Homework #1

Due: Feb 7, 2024

1. Prove that two Riemannian metrics g and h on the circle \mathbb{S}^1 are isometric if and only if (\mathbb{S}^1, g) and (\mathbb{S}^1, h) have the same length.

Clearly, if $(\$^1, g)$ and $(\$^1, h)$ do not have the same length, then they are not isometric. For the converse, suppose $(\$^1, g)$ and $(\$^1, h)$ have the same length. Write $g = f_1(\theta)^2 d\theta^2$ and $h = f_2(\theta)^2 d\theta^2$, where $\theta: (0, 2\pi) \to \1 is a coordinate chart for $\$^1 = [0, 2\pi]/\sim$ whose image is the complement of a point. By assumption, the lengths coincide, i.e.,

$$\int_0^{2\pi} f_1(\theta) \,\mathrm{d}\theta = \int_0^{2\pi} f_2(\theta) \,\mathrm{d}\theta = 2\pi r, \text{ for some } r > 0.$$

Let $\phi_i \colon [0, 2\pi] \to [0, 2\pi r]$ be the increasing smooth functions $\phi_i(\theta) = \int_0^{\theta} f_i(t) dt$, which induce diffeomorphisms $\phi_i \colon \mathbb{S}^1 \to [0, 2\pi r]/\sim$, for i = 1, 2. Let ds^2 be the metric on $[0, 2\pi r]/\sim$ induced by the Euclidean metric on $[0, 2\pi r]$. Then $\phi_1^* ds^2 = g$ and $\phi_2^* ds^2 = h$, so we have an isometry $(\phi_2^{-1} \circ \phi_1)^* h = (\phi_1)^* ((\phi_2^{-1})^* h) = g$.

2. Let g_{11}, g_{12}, g_{22} be real numbers such that $g_{11} > 0$ and $g_{11}g_{22} - g_{12}^2 > 0$. Prove that the "constant" Riemannian metric $g = g_{11} du^2 + 2g_{12} dudv + g_{22} dv^2$ on \mathbb{R}^2 is isometric to the "usual" Euclidean metric $g_{\text{Eucl}} = dx^2 + dy^2$ by finding an explicit linear diffeomorphism $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ such that $\phi^* g_{\text{Eucl}} = g$.

If $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ is a linear diffeomorphism given by

$$\phi(u,v) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ b \end{pmatrix},$$

then $\phi^* g_{\text{Eucl}} = (a^2 + c^2) du^2 + 2(ab + cd) du dv + (b^2 + d^2) dv^2$. Thus, solving $\phi^* g_{\text{Eucl}} = g$ under the above assumptions, we find

$$\phi(u,v) = \frac{1}{\sqrt{g_{11}}} \begin{pmatrix} g_{11} & g_{12} \\ 0 & \sqrt{g_{11}g_{22} - g_{12}^2} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

3. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Find the coordinate expression (g_{ij}) 's) of a Riemannian metric g such that the embedding $\phi: (U,g) \to (\mathbb{R}^{n+1}, g_{\text{Eucl}})$ given by $\phi(x) = (x, f(x))$ is isometric. Show that the volume of (U,g) is

$$\int_U \sqrt{1 + \|\nabla f\|^2} \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n,$$

where $\|\nabla f\|^2 = \sum_i \left(\frac{\partial f}{\partial x_i}\right)^2$ is the square norm of the Euclidean gradient of f.

The pullback metric $g = \phi^*(g_{Eucl})$ with respect to $\phi = (\phi_1, \dots, \phi_N) \colon M \to \mathbb{R}^N$ is

$$\mathbf{g}_{ij} = \sum_{a=1}^{N} \frac{\partial \phi_a}{\partial x_i} \frac{\partial \phi_a}{\partial x_j},$$

so, with N = n + 1, we set $\phi_a(x) = x_a$ for $1 \le a \le n$ and $\phi_{n+1}(x) = f(x)$, and find that the pullback metric is

$$g_{ij} = \delta_{ij} + \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}.$$

In other words, $g = Id + \nabla f \otimes \nabla f$ where, as a matrix, $\nabla f \otimes \nabla f = \nabla f \cdot (\nabla f)^T$ if ∇f is a column vector. From basic Linear Algebra,¹ det(Id + vw^T) = 1 + $\langle v, w \rangle$ for column vectors v, w, so

$$\mathrm{det}(\mathrm{g}) = \mathrm{det}\left(\mathrm{Id} +
abla f \otimes
abla f
ight) = 1 + \|
abla f\|^2,$$

hence the volume form of (U, g) is $\operatorname{vol}_g = \sqrt{1 + \|\nabla f\|^2} \, \mathrm{d} x_1 \dots \mathrm{d} x_n$, so the formula for the volume follows.

- 4. A few different ways to see the unit round metric on the open hemisphere:
 - (a) Use the previous exercise to find a coordinate expression for the metric $g^{(a)}$ induced on the hemisphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z > 0\}$ and compute its volume.
 - (b) Compute the volume of the unit ball in \mathbb{R}^2 with $g^{(b)} = \frac{4}{(1+x^2+y^2)^2} (dx^2 + dy^2)$.
 - (c) Rewrite $g^{(b)}$ in polar coordinates $(x, y) = (r \cos \theta, r \sin \theta)$ and reparametrize the radial direction by arclength to obtain an (isometric) metric $g^{(c)} = d\rho^2 + \sin^2 \rho d\theta^2$. Compute its volume once again, but now in the coordinates (ρ, θ) .

(a) Let
$$U = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$
 and $f: U \to \mathbb{R}$ be $f(x,y) = \sqrt{1 - x^2 - y^2}$.
Then, $\nabla f(x,y) = \left(\frac{-x}{\sqrt{1 - x^2 - y^2}}, \frac{-y}{\sqrt{1 - x^2 - y^2}}\right)$, so by the previous exercise
 $g^{(a)} = \left(1 + \frac{x^2}{1 - x^2 - y^2}\right) dx^2 + \frac{2xy}{1 - x^2 - y^2} dxdy + \left(1 + \frac{y^2}{1 - x^2 - y^2}\right) dy^2.$

Moreover, the volume form of $g^{(a)}$ is

$$\operatorname{vol}_{g^{(a)}} = \sqrt{1 + \frac{x^2 + y^2}{1 - x^2 - y^2}} \, \mathrm{d}x \mathrm{d}y = \sqrt{\frac{1}{1 - x^2 - y^2}} \, \mathrm{d}x \mathrm{d}y,$$

from which we compute

$$\operatorname{Vol}(U, g^{(a)}) = \iint_U \sqrt{\frac{1}{1 - x^2 - y^2}} \, \mathrm{d}x \, \mathrm{d}y = \int_0^{2\pi} \int_0^1 \sqrt{\frac{1}{1 - r^2}} \, r \, \mathrm{d}r \, \mathrm{d}\theta = 2\pi.$$

 $^{^{1}\}mathrm{See~e.g.}$, https://en.wikipedia.org/wiki/Matrix_determinant_lemma.

(b) The volume form of $g^{(b)} = \frac{4}{(1+x^2+y^2)^2}(dx^2 + dy^2)$ is

$$\operatorname{vol}_{g^{(b)}} = \frac{4}{(1+x^2+y^2)^2} \, \mathrm{d}x \mathrm{d}y,$$

from which we compute

$$\operatorname{Vol}(U, \mathbf{g}^{(\mathbf{b})}) = \iint_{U} \frac{4}{(1+x^2+y^2)^2} \, \mathrm{d}x \, \mathrm{d}y = \int_{0}^{2\pi} \int_{0}^{1} \frac{4}{(1+r^2)^2} \, r \, \mathrm{d}r \, \mathrm{d}\theta = 2\pi.$$

(c) Using polar coordinates $(x, y) = (r \cos \theta, r \sin \theta)$, we have

$$x = r\cos\theta$$
$$y = r\sin\theta$$

and hence

$$dx = \cos\theta \, dr - r\sin\theta \, d\theta$$
$$dy = \sin\theta \, dr + r\cos\theta \, d\theta$$

and

$$dx^{2} = \cos^{2}\theta dr^{2} - 2r\sin\theta\cos\theta drd\theta + r^{2}\sin^{2}\theta d\theta^{2}$$
$$dxdy = \sin\theta\cos\theta dr^{2} + r(\cos^{2}\theta - \sin^{2}\theta) drd\theta - r^{2}\sin\theta\cos\theta d\theta^{2}$$
$$dy^{2} = \sin^{2}\theta dr^{2} + 2r\sin\theta\cos\theta drd\theta + r^{2}\cos^{2}\theta d\theta^{2}$$

Substituting the above into the expression for $g^{(b)}$ we find

$$\frac{4(\mathrm{d}x^2 + \mathrm{d}y^2)}{(1+x^2+y^2)^2} = \frac{4}{(1+r^2)^2}(\mathrm{d}r^2 + r^2\mathrm{d}\theta^2) = \left(\frac{2}{1+r^2}\right)^2\mathrm{d}r^2 + \left(\frac{2r}{1+r^2}\right)^2\mathrm{d}\theta^2.$$

To reparametrize the radial coordinate r by arclength, we introduce

$$\rho(r) = \int_0^r \frac{2}{1+t^2} \,\mathrm{d}t = 2\arctan r$$

so that $d\rho = \frac{2}{1+r^2} dr$ and hence $d\rho^2 = \left(\frac{2}{1+r^2}\right)^2 dr^2$. Since $r = \tan \frac{\rho}{2}$, we find

$$\left(\frac{2}{1+r^2}\right)^2 \mathrm{d}r^2 + \left(\frac{2r}{1+r^2}\right)^2 \mathrm{d}\theta^2 = \mathrm{d}\rho^2 + \left(\frac{2\tan\frac{\rho}{2}}{1+\tan^2\frac{\rho}{2}}\right)^2 \mathrm{d}\theta^2 = \mathrm{d}\rho^2 + \sin^2\rho \,\mathrm{d}\theta^2,$$

which is $g^{(c)}$, as desired. Note that 0 < r < 1 corresponds to $0 < \rho < \frac{\pi}{2}$. Finally, the volume form of the above metric is

$$\operatorname{vol}_{\mathbf{g}^{(\mathbf{c})}} = \sin \rho \, \mathrm{d}\rho \mathrm{d}\theta,$$

from which we compute

$$\operatorname{Vol}(U, g^{(c)}) = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \sin \rho \, \mathrm{d}\rho \mathrm{d}\theta = 2\pi.$$

X. (Will not be graded) The metric tensors $g^{(a)}$, $g^{(b)}$, and $g^{(c)}$ from the previous exercise are not *equal* to one another, but you have plenty of reason to suspect they are *isometric* to one another. In fact, $g^{(b)}$ and $g^{(c)}$ are isometric by construction, but it remains unclear (at this moment) why they are also isometric to $g^{(a)}$. Try to find an explicit diffeomorphism ϕ of the unit ball in \mathbb{R}^2 such that $\phi^*(g^{(a)})$ is equal to either $g^{(b)}$ or $g^{(c)}$.

Owing to spherical coordinates in \mathbb{R}^3 and some geometric intuition, namely the fact that ρ in $g^{(c)}$ is the distance to the north pole, we are led to consider the diffeomorphism

$$\phi \colon \left(B^{(c)}, g^{(c)}\right) \to \left(B^{(a)}, g^{(a)}\right)$$
$$\phi(\rho, \theta) = \left(\cos \theta \sin \rho, \sin \theta \sin \rho\right)$$

where, to be very precise, $B^{(a)} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \setminus \{(x, 0) : 0 \le x < 1\}$ and $B^{(c)} = \{(\rho, \theta) : 0 < \rho < \frac{\pi}{2}, 0 < \theta < 2\pi\}$. (Generally, one pretends ϕ is defined globally.) Let us check that $\phi^*(g^{(a)}) = g^{(c)}$. Setting $(x, y) = \phi(\rho, \theta)$, that is,

$$\begin{aligned} x &= \cos\theta \sin\rho \\ y &= \sin\theta \sin\rho \end{aligned} \tag{1}$$

we have

$$\phi^* dx = \cos \theta \cos \rho \, d\rho - \sin \theta \sin \rho \, d\theta$$
$$\phi^* dy = \sin \theta \cos \rho \, d\rho + \cos \theta \sin \rho \, d\theta$$

and hence

$$\phi^* dx^2 = \cos^2 \theta \cos^2 \rho \, d\rho^2 - 2 \cos \theta \cos \rho \sin \theta \sin \rho \, d\rho d\theta + \sin^2 \theta \sin^2 \rho \, d\theta^2$$

$$\phi^* dx \, \phi^* dy = \cos \theta \sin \theta \cos^2 \rho \, d\rho^2 + (\cos^2 \theta - \sin^2 \theta) \cos \rho \sin \rho \, d\rho d\theta$$

$$-\sin \theta \cos \theta \sin^2 \rho \, d\theta^2$$

$$\phi^* dy^2 = \sin^2 \theta \cos^2 \rho \, d\rho^2 + 2\sin \theta \cos \rho \cos \theta \sin \rho \, d\rho d\theta + \cos^2 \theta \sin^2 \rho \, d\theta^2.$$
(2)

Replacing (1) in the first step below, and then (2) in the last step below (and patiently simplifying the result a lot),

$$\begin{split} \phi^*(\mathbf{g}^{(\mathbf{a})}) &= \phi^*\left(\left(1 + \frac{x^2}{1 - x^2 - y^2}\right) \,\mathrm{d}x^2 + \frac{2xy}{1 - x^2 - y^2} \,\mathrm{d}x \mathrm{d}y + \left(1 + \frac{y^2}{1 - x^2 - y^2}\right) \,\mathrm{d}y^2\right) \\ &= \left(1 + \frac{\cos^2\theta\sin^2\rho}{\cos^2\rho}\right) \phi^* \mathrm{d}x^2 + \frac{2\cos\theta\sin\theta\sin^2\rho}{\cos^2\rho} \phi^* \mathrm{d}x \,\phi^* \mathrm{d}y \\ &+ \left(1 + \frac{\sin^2\theta\sin^2\rho}{\cos^2\rho}\right) \phi^* \mathrm{d}y^2 \\ &= \mathrm{d}\rho^2 + \sin^2\rho \,\mathrm{d}\theta^2, \end{split}$$

so we obtain the desired conclusion $\phi^*(g^{(a)}) = g^{(c)}$. (To make computations more concise, usually one omits the symbol " ϕ^* " in intermediate steps, e.g., in the left-hand side of (2), simply writing $dx = \cos\theta \cos\rho d\rho - \sin\theta \sin\rho d\theta$ instead of $\phi^*dx = \ldots$.)