright \mathbb{C}^{n+1} \cong \mathbb{R}^{2 n+2}$ and hence $U(n+1) \curvearrowright S^{2 n+1}$ (unit sphere) This action is also transitive, and hos isotropy $\left\{\left(\begin{array}{c|c}A & 0 \\ \hline 0 & 1\end{array}\right) \in U(n+1)\right\} \cong(U(n)$
Thus, $S^{2 n+1}=U(n+1) / U(n)$. Also, could do the same with $S U(n+1) \ldots$
- $S_{p}(n+1) \curvearrowright H^{n+1} \equiv \mathbb{R}^{4 n+4}$ and hence $S_{p}(n+1) \curvearrowright S^{4 n+3}$ (unit Ap here) This action is also trowastive, and hos isotropy (at $e_{n+1} \in \mathbb{H}^{n+1}$);

Thus, $S^{4 n+3} \equiv S_{p}(n+1) / S_{p}(n)$.

$$
\left\{\left(\begin{array}{l|l}
A & 0 \\
\hline 0 & 1
\end{array}\right) \in S_{p}(n+1)\right\} \cong S_{p}(n)
$$

Theorem (Montgomery-Semelson-Borel, sos). The only groups acting frousitively on a sphere S^{d} are given in the table below:

The above leads to the classification of homogeneous metrics on spheres, recalling that there is a natural corresponatence:
$\left\{\begin{array}{c}G \text {-inveriant homog. } \\ \text { metrics on } 6 / H\end{array}\right\} \longleftrightarrow\{\underbrace{\operatorname{Ad}(H) \text { is precisely the isotropy }}_{\text {Ad }(H)}$ inner products on $X / h\}$ Ad (H) is precisely the isotropy representation at $e H \in G / H$.

Indeed, $A d(t)$-invariance is the requirement to coherently deffrre a tensor on $6 / \mathrm{H}$ by using left-tronslations from $T_{\text {eH }} G / H \cong \$ / h$.

Thus, egg. on $S^{2 n+1}$, there is a 2 -parameter family of metrics invariant under the transitive $U(n+1)$-action:
Def. "Berger metric"). Let g be the (unit) round metric on $S^{2 n+1}$, and write $g=g l_{n_{0 r}}+g l_{\text {er }}$ according to horizoutal/vertical pans for the Hops fibretion $S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C P}^{n}$. Then

$$
g_{s, t}=\left.s^{2} g\right|_{\text {hor }}+\left.t^{2} g\right|_{\text {ver }}, s, t>0, \text { is } U(n+1) \text {-invariant. }
$$

U_{p} to global rexaling (homothety), consider $g(t)=g_{1, t}$. Geometrically,

$$
t S^{1} \rightarrow\left(S^{2 n+1}, g(t)\right) \rightarrow \mathbb{C} P^{n}
$$

it is obtained "shrinking" the fibers of the Hlopt bundle, ie., rescaling by t the vertical directions.
Similarly for $\underset{r}{S^{3} \rightarrow}\left(S^{4 n+3}, \quad h(t)\right) \rightarrow H P^{n}$ and $S^{7} \rightarrow\left(S^{15}, k(t)\right) \rightarrow S^{8}(1 / 2)$. left-inv. metric on $S^{3} \equiv S U(2)$
Cor. Up to homotheties, homog. metrics on spheres ere the above: 1 -prom. founily on $S^{2 n+1}, 3$-prom. font of $S^{4 n+3}, 1=$ par. forty an S^{15}.

$$
\begin{aligned}
& \text { Eg.i on } S^{15} \text { : } \\
& S^{15}=\frac{S O(16)}{S O(15)}=\frac{S U(8)}{S U(7)}=
\end{aligned}
$$

Geometric redization of Berger metrics (Bourguignon-Korcher)
Consider distance spheres $S_{p}(r)=\{x \in M: \operatorname{dist}(x, p)=r\}$ on $\underbrace{\mathbb{C} P^{n}, H P^{n}}_{\substack{\text { compact rank one } \\ \text { symmetric spaces }}}$ and $\mathbb{C a} P^{2}$; and on $\underbrace{\substack{\text { non compact rank one } \\ \text { symmetric spaces }}}_{\text {dues }} \underbrace{\mathbb{C}, H H^{n} \text {, and } \mathbb{C} H^{2}}$

Berger metrics $g_{s t,} h_{s, t}, k_{s, t}$, given by $s^{2} g l_{\text {nor }}+t^{2} g l_{v e r,}$ where $g / l_{0}+g l_{v e r}$ is the unit round metric, are vedized for all $s, t>0$ as distance spheres $S(r)$:
$S(r) \subset \mathbb{C} P^{n+1}$ is isometric to $\left(S^{2 n+1}, g_{s, t}\right) \quad\left\{\begin{array}{l}s=\sin r \\ t=\sin r \cos r\end{array}\right.$
$S(r) \subset A\left(P^{n+1}\right.$ is isometric to $\left(S^{4 n+3}, h_{s, t}\right)$
$S(r) \subset \mathbb{C}_{a} P^{2}$ is isometric to $\left(S^{15}, K_{s, t}\right)$

$S(r) \subset \mathbb{C} H^{n+1}$ is isometric to $\left(S^{2 n+1}, g_{s, t}\right)$
$\left\{\begin{array}{l}s=\sinh r \\ t=\sinh r \cdot \cosh r\end{array}\right.$
$S(r) \subset H H^{n+1}$ is isometric to $\left(S^{4 n+3}, h_{s, t}\right)$
$S(r) \subset C_{a} H^{2}$ is isometric to $\left(S^{15}, K_{s, t}\right)$

Recall $\mathbb{C P}^{n}=S^{2 n+1} / S^{1}$ is the orbit space of $S^{1} \Omega \mathbb{C}^{n+1}$ given by

$$
e^{i \theta} \cdot\left(z_{0}, \ldots, z_{n}\right)=\left(e^{\left.i \theta_{2}, \ldots, e^{i \theta} z_{n}\right)}\right.
$$

$U(n+1) \curvearrowright S^{2 n+1}$ commuter with $S^{1} \curvearrowright S^{2 n+1}$ so descends to $U(n+1) \curvearrowright \mathbb{C} P^{n}$

Similarly, $S p(n+1) \curvearrowright S^{4 n+3}$ commuter w) $S^{3} \curvearrowright S^{4 n+3}$ so descends to $S p(n+1) \curvearrowright H / P^{n}$ $5^{4^{1 n} 13} / 5^{3}$
Thu (Oniscik'60s). The only groups acting fronsitively on a projective spec $\mathbb{C} P^{n}, H P^{n}, \mathbb{C}_{0} P^{2}$ are given in the table below:

Note: If $H \subset K \subset G$, then there is a natural fibration

$$
\begin{aligned}
K / H & \rightarrow G / H
\end{aligned}>G / K
$$

The dove give the obllitional Hopf-lice bundles:

$$
\begin{aligned}
& S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n} \leftrightarrow u(1) \rightarrow S U(n+1) / S U(n) \rightarrow S U(n+1) / S(U(n) U(1)
\end{aligned}
$$

Note: $C_{a} P^{2}$ is not the base of a sphere bundle $S^{d} \rightarrow c_{0} P^{2}$!

Classification of simple lie Groups Ans Bender classification
What does it mean to classify homogeneous expaus?

- Given M, classify all GจM transitive actions (may e.g. assume Gconnedta). sup to differ, howeo...?
- Given n, classify all n-elim. homog. spaces. dove above for spheres and projective polar,

(done for $n \leq 6$) E.g., for $n=2$, only hove: $S^{2}, \mathbb{R} P^{2}, T^{2}, K^{2}$ kelim bottle.

Why hamogeneass?

- Good test ground, all PDEs/ODEs become algebraic, can compute cohonology ring systematically (Bored).
Note: (M, g) homog., $f: M \rightarrow \mathbb{R}$ invariant under isometries $\Rightarrow f \equiv$ coot. For instance, on a homog. space, the following valar-valved geometric quantities ore trivielly constant: sal, $\left|R_{i c}\right|^{2},|R|^{2},|\nabla R|^{2}, \ldots$
All nonscalor geometric quantities, Rig., $\mathrm{sec}, \mathrm{Ric}, \ldots$ are dgebraic.
Ex: Suppose we want to find Einstein metrics ie. $\mathrm{R}_{i}=\lambda$ g. On a homos. space, thus becomes a matrix equation on $T_{\text {eH }} G / H$. In fact, if the isotropy repor. is irreducible, then every homos. metric is Einstein:

$$
H \curvearrowright T_{e H} G / H \text { irred. } \overbrace{\int_{\text {ell }}}^{\text {Schurslemma }} T: T_{\text {eH }} G / H \longrightarrow T_{\text {eH }} G / H
$$

Teccricelly, this works for complex representation... then $T=\lambda \cdot I d . \quad(\lambda \in \mathbb{R})$ $H \curvearrowright V$ ines., $V_{\text {reel }}$ valor op $\leadsto H \rho V_{\mathbb{C}}=V \otimes_{R} C$ and $H \curvearrowright V_{C}$ is ineducable if V_{C} is of "real type?" Then, f S Chur's lemme, Ham $^{H}(V, V)=\mathbb{R}$.id; as desired Note: Adjoint repp. of compact seemsimuple Lie gop ore eluygs a a bor!

As a consequence, "the" homog. metrics on S^{n} (even), $\mathbb{C P}^{n}$ (even), $H P^{n}, \mathbb{G a p}^{2}$ are unique up to homotheties, and Einstein.

- Round metric:

$$
S^{n}: R_{i c}=(n-1) g
$$

$$
\sec \equiv 1
$$

- Fubini-study metric:

$$
\begin{array}{lll}
\mathbb{C} P^{n} ; R_{i c}=2(n+1) g & 1 \leq \sec \leq 4 & \mathbb{P}^{1} \triangleq s^{2}(1 / 2) . \\
H P^{n}: R_{i c}=4(n+2) g & 1 \leq \sec \leq 4 & H^{1} \xlongequal{1} \triangleq s^{4}(1 / 2) \\
\mathbb{C}_{a} P^{2}: R_{i c}=36 g & 1 \leq \sec \leq 4 & \mathbb{C a P}^{1} \sqrt{s i s e m} s^{8}(1 / 2) .
\end{array}
$$

Among the remaining homos. metrics on compact rank one symmetric opraces $\left(S^{n}, \mathbb{R P}^{n}, \mathbb{C} P^{n}, H^{n}, C_{0} P^{2}\right)$, we hove:

Jensen metros $g_{5}=g / h_{\text {or }}+\frac{1}{2 n+3}$ glver on $S^{4 n+3}$ is Einstein

$$
(S p(n+1) \text { - invariant })
$$

Bourguignon - Korcher metric $g_{\beta k}=g l_{n_{0}}+\frac{3}{11}$ giver on S^{15} is Einstein (Spin (9) - invariant)
Tiller metric $g_{z}=\left.g_{f s}\right|_{\text {hor }}+\left.\frac{1}{n+1} g_{A s}\right|_{\text {ver }}$ on $\mathbb{P}^{2 n+1}$ is Einstein

$$
\left(S_{P}(n+1)-\text { invariant }\right)
$$

Ziller showed these are all posribilition. (Meth. Ann. 1982)
Next step down the symmetry leader, as measured by cohonopenceity:
Cohomogeneity one manifolds are those with $G \curvearrowright M, G \subset I_{\text {som }}(M, g)$ $\operatorname{dim} M / G=1 .\left(\Longrightarrow M / G \cong \mathbb{E},[0,+\infty), S^{1}\right.$, or $\left.[0, L].\right)$
More bout this next time...

Lecture 14
Cohomogeneity one manifolds
$G \Omega M$ ism. action, cohomogenaty is $\operatorname{dim} M / G$.

- cohomogenaity $0: M / G=\{p t\}$ ie. $M=G(p) \cong G / H$ where $H=G_{p}<G$ Adjoint action $G \Omega_{q} q_{1}, \quad A_{d}(x)=d L_{g} 0 d R_{g}^{-1}(x)=\left.\frac{d}{d t} g \underset{\Omega}{\exp (t x)} g^{-1}\right|_{t=0}$

$$
a d x(y)=d\left(A d_{e}\right)_{x}(y)=[x, y] \quad\left(\begin{array}{l}
L_{g}(h)=g h, \\
\text { eft } / \text { right transect }
\end{array}\right.
$$

Lie expaneartiol
$\pi: G \longrightarrow G / H$ is G-equivariaut: $\quad g_{1}(g H)=\left(g_{1} g\right) H$.
$\pi: G \rightarrow G / H$
$g \longmapsto g H$
 and, differentiating $h \exp (t x) H=h \exp (t x) h^{-1} H$ in $t=0$, we get $d L_{h}(x)=d \pi\left[A d_{h}(x)\right]$

$$
\left\{\begin{array}{c}
G \text {-inv. metrics } \\
\text { on } G / H
\end{array}\right\} \stackrel{\cong}{\rightleftarrows}\left\{\begin{array}{c}
A d_{H}-\text { inv. inner } \\
\text { products. on } m
\end{array}\right\}
$$

$$
g \quad \longmapsto\langle\cdot,\rangle=\left.g\right|_{T_{\text {eH }} G / H \times T_{\text {eH }} G / H} \text { is Ad } H \text {-inv. by }(*)
$$

Conversely, if $(\mu\rangle$ is $A d_{H}$-inv., let $g_{g H}(x, y)=\left\langle d L_{g^{-1}} x_{1} d L_{g^{-1}} y\right\rangle, x_{y} \in T_{g H} 6 / H$. then it is well-defined (indef of representative g in coset $g(t)$) and leftinv., so G-homogeneous.
Prop: $T(G / H)=G x_{H} m$ is the associated bundle to H-prone. bole $H \rightarrow G \rightarrow G / 1$; wring PDEs on M that are G-invariant become algebraic; $e . g$ ',
Riccio flow $\frac{\partial g_{t}}{\partial t}=-2 \operatorname{Ric}\left(g_{t}\right) \longleftrightarrow$ Evolution equation (ODE)

$$
\text { Fix }\langle\because\rangle=\left.g_{0}\right|_{\text {eH }} \sigma_{/ H} \times T_{e H} \sigma_{/ H}
$$

and let $P_{t}: m \rightarrow m$ be sym.
automorphism sit. $g_{t}\left(x_{y}\right)=g_{0}\left(P_{t, y}\right)$
RF: $\quad \frac{d}{d t} P_{t}=\ldots$ ODE in $P_{t} 95$

If M is compact, then $G \subset I_{\text {som }}(M, g)$ is compect, so it admits a bi-invariant metric $Q:\left\{Y \times \mathbb{Q} \rightarrow \mathbb{R}\right.$ st. L_{g} and R_{g} ore isometries. Can take $m=q^{\perp}$ w.r.t. Q; then $\mathcal{X}=\boldsymbol{Y} \circ m$ is Adu-inv.

Fact 1: (G, Q) has $\sec \geqslant 0$
Indeed, $\nabla_{x} y=\frac{1}{2}[x, y] \quad \forall x, y \in\left\{y\right.$, so $\quad R(x, y) z=\frac{1}{4}[[x, y], z]$

$$
\sec (x \wedge y)=\frac{1}{4} \frac{\|[x, y]\|^{2}}{\|x \wedge y\|^{2}} \geqslant 0
$$

Fact 2: If $\pi:(M, g) \rightarrow(N, \delta)$ is a Riem. submersion, then

$$
\sec _{N}(x \wedge y) \geqslant \sec _{M}(\bar{x} \wedge \bar{y})
$$

So: every compact nomogeneors space G / H has $\sec \geqslant 0$.
Thu. The moduli space of G-inv. metrics on G / H with sec $\geqslant 0$ is
poth-connected.
normal hang.
metric.
Pf. In some sense, it is "storshoped" around $\left.Q\right|_{m \times m}$. a (inverse linear path)

Thu. G / H admit's a G-inv. metric $w / R_{i c}>0 \Longleftrightarrow\left|\pi_{1}(G / H)\right|<\infty$
Pes
$(\Rightarrow) \quad$ Bonnet-Myers
$\Longleftrightarrow \quad \operatorname{Ric}(X, X) \geqslant 0 \quad \forall X \in m$ w.r.t normal homog metric $\left.Q\right|_{m \times m}$.

$$
=0 \Leftrightarrow X \in m \cap Z(\mathbb{X})=\{0\}
$$

center of if $\pi_{1}(6 / H)$ is finite.
Lie algetre.
Sometimes con deform sec $\geqslant 0$ to $\sec >0$ among homogeneous metrics $\uparrow_{\text {rarely... }}$ "Cheer de formation"

Thu (Berger, Wellach, Alsf-Wbllach, Bevord-Bergen, Wilking-Ziller).
If $M^{n}=G / H$ is a compact homos. space with $\sec >0$, and $\pi_{1} M=\{1\}$, then it is isometric to:

1. CROSS: $S^{n}, \mathbb{C} P^{n}, H P^{n}, \mathbb{C}_{0} P^{2}$ (homog. metrics discussed loot time!)
2. Wallach flog mflal: $W^{6}=S u(3) / T^{2}, W^{12}=\operatorname{sp}(3) / S_{p}(1) S_{p}(1) S p(1), W^{24}=F_{4} / \operatorname{spin}(8)$
3. Aloff-Nellech opec: $\quad W_{k_{1} e}^{7}=S U(3) / S_{k_{1} e}^{1}, \quad W_{1,1}^{7}=\operatorname{SU}(3) \operatorname{so}(3) / U(2)$
4. Berger opine: $B^{Z}=S O(5) / S O(3), \quad B^{13}=S U(5) / s^{\prime} \cdot \mathrm{Sp}(2)$.

Note: If $\operatorname{dim} M \geqslant 25$, then M is a CROSS!
Note: Some (but not all!) homog. metrics on the above have $\sec >0$, and finding out exactly which (modulo opoce) is not dweys easy; but has been done in most (all?) cases.

The (Hsiang-Hsian'69). If $M^{n}=G / H$ compact homos. op. is homeomorpluic to S^{n}, then $M^{n} \xlongequal{\approx} S^{n}$.
(ie., mo exotic spheres can be homogeneous!)
© but they con be "biquatients"
or cohomogenerit one!
or cohomogenerity one!
Def: $\operatorname{deg} \operatorname{symm}(M)=\max \{\operatorname{dim} G: G \subset \operatorname{Diff}(M)$ couppoct subgroup $\}$.
e.g. $\quad \operatorname{deg} \operatorname{sgnm}\left(S^{n}\right)=\frac{n(n+1)}{2}=\operatorname{dim} O(n+1)$.

Namely, $\left[H H^{\prime} 69\right]$ show that if $\Sigma^{n}, n \geqslant 40$, is an exotic sphere, then

$$
\begin{aligned}
& \text { (se table from last elective). } \\
& =\Longleftrightarrow \sum^{n} \in b P_{n+1} \text { is a Kervaire sphere } \\
& (n \equiv 1 \bmod 4) \\
& \text { Improvements by }[\text { Straume' } 94] \text {, ecg.) degsymm }\left(\sum^{n}\right)=\frac{1}{8}\left(n^{2}-4 n+11\right) \text { if } n \equiv 3 \bmod 4 \text {, and } \sum^{n} \in P_{m+1} \\
& \text { and degsgnam }\left(\Sigma^{n}\right)<\frac{3}{2}(n+1) \text { if } \Sigma^{n} \notin b P_{n+1} \text {. }
\end{aligned}
$$

e.g.: $M=\mathbb{R}^{n}, \quad G=O(n), \quad M / G=[0,+\infty)$ "redial"

G-orbits eve
$G(p)=\left\{x \in \mathbb{R}^{n}:\|x\|=\|p\|\right\}$ round spheres $G(0)=\{0\}$ (singular orbit) (prinaper ousts)

$$
M=S^{n}, \quad G=O(n), \quad M / G=[0, \pi]
$$

G-orbits: parallels (principal ornis)

$\{ \pm N\}$ (singular oalats)
In general, $\pi: M \rightarrow M / G$

nou-principal odets \longleftrightarrow boondlery points (singular or exceptional)

So if $M / G=S^{1}$ or \mathbb{R}, then all orbits are principal, ie., all isotropies are conjugate, sea to $H=G_{p}<G$, and hence M is the total space of a bundle

$$
G / H \rightarrow M \rightarrow S^{1} \quad \text { or } \quad G / H \rightarrow M \rightarrow \mathbb{R}
$$

More interesting cases are $M / G=[0, L]$ or $[0,+\infty)$, where not all orbits are principal. We focus on the forst core; the seconal is quite simile if one imagines $L \rightarrow+\infty$, so the orbit $\pi^{-1}(L)$ "disappear" at ∞.

$$
M / G=[0, L]
$$

Rem. metric: $g=d t^{2}+g t$, wheres $\left(g t_{t} \in(0, c)\right.$ is a 1-praca. foumely of G-inv. metric is on $6 / H$.

Let $p \in \pi^{-1}(0), \quad K_{-}=G_{p}$, and $\gamma:[a, C] \rightarrow M$ be a horizontal geoderic w/ $\gamma(0)=p$. Then

$$
\begin{array}{lll}
G_{\gamma(t)}=H \quad \text { if } t \in(0, L) \\
G_{\gamma(L)}=K_{+} \text {if } & t=L .
\end{array}
$$

Prop: The groups $H<K_{ \pm}<G$ ore such that $K_{ \pm} / H=S^{d \pm}$, and the "group diagram"
 determines M up to
G-equiv. diffeom. (up to $a \in N(H)_{0}, b \in G$, and raploiing $K \pm, H$ with $\left.b K_{-} b^{-1}, b H b^{-1}, a b K_{+} b^{-1} a^{-1}\right)$. Conversely, given $H<K_{ \pm}<G$ $w / K_{ \pm} / H=S^{d \pm}$, there exists a cohom 1 mold given by we know 1
the possible
$H_{ \pm}$(if conned

$$
M=\left(G x_{K_{-}} D^{d+1}\right) U_{G / H}\left(G x_{K_{t}, D^{d+4}}^{d+4}\right)
$$

whose gp . diagram is as drove.
Just line for homog. op. G / H, the gr. diagram $H<K_{ \pm}<G$ con be used to compute the topology of M; e.g., $H^{*}(M, \mathbb{F})$ etc. eg, $X(M)=\chi\left(G / k_{-}\right)+\chi\left(G / k_{+}\right)-\chi(G / H)$.

Exercise (Hopf-Samebon Thu). $X(G / H) \geqslant 0$ for any compact homog. δp. and $>O \Leftrightarrow$ pK $H=$ r KG
Ex: $S O(n) \curvearrowright \mathbb{S}^{n}$

$K_{ \pm}=G$ (ring, orbit are fixed pts!) $g_{s^{n}}=d t_{t_{t}^{2}}+\sin ^{2} t \cdot g_{s^{n-1}}$ unit round metic

Ex: $T^{2} \curvearrowright S^{3} \subset \mathbb{C}^{2}$

$$
\gamma(t)=(\cos t, \sin t)
$$

$K_{-}=G(\gamma(0))=\{1\} \times S^{1}$

$$
K_{+}=G(\gamma(\pi / 2))=S^{\prime} \times\{1\}
$$

unit round metric:

$$
g=d t^{2}+\underbrace{\sin ^{2} t d x_{1}^{2}+\cos ^{2} t d x_{2}^{2}}_{g t}
$$

Ex: Brieskhorn variety $M_{d}^{2 n-1} \subset \mathbb{C}^{n+1}$ defined by

$$
\left\{\begin{array}{l}
z_{0}^{d}+z_{1}^{2}+\cdots+z_{n}^{2}=0 \\
\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=1
\end{array}\right.
$$

n, d odd $\Longrightarrow M_{d}^{2 n-1} \cong S^{2 n-1}$
$2 n-1 \equiv 1 \bmod 8 \Rightarrow M_{d}^{2 n-1} \not \underset{\text { diff }}{\nVdash} S^{2 n-1}$ is an exotic sphere! (Kervaice sphere)
Calabi, Hsiang-Hsiong: $G=S O(2) \cdot S O(n) \curvearrowright M_{d}^{2 n-1}$ cohom 1 action:

$$
\left(e^{i \theta}, A\right) \cdot\left(z_{0}, z_{1}, \ldots, z_{n}\right)=\left(e^{2 i \theta} z_{0}, e^{i d \theta} A\left(z_{1},-, z_{n}\right)^{t}\right)
$$

principal isotropy ; $H=\mathbb{Z}_{2} \times \operatorname{SO}(n-2)=\left\{\begin{array}{l}(\varepsilon, \operatorname{diag}(\varepsilon, \Sigma, A)), \text { d odd } \\ (\varepsilon, \operatorname{dieg}(1,1, A)), \text { deven }\end{array}\right.$
where $\varepsilon= \pm 1, \quad A \in S O(n-2)$
Hus $G / H \underset{\text { diff. }}{\cong} S^{1} \times T_{1} S^{n-1}$, where $T_{1} S^{n-1}=\frac{S O(n)}{S O(n-2)}$ is the unit tengat $\begin{aligned} & \text { bundle of } S^{n-1} \text {. }\end{aligned}$
SIngular orbits are: $K_{-}=S O(2) S O(n-2)=\left(e^{-i \theta}, \operatorname{dig}(R(d \theta), A)\right)$

$$
K_{+}=\left\{\begin{array}{l}
O(n-1)=(\operatorname{det} B, \operatorname{diog}(\operatorname{det} B, B)) d \text { odd } \\
\mathbb{Z}_{2} \times \operatorname{SO}(n-1)=\left(\varepsilon, \operatorname{diog}\left(1, B^{\prime}\right)\right) \text { even } \tag{100}\\
\varepsilon= \pm 1, \quad B \in O(n-1), B^{\prime} \in \text { Sol }(n-1) .
\end{array}\right.
$$

Thm (Grove-Ziller, 2002). A compact cohom. 1 mfld (M, g) has an inveriant metric with $R_{i c}>0$ iff $\pi_{1}(M)$ is finite.

Thm (Verdiani, Grove-Wilking-Ziller. Verdiani-Ziller). Apart from CROSSes, compact simply-connected cohom 1 mflds with $\sec >0$ are equiv. diffeom. to:

1. Berger oppece $B^{7}=\mathrm{SO}(5) / \mathrm{SO}(3)$
2. Eschenburg oppaces $E_{p}^{7}=\operatorname{SU}(3) / / S_{p}^{1}$

7 these are defined as biquotients, but also odmet $\mathrm{sec}>0$ invervart under chhom 1 action
3. Bazaikin opaus $\left.B_{p}^{13}=S U(s) \| S_{p}^{1} \cdot S_{p}(2)\right\}$
4. Candidates P_{k}^{7}, Q_{k}^{7} ए aside from P_{1}, P_{2}, Q_{1}, these ore inferite fommilies currently not known to heve sec >0 inveriart under coliom 1 action. Also not known if some Qr's are diffeom. to Eschenburg spous (?)
Note: $P_{2} \underset{\text { nomes }}{\cong} T_{1} S^{4}$ but not diffeomorphic to it: "exotic $T_{1} S^{4}$ "!
What dout collom>1 for $\mathrm{sec}>0$?
Thum. (Wilking, 2006). If $\left(M^{n}, g\right)$ hos sec>0 and cohom $=k$, with $n>18(k+1)^{2}$, then M is homotopy equivelunt to a CROSS.
ie. new exauples w/ lorge dim. con only occur w/ lorge cohom: if not h.e. to CROSS, then $n \leq 18(k+1)^{2}$.
PDEs in Cohom 1: PDE in 1 "spoce" veriable
l.g., Ricci flow becomes PDE in $\{t, r\}$.
$\frac{\partial}{\partial t} g_{t}=-2 R_{i c} g_{t} \leadsto$ of flow $P D E$ on components of cohom 1 metric.
med to argue that
Ansatz is oindeed mracerved; liy', Y
remains geod.
hoition geod of. [B. Kridiven $]$ C. . $[B$, - - rieiannen
in 4 -dim. case.

