Homework \#1

Due: Feb 7, 2024

1. Prove that two Riemannian metrics g and h on the circle \mathbb{S}^{1} are isometric if and only if $\left(\mathbb{S}^{1}, \mathrm{~g}\right)$ and $\left(\mathbb{S}^{1}, \mathrm{~h}\right)$ have the same length.
Clearly, if $\left(\mathbb{S}^{1}, \mathrm{~g}\right)$ and $\left(\mathbb{S}^{1}, \mathrm{~h}\right)$ do not have the same length, then they are not isometric. For the converse, suppose $\left(\mathbb{S}^{1}, \mathrm{~g}\right)$ and $\left(\mathbb{S}^{1}, \mathrm{~h}\right)$ have the same length. Write $\mathrm{g}=f_{1}(\theta)^{2} \mathrm{~d} \theta^{2}$ and $\mathrm{h}=f_{2}(\theta)^{2} \mathrm{~d} \theta^{2}$, where $\theta:(0,2 \pi) \rightarrow \mathbb{S}^{1}$ is a coordinate chart for $\mathbb{S}^{1}=[0,2 \pi] / \sim$ whose image is the complement of a point. By assumption, the lengths coincide, i.e.,

$$
\int_{0}^{2 \pi} f_{1}(\theta) \mathrm{d} \theta=\int_{0}^{2 \pi} f_{2}(\theta) \mathrm{d} \theta=2 \pi r, \text { for some } r>0
$$

Let $\phi_{i}:[0,2 \pi] \rightarrow[0,2 \pi r]$ be the increasing smooth functions $\phi_{i}(\theta)=\int_{0}^{\theta} f_{i}(t) \mathrm{d} t$, which induce diffeomorphisms $\phi_{i}: \mathbb{S}^{1} \rightarrow[0,2 \pi r] / \sim$, for $i=1,2$. Let $\mathrm{d} s^{2}$ be the metric on $[0,2 \pi r] / \sim$ induced by the Euclidean metric on $[0,2 \pi r]$. Then $\phi_{1}^{*} \mathrm{~d} s^{2}=\mathrm{g}$ and $\phi_{2}^{*} \mathrm{~d} s^{2}=\mathrm{h}$, so we have an isometry $\left(\phi_{2}^{-1} \circ \phi_{1}\right)^{*} \mathrm{~h}=\left(\phi_{1}\right)^{*}\left(\left(\phi_{2}^{-1}\right)^{*} \mathrm{~h}\right)=\mathrm{g}$.
2. Let g_{11}, g_{12}, g_{22} be real numbers such that $g_{11}>0$ and $g_{11} g_{22}-g_{12}^{2}>0$. Prove that the "constant" Riemannian metric $\mathrm{g}=\mathrm{g}_{11} \mathrm{~d} u^{2}+2 \mathrm{~g}_{12} \mathrm{~d} u \mathrm{~d} v+\mathrm{g}_{22} \mathrm{~d} v^{2}$ on \mathbb{R}^{2} is isometric to the "usual" Euclidean metric g Eucl $=\mathrm{d} x^{2}+\mathrm{d} y^{2}$ by finding an explicit linear diffeomorphism $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\phi^{*} \mathrm{~g}_{\text {Eucl }}=\mathrm{g}$.
If $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear diffeomorphism given by

$$
\phi(u, v)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u}{b},
$$

then $\phi^{*} \mathrm{~g}_{\text {Eucl }}=\left(a^{2}+c^{2}\right) \mathrm{d} u^{2}+2(a b+c d) \mathrm{d} u \mathrm{~d} v+\left(b^{2}+d^{2}\right) \mathrm{d} v^{2}$.
Thus, solving $\phi^{*} \mathrm{~g}_{\text {Eucl }}=\mathrm{g}$ under the above assumptions, we find

$$
\phi(u, v)=\frac{1}{\sqrt{\mathrm{~g}_{11}}}\left(\begin{array}{cc}
\mathrm{g}_{11} & \mathrm{~g}_{12} \\
0 & \sqrt{\mathrm{~g}_{11} \mathrm{~g}_{22}-\mathrm{g}_{12}^{2}}
\end{array}\right)\binom{u}{v} .
$$

3. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. Find the coordinate expression ($\mathrm{g}_{i j}$'s) of a Riemannian metric g such that the embedding $\phi:(U, g) \rightarrow\left(\mathbb{R}^{n+1}, g_{\text {Eucl }}\right)$ given by $\phi(x)=(x, f(x))$ is isometric. Show that the volume of $(U, \mathrm{~g})$ is

$$
\int_{U} \sqrt{1+\|\nabla f\|^{2}} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}
$$

where $\|\nabla f\|^{2}=\sum_{i}\left(\frac{\partial f}{\partial x_{i}}\right)^{2}$ is the square norm of the Euclidean gradient of f.

The pullback metric $\mathrm{g}=\phi^{*}\left(\mathrm{~g}_{\text {Eucl }}\right)$ with respect to $\phi=\left(\phi_{1}, \ldots, \phi_{N}\right): M \rightarrow \mathbb{R}^{N}$ is

$$
\mathrm{g}_{i j}=\sum_{a=1}^{N} \frac{\partial \phi_{a}}{\partial x_{i}} \frac{\partial \phi_{a}}{\partial x_{j}},
$$

so, with $N=n+1$, we set $\phi_{a}(x)=x_{a}$ for $1 \leq a \leq n$ and $\phi_{n+1}(x)=f(x)$, and find that the pullback metric is

$$
\mathrm{g}_{i j}=\delta_{i j}+\frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}
$$

In other words, $\mathrm{g}=\mathrm{Id}+\nabla f \otimes \nabla f$ where, as a matrix, $\nabla f \otimes \nabla f=\nabla f \cdot(\nabla f)^{T}$ if ∇f is a column vector. From basic Linear Algebra $\prod^{\dagger} \operatorname{det}\left(\operatorname{Id}+v w^{T}\right)=1+\langle v, w\rangle$ for column vectors v, w, so

$$
\operatorname{det}(\mathrm{g})=\operatorname{det}(\operatorname{Id}+\nabla f \otimes \nabla f)=1+\|\nabla f\|^{2}
$$

hence the volume form of $(U, \mathrm{~g})$ is $\operatorname{vol}_{\mathrm{g}}=\sqrt{1+\|\nabla f\|^{2}} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}$, so the formula for the volume follows.
4. A few different ways to see the unit round metric on the open hemisphere:
(a) Use the previous exercise to find a coordinate expression for the metric $\mathrm{g}^{(\mathrm{a})}$ induced on the hemisphere $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1, z>0\right\}$ and compute its volume.
(b) Compute the volume of the unit ball in \mathbb{R}^{2} with $g^{(b)}=\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$.
(c) Rewrite $\mathrm{g}^{(\mathrm{b})}$ in polar coordinates $(x, y)=(r \cos \theta, r \sin \theta)$ and reparametrize the radial direction by arclength to obtain an (isometric) metric $\mathrm{g}^{(\mathrm{c})}=\mathrm{d} \rho^{2}+\sin ^{2} \rho \mathrm{~d} \theta^{2}$. Compute its volume once again, but now in the coordinates (ρ, θ).
(a) Let $U=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ and $f: U \rightarrow \mathbb{R}$ be $f(x, y)=\sqrt{1-x^{2}-y^{2}}$. Then, $\nabla f(x, y)=\left(\frac{-x}{\sqrt{1-x^{2}-y^{2}}}, \frac{-y}{\sqrt{1-x^{2}-y^{2}}}\right)$, so by the previous exercise

$$
\mathrm{g}^{(\mathrm{a})}=\left(1+\frac{x^{2}}{1-x^{2}-y^{2}}\right) \mathrm{d} x^{2}+\frac{2 x y}{1-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y+\left(1+\frac{y^{2}}{1-x^{2}-y^{2}}\right) \mathrm{d} y^{2} .
$$

Moreover, the volume form of $\mathrm{g}^{(a)}$ is

$$
\operatorname{vol}_{\mathrm{g}_{(\mathrm{a})}}=\sqrt{1+\frac{x^{2}+y^{2}}{1-x^{2}-y^{2}}} \mathrm{~d} x \mathrm{~d} y=\sqrt{\frac{1}{1-x^{2}-y^{2}}} \mathrm{~d} x \mathrm{~d} y,
$$

from which we compute

$$
\operatorname{Vol}\left(U, \mathrm{~g}^{(\mathrm{a})}\right)=\iint_{U} \sqrt{\frac{1}{1-x^{2}-y^{2}}} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{\frac{1}{1-r^{2}}} r \mathrm{~d} r \mathrm{~d} \theta=2 \pi
$$

[^0](b) The volume form of $\mathrm{g}^{(\mathrm{b})}=\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$ is
$$
\operatorname{vol}_{\mathbf{g}^{(b)}}=\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}} \mathrm{~d} x \mathrm{~d} y
$$
from which we compute
$$
\operatorname{Vol}\left(U, \mathrm{~g}^{(\mathrm{b})}\right)=\iint_{U} \frac{4}{\left(1+x^{2}+y^{2}\right)^{2}} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{2 \pi} \int_{0}^{1} \frac{4}{\left(1+r^{2}\right)^{2}} r \mathrm{~d} r \mathrm{~d} \theta=2 \pi .
$$
(c) Using polar coordinates $(x, y)=(r \cos \theta, r \sin \theta)$, we have
\[

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta
\end{aligned}
$$
\]

and hence

$$
\begin{aligned}
\mathrm{d} x & =\cos \theta \mathrm{d} r-r \sin \theta \mathrm{~d} \theta \\
\mathrm{~d} y & =\sin \theta \mathrm{d} r+r \cos \theta \mathrm{~d} \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{d} x^{2} & =\cos ^{2} \theta \mathrm{~d} r^{2}-2 r \sin \theta \cos \theta \mathrm{~d} r \mathrm{~d} \theta+r^{2} \sin ^{2} \theta \mathrm{~d} \theta^{2} \\
\mathrm{~d} x \mathrm{~d} y & =\sin \theta \cos \theta \mathrm{d} r^{2}+r\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \mathrm{d} r \mathrm{~d} \theta-r^{2} \sin \theta \cos \theta \mathrm{~d} \theta^{2} \\
\mathrm{~d} y^{2} & =\sin ^{2} \theta \mathrm{~d} r^{2}+2 r \sin \theta \cos \theta \mathrm{~d} r \mathrm{~d} \theta+r^{2} \cos ^{2} \theta \mathrm{~d} \theta^{2}
\end{aligned}
$$

Substituting the above into the expression for $\mathrm{g}^{(\mathrm{b})}$ we find

$$
\frac{4\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{2}}=\frac{4}{\left(1+r^{2}\right)^{2}}\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}\right)=\left(\frac{2}{1+r^{2}}\right)^{2} \mathrm{~d} r^{2}+\left(\frac{2 r}{1+r^{2}}\right)^{2} \mathrm{~d} \theta^{2}
$$

To reparametrize the radial coordinate r by arclength, we introduce

$$
\rho(r)=\int_{0}^{r} \frac{2}{1+t^{2}} \mathrm{~d} t=2 \arctan r
$$

so that $\mathrm{d} \rho=\frac{2}{1+r^{2}} \mathrm{~d} r$ and hence $\mathrm{d} \rho^{2}=\left(\frac{2}{1+r^{2}}\right)^{2} \mathrm{~d} r^{2}$. Since $r=\tan \frac{\rho}{2}$, we find

$$
\left(\frac{2}{1+r^{2}}\right)^{2} \mathrm{~d} r^{2}+\left(\frac{2 r}{1+r^{2}}\right)^{2} \mathrm{~d} \theta^{2}=\mathrm{d} \rho^{2}+\left(\frac{2 \tan \frac{\rho}{2}}{1+\tan ^{2} \frac{\rho}{2}}\right)^{2} \mathrm{~d} \theta^{2}=\mathrm{d} \rho^{2}+\sin ^{2} \rho \mathrm{~d} \theta^{2},
$$

which is $\mathrm{g}^{(\mathrm{c})}$, as desired. Note that $0<r<1$ corresponds to $0<\rho<\frac{\pi}{2}$. Finally, the volume form of the above metric is

$$
\operatorname{vol}_{\mathrm{g}^{(\mathrm{c})}}=\sin \rho \mathrm{d} \rho \mathrm{~d} \theta,
$$

from which we compute

$$
\operatorname{Vol}\left(U, \mathrm{~g}^{(\mathrm{c})}\right)=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \sin \rho \mathrm{~d} \rho \mathrm{~d} \theta=2 \pi
$$

X. (Will not be graded) The metric tensors $\mathrm{g}^{(\mathrm{a})}, \mathrm{g}^{(\mathrm{b})}$, and $\mathrm{g}^{(\mathrm{c})}$ from the previous exercise are not equal to one another, but you have plenty of reason to suspect they are isometric to one another. In fact, $\mathrm{g}^{(\mathrm{b})}$ and $\mathrm{g}^{(\mathrm{c})}$ are isometric by construction, but it remains unclear (at this moment) why they are also isometric to $\mathrm{g}^{(a)}$. Try to find an explicit diffeomorphism ϕ of the unit ball in \mathbb{R}^{2} such that $\phi^{*}\left(\mathrm{~g}^{(a)}\right)$ is equal to either $\mathrm{g}^{(\mathrm{b})}$ or $\mathrm{g}^{(\mathrm{c})}$. Owing to spherical coordinates in \mathbb{R}^{3} and some geometric intuition, namely the fact that ρ in $\mathrm{g}^{(\mathrm{c})}$ is the distance to the north pole, we are led to consider the diffeomorphism

$$
\begin{array}{r}
\phi:\left(B^{(\mathrm{c})}, \mathrm{g}^{(\mathrm{c})}\right) \rightarrow\left(B^{(\mathrm{a})}, \mathrm{g}^{(\mathrm{a})}\right) \\
\phi(\rho, \theta)=(\cos \theta \sin \rho, \sin \theta \sin \rho)
\end{array}
$$

where, to be very precise, $B^{(a)}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\} \backslash\{(x, 0): 0 \leq x<1\}$ and $B^{(c)}=\left\{(\rho, \theta): 0<\rho<\frac{\pi}{2}, 0<\theta<2 \pi\right\}$. (Generally, one pretends ϕ is defined globally.) Let us check that $\phi^{*}\left(\mathrm{~g}^{(\mathrm{a})}\right)=\mathrm{g}^{(\mathrm{c})}$. Setting $(x, y)=\phi(\rho, \theta)$, that is,

$$
\begin{align*}
& x=\cos \theta \sin \rho \\
& y=\sin \theta \sin \rho \tag{1}
\end{align*}
$$

we have

$$
\begin{aligned}
\phi^{*} \mathrm{~d} x & =\cos \theta \cos \rho \mathrm{d} \rho-\sin \theta \sin \rho \mathrm{d} \theta \\
\phi^{*} \mathrm{~d} y & =\sin \theta \cos \rho \mathrm{d} \rho+\cos \theta \sin \rho \mathrm{d} \theta
\end{aligned}
$$

and hence

$$
\begin{align*}
\phi^{*} \mathrm{~d} x^{2}= & \cos ^{2} \theta \cos ^{2} \rho \mathrm{~d} \rho^{2}-2 \cos \theta \cos \rho \sin \theta \sin \rho \mathrm{~d} \rho \mathrm{~d} \theta+\sin ^{2} \theta \sin ^{2} \rho \mathrm{~d} \theta^{2} \\
\phi^{*} \mathrm{~d} x \phi^{*} \mathrm{~d} y= & \cos \theta \sin \theta \cos ^{2} \rho \mathrm{~d} \rho^{2}+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \cos \rho \sin \rho \mathrm{d} \rho \mathrm{~d} \theta \\
& -\sin \theta \cos \theta \sin ^{2} \rho \mathrm{~d} \theta^{2} \tag{2}\\
\phi^{*} \mathrm{~d} y^{2}= & \sin ^{2} \theta \cos ^{2} \rho \mathrm{~d} \rho^{2}++2 \sin \theta \cos \rho \cos \theta \sin \rho \mathrm{~d} \rho \mathrm{~d} \theta+\cos ^{2} \theta \sin ^{2} \rho \mathrm{~d} \theta^{2} .
\end{align*}
$$

Replacing (11) in the first step below, and then (2) in the last step below (and patiently simplifying the result a lot),

$$
\begin{aligned}
\phi^{*}\left(\mathrm{~g}^{(\mathrm{a})}\right)= & \phi^{*}\left(\left(1+\frac{x^{2}}{1-x^{2}-y^{2}}\right) \mathrm{d} x^{2}+\frac{2 x y}{1-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y+\left(1+\frac{y^{2}}{1-x^{2}-y^{2}}\right) \mathrm{d} y^{2}\right) \\
= & \left(1+\frac{\cos ^{2} \theta \sin ^{2} \rho}{\cos ^{2} \rho}\right) \phi^{*} \mathrm{~d} x^{2}+\frac{2 \cos \theta \sin \theta \sin ^{2} \rho}{\cos ^{2} \rho} \phi^{*} \mathrm{~d} x \phi^{*} \mathrm{~d} y \\
& +\left(1+\frac{\sin ^{2} \theta \sin ^{2} \rho}{\cos ^{2} \rho}\right) \phi^{*} \mathrm{~d} y^{2} \\
= & \mathrm{d} \rho^{2}+\sin ^{2} \rho \mathrm{~d} \theta^{2}
\end{aligned}
$$

so we obtain the desired conclusion $\phi^{*}\left(\mathrm{~g}^{(\mathrm{a})}\right)=\mathrm{g}^{(\mathrm{c})}$. (To make computations more concise, usually one omits the symbol " ϕ^{*} " in intermediate steps, e.g., in the left-hand side of (2), simply writing $\mathrm{d} x=\cos \theta \cos \rho \mathrm{d} \rho-\sin \theta \sin \rho \mathrm{d} \theta$ instead of $\phi^{*} \mathrm{~d} x=\ldots$.)

[^0]: ${ }^{1}$ See e.g., https://en.wikipedia.org/wiki/Matrix_determinant_lemma

