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Lecture 1 1/26/2024
Riemannianmetrics

Let M" be a smooth manifold. A metric is

a smoothly verying family of inner products

gp : ToM + TM-R

on
the tangent space of M

,
re
,

a smooth section

*

of the rector brudte SymPTM)-> M which is

pointwise positive - definite .

More concretely , OpeM ,

smooth vector
· [p(v , w) = gp(w ,

v) Nvw eTPM
fields on

M
,
ie,

Smooth sections
· gp / , v) .

O of TM - M

I 0 E V= 0 L
·

· M = P + gp(Xp , Y) EIR is Smooth UX , Ye(f(M)
.

manifold.

Endowed with g ,
we call (Mig) a

Riem.

In a chart (X1 ,
--

. Xn) ,

with TPM = spenSEx, (p), -- .. Ex 107] -

we write gp = [ gij(p) .
&xidx; gij = Gj =g(s) are smooth fet.

Ii j sa [dX :] is the dual basis onTpM*.
There's a

speakingere( trictly Usually abbreviate dxi= dxi dxi

Examples Let M be a 1-dim nfld .

and omit "" in diedx
-

If M is compact ,
then MESA , if noncompact MEIR.diff

In both cases
,

we can define XE((M) such that

XpeM , TpM = spenEXp3 .

Thus
,

a
Riem

.

metric on M

is determined by a single smoth positive function g: M-IR.
A



· The "usual way" to write "the" canonical metric on Mis :

- Can thinkofQ:C,2π)t merts
L

to cover St.

on St := [0 ,2π]/n ,
To S

&
= spend3 , g

= dOdO = doz

(ToSt)
*

= Spen [d03 dual space ↑
-2 common

On
R TXM = spend , g

= dxxdx = dx slight abuse

1 global (TXR)* = spen [dx] dual space
of motationn...

chart xiR-R

· However
,
that's not the only metric there is

, e .

g.,
on

59 define h = f (0) dO2 where f : St-IR is positive ,
e.g,

h = (2+ cost) do2.
Are thecircles (55dO2) and (5th) the "same" ?

Def : The Riem . Manifolds (M"g) and (Ni, 2) are
metric

if there is a diffeomorphism D : (Mig) -> (Ni, 2) such

that 6th =

g ,
i
.

e
., XPcM , VriweTpM ,

ha(p(db(p)v ,
db(p)w) = gp(v , w) .

Such 8) is called an metry.
· Two manifolds are "the same" if differmorphic

-

· Two Riem . Inflds are "the same" if isometric
-

To distinguish manifolds that are not the same,

/
we can look for invariants :

-

· Smooth manifold invariants : dimension, Emler
characteristia ...

·
Riem . Manifold invariants : distances

,
volumes

,

currative ...

2



Length : Let y : [a . b] -> (Mig) be a piecewise Cf curre

U(a)
7

Ulti

- Fri
e

·

·usi
!

e
.

*

ie
.
Ustictiti is C4. The length of J in (Mig) is

L() = Sg(2/t .
W(t)"2 dt

g

Exercise: Show that Ly is invenient under reperemetrization;
ie

, if y : [< ,b)-> [cd] is a difeomorphism ,
then Lg(5) = Lytron).

Exercise : Suppose : (M", g) -> (M"
, h) is an isometry

and Vi [a ,b) - M is a piecewise
(f curve.

Show that (g() = (n(b) .

Let 8 : [0 ,2.) -> S
*

be a peremetrization of SA,

say U(0) = (cost , sind if we
take StcM to be

the unit circle
,
and note %10 = PA0. Then ,

we
have :

&

is called
g = do

↳g(x) = SoE) &O = 2π (the"unit"metrioa (
A

Ln(2) = S
*

n( , d = [22 + 20) do =4
.
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Upshot : (559) and (5th) are not isometric !

Z of

Claim : (St, h) is isometric to (20 , 4 π]/n ,
ds
= "the" circle

( length 4

18: Let 6 : [015] - [0 ,
4 i] be the increasing smooth function

y

p(0)= R + cost)dt = 20+ sinc . (think s = $10)
,

so d * d =0'10d)

o induce a differ D : Eit e [0 ,4π]/ such that
N &

-

Est Est

o
*d = 0'10)do = (2 + coso)"do= h

,

so we have an isometry

d : <54, 2) - (20 ,
4π)/r . ds4). Moreover , (20 ,47]/ , ds?) ([ORF]/ , 4622

↓
In HW1 !

Exercise: Show that circles (559) and (5th) are isometricL

if and only if they
have the same length.

Hint: Following the
above

,
show that for any

Riem .

metric

g= f10) dO2 on
St

,
there exists a constant v>o and a

2 Z

differ . P :S-Sts .

1
. P

*

G = r I If two metrics haveC
↑

the same - > 0 ,
then compose the 6's to get an isometry.

Remark Any two Riem
.

metrics on a 1-dim Riem
. Manifold are

-i
isometric However, loc .

isom ,
is no enough to conclude that

-locally
only differ by a homothety; e.

g ., any
two flat tor

↑unflds cor

isometric
,

but there exist lots of non-isometric
are locally >

flat for of
the some volume; e . g. R

, like Toa



&mX : If (M", g) is a Riem
. Manifold

,
then 4 .

g
is a

Riem .

metric on
Mr for any <20 ·

called homothetic to
E - g

Ref . If 1 :M-M is a smooth positive function ,

called conformal
then fig is a

metric on
M2 -to g.

q ie
.

Some

-e : Riemannion angle between
v

,
w is :

angles...

↓

·

No

8p(v ,w)
-

does noL O = arccos- < change if
We C->

w TpM (iv)gp(w ,w) withreplog

Ex: On By=E(x , >E#2 / x+ j2 < 13
,

consider the Riem .

Metrics

dx+ dy2 ,

in
, (ger) = (3) an

eachT
& End = wit

. Ex . .

4 (dx+ dy2) both

Eugo" *-T2 3 comfortmoremini
2(dx

+ dy2)Eaph =

+ j2
E .

g,
let V : (1 , 1) -> By , UH)=G bethe

"diameter.

EClearly , W(t) = (1 , 0)
,

so y(t) = 0

Us

2

t
2
dt = In (t) + = + c

-greatFearate
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&: How can we show that gence , Shyp , Esph are not isometric ?

· Just having different lengths for I is not enough !
Y

(there could be some differ o lurking so that Lyme
= (g(DU)

· One way
would be to compute the Area of B1 with each

-

metric : Area (B1 , fence) = T
,
Area (B1

, ghyp) = X,

Area (B1
, Japh) =2π .<

more on

· Another way would be to compute their curvature ;-- how to do
this later!

seegend = O , secgnyo
=-A

, seagoph
= 1

.

=

af"
is that just by "looking

For now,
the important upshot S
-

cannot distinguish metrics
the metric tensor

,
one usually 21

or
"best" metric,

or recognize
a given "Canonical

on
a choice of coordinates

because the expression depends
and there are lots of such choices (lots of difeomorphisms..)

E.g.,
on 55

,
the Metrics 4dR and (2+ cos0)"dO are isometric .

Perhaps some more interesting examples can be found on
12 :

Ex: Let PiR-M be a diffeomorphism . Compute gene

Take a chart (n , v) on I and suppose (U , v) = (x, 3),

say x= Py(mi) , y = 02(u ,) ,

and let h= P
*

gend

domin = [toorie , EdPmn En
= Ex +Eb

I demine =E + At t
y

↓(un) :

gene (ddn . &Dn) =(2)+(ed) i
↳En Eu) = gene(db Endo)=d. +A. A = hizeen

n (Er E ) = Gene(dbz , db) = /Ed+ de has
6



so h =[*) + (2012)4)e ~
Again, careful :

W

du du= (du du+duod
+2(d . + Ask . Ed] de
+ (1)+ / 2)

2

i = (hihiin

( a ,
b

So,

(Moregenerally,hdigisgivenbyhijad ob gase
is

E
.g.,

with a lineor b : 12-12, $(in)=aba) ( ) = (
*

) ,
we

ge
t

do adfbc

h = (a+ c (du+ 2(ab + d) dudu + (b
2

+ d) dr

a+ ab +ca
h = ( abted b+d2 in the basis n. 3.
HWA
-

any
stent metric on

R
, e .

g,
h =2du-dud+5du?

Ex:showthat
e

gene = dx+ dy2. (For the above h
,

use $(ui =( 2)(i)it
But there are also onlinear differs of12,

such as

Ex : check this is a

cosluntz)-sinurr) (i) =

differ inde..iP(u , v) = ) of course,
this

lAnd
gene = ( + 4mP - 4ur + 4m v2) du 3

ugly polynomialisometicmetric is
to gene (we found it

+4 (n- v+ 2uV +2nv3) du du this
Wey3 but

it would
not be obvious atall
hou to see this...

until we learn+ (1 + 4V4 + 4nv+ 42v2) du ?
about urrature ! 7



Some routine stuff :

Prop: Every smooth manifold can be endowed with a Riem
.

metric
.

48: Choose an atles [Xx : Ux-> x< IUa)] and a subordinate

partition of unity Pa : Ua- [0 , 1]
,

ie. EPEA.
On each xx(Ux)CR

n

take
,

e . g .,
the Enclidean Metric

US (x)

⑳M and let g i = x(gend) on Va
;

txx (rxp then set g = Epagl T

O An

xp(Up) Ex : Is g locally isometric
to
gene ?Why

not?

Xc(Va)
(If so , every manifold

could be mode flat !)

&: How to "construct" Riem . metrics ?

E .g, recoll another result proven with partitions of urity :

M compact, 2 M= D .

-

(
Thm (Whitney Embedding). If Mr is a smooth closed-mifte,

2n+ A s
sometimes

then there exists a smooth embedding :M-> /R
. can reduce

this dim
...

Using the above
,

we can endow M with the Metric Agence
So that of become an metric ending.

Recoll from computations above that, in
coordinates (x...., xn) in M,

o
*

/gene) = (occ)
dxidx;, where pi

e e

P = (b1 , -... N
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Lecture 2 1/30/2024

Generalizing "induced metric" from embedding into 1", if

↓ : M
F
-> (N" g) is an embedding ,

then the pollback metric
h = g is

dPxiPT [2Eja3M A

hp(v , w) = q)dp Y
, dbpW)

Hsi i
do = [fi(p) Ea dif 4x (MCNYng dydli

In charts
,

Paxz RK R
N 1

.

a N

-iee↳ (Ex : Exj) = g(ddpExi - drexs) O *
(ei)

Sei3 O T

o - x(p)

= [fi(p) I(b)n Femioe box
~

j
a,
b -

Gab Oxi P = (P1, ...,Bait
- E
·

Ed cob,ae short-hand I bla do (Exi) = [fi(v)&EaEToN
↑

&motation for

(2 (0 Pox)a PAya
In short, see side discussion

.

BodleialdEeCRhij=[oda Goe dexinei =
x(p)

f a

HW 1.

Ex : - I fiUCI"-R is a smooth function , find theI

metric on U s .

t
.

the embedding 0 :U-+
A

given
↑ endowed

by P(x) = (x , f(x) is isometric . with gerce .

E.
g., say

2 =2 and f(x, x) = x + x2 .

Then P(x, , x2) = (x, x2
,
x,+x2)
·

has = [de,

Sob =[ = 1 +(2x)= 1 + 4x,
a

haz= de Ed Sab = [Gea = 4 x e
9



hea=... = 1+ 4x2 so h = (1 +4xi)dxi+ &xix2dx ,
dxz + (1 +4x2)dx

is the induced metric on It seem
as a paraboloid in 13.
------

(Rh) ->
↑

or
,

-----·
⑳abstrectly -A-

--

· seen
I IR- isome

~

i (2,t) sits
·

A· trically L ..-T

inside It :
---- - isometrically

/
- in(RiGeve)

Note :
"Most" metrics on surfaceanot be realized as induced

metric by some isometric embedding into1R3
E

.g ., any flat

towus cannot be isometrically embedded in 113.... (Why ?)
-3 KE + x

k

NachEmbedding,zest). Every Riemannermenfold(
an

M compact : N E m /3 m+ 11) /2

( (stronger things happen for C Riem. manifolds, Mnoncompact : N = M (M+ 1) (3m+ 11) /z
I

see Nash-Kuiper Embedding Theorem" .

IsometriesE Postponed to Lecture 3
-

The comedygroup of (MY) is Iso (Mig) = [0 : M+M ,
$

*

g
= g3.

Theorem (Myers-Stemmed , 1939). IsolM", g) is a Lie group

Ex. Iso (R", fenc) = 0(n) *R" = [0 : 12-> R"
.
b(x) =Ax + b , 3

Iso (S" , ground) = 0(n+ 1)
L

UpeM,FUF4mihbdAt
O(n), Be

-

Pop: If P < IsolM"g) acts properly
discontinuously on (Mig) ,

then Mp is
---

a smooth manifold ,
and it inherits a Riemannion metric so that the

and i(p) <M/p
,

covering mep (Mis)
Is (M/p , g) is a local isometry.- in Xp-M

neighborhoods- there exist

USP in M and VFπ(p) in M/M

Es Es
sit . My : U-V is an isometry

-If: ⑭DrM ie
., (Alv)

*[g(v)= Glo
isome-> If x Mr ,

JVGx open neighbol and UCM
All

tricfi
: U-V is diee Th

I E
- I

Con just M/N
st .

is (v) = U . U
. Define (vi= (π(r))

*

Elv .

one... GEM
10



Cor Con endow SY , RY/N , HY/ with Riem
.

metrics that are
-i

D21
locally isomatic to (SY, Jooni) ,

CR"
, gere) ,

(HY/R , zhp) ,
e.g.

1
"

Th
.../

e
n-torus

Volumeform .

Reg: the volume form volgest" (M2) induced by a Riemannian metric on

an orientable mfld is given
in local wordinates (xi--, xn) by

volg=det (gi dxex ... den

The Volume of (Mig) is We (M ,g) = SmV

E.g., on (1
,
h) where h is the "porebloid" metric above

,
there's

a global chart and

det (hij) = det At4X4X2) = 1+ 4XY +4x + 16xx2- Abx i e(
- 1 + IDF12 where f(x,x) = x + x2

.

-so volu : 1 + 4x4 + 4* xidxz;
and

, e .

g .
Vel (U

, h) =S+ 4x2 dx
i dyn.

Distances .

Pf: The distance between p,qtM with respect to a
Riem

. Metric g is

distg(p , q) = inf [Lg() : 8 piecewise
Cf curve on

M

3
Use a chart

joining p and
q

below-..Prop: (Midisy) is a metric space.
With the same topology as M.

-
and fact

↑
L

If: Clearly , disty is symmetric, disty(p ,q1, 0 and dist(p1G) = 0 ) V=

q

The triangle inequality, use concatenation of paths : if given 370
we have

Un
V

Uz Lg(2) < disty(p , r) +E

&
-
I--

& Lg(z) < dist(v, q) +E

then dist(pif) -)[g((* (2)= Lg(x) + Lg(z) = disty (pir)+dist(v, q)+22



then let 3-0.
To see the topologies agree , EpeM , JUCP chart and CCO sit

.

-2 x
*

Brne) < (9(v) & C2 x*

(geve)

⑳
M e. g ., compare

the eigenvalves of the positive-def

Tieen matrice (gij) and (*geve) is .

Thus,

xq)

[((X(p -x(q))) = dist(p , q) = CX(p) - x(GI)
so the topologies agree

.

I

The (Myers-Steemed , 1939). If P : (M
, dist) -> (N, list) is a metric isom

,

i. e.
/ distg(x ,3) = distr (p(x) , 6()) for all x,yeM,

Then I is a Riem .

isom
.

i.e., a smooth differmorphism st . Hop (dpu , dpr)= g(V,W) , EpeM ,
Ev

,weTpM.

E
Simple exercise :

Productmanifolds M = M1xMz
,
TM =TMg #TM2 Prove

the converse !

If (Mi ,gi) are Riem . manifolds ,

then M= MixMz can be endowed

with the "product Metric" grogz ,
i
.

e
, for all P = (p1 / (2) < M

,

Sp(vw) = (91) palVa ,Wa) + (gz) p(va ,w2) ,

Ev = (v , vn) ,
w = (w, wn) eTpM

Given a positive functionf : M1-R ,
one may

also endow M with

a "warped product"
metric

#
"Warping function"

Pa -(gf)p(v, v) = (91) paNVa , wa) + f) (gz) p(va ,w2)
, Friv '

<TPM
.

E.g, on Rx St
,

we here the product Cylinder)
metric dr+ do

<

(v ,
O

or the warped product metric dr + f(r)"do2 je1

I

where the circle Sri[E ,
8) : OeSty has Musth 2itf(ro)



zacb =
b Setting f(r) = c . r for some > O

we have a come metric

I v Zitcr dr 2 + ErdO2 on [a , b] xSt

2πca

-

Letting a wo
,
and be + 0

,

we get

g = dr"-rd on (0 .
+ 8) xS

*

= 1 2 (0)

& : For what valuels) of <> 0 does go extend smoothly to R2 Y
A:
In Endibean coordinates (x,y) around OcI?, we have the

differ $(v , 0)= O, O) for >O, and

I ⑦

x = v cos O dx = X dr + do = cosOdr-Usinde

E y = sino
=> Sdy =

dr + 13 dO = sinOdr + WLOSO

so (di) (ase-cine)/ore) ,

henc (e)=(as wineoois
i.e.

Rotationby thematrix
rotation by -0

dr = cosOdx + sino dy = Edx + Bby = dx
+ y=ge

-

I dx t*E do =_ SO dx+Oy = -Edx+zdy= x+ ye xdy

hence

dr= dx + Exe didy+e diy gdxdyti
e

2Edo= xigz2dx- epdxdy+z dy22xgdxdyieZ

13



Using the above
, we compute :

(b
*

g = ( )
*
dr2 + c(x2+y) (6-)

*de
O

=2

d-Eddy
+echesedxdy+ 2

2

+ 22(x+y2)( - Z is)- 2)
dx -

2

(x+ y
-

= Ace dx + zy(d
- c
dxdy+ dy

The above functions are smooth at (x, y) = 10,0) if and only of c = 1
.

Indeed
, e.

g. q(x , y) = Eage has him f(x , 0)= 1
, im f(01)o

Smoothness is inverent under differ, so -
g =
dr+ ErdR2

,
on (0 ,

+ 8) xS
*

extends smoothly tor= 0
,

i

.

e
,

to [0 ,
+8), St

,
if and only if c =

1

.

Prop: The metric gf = dr + f(v)dR with f (0) =
0 extends smoothly

for=0 iff ( I does, equivalently , ifIf <011 =1 and f (0) = 0
,

VL
↑
all even

&: Do we "recognize" the metric g
*

= dr+di ? derivatives
vanish

.

A:
It is isometric to gence =

d + dy2 ,

since setting c = 1 in the

-Previous
page!

above we find (b")
*

(gt) =gence
! Or

,
similar computations from A ield:

y
< these

2

E
dx =

cos20 dr-2 usino coso dudo + resinOdo2

I may
be

dxdy = aso sinodr+ rcosodrdo-rsinodrdd-sinPasOd2
useful

inFor.
=
sino dr + Zusinpasodid

+ras O do

di
so dx+dy= dr+ ridO 14



Lecture3 2/2/2024

The same considerations about extending q
f
= dr

2

+ f(r)dQ" smoothly
to r= a if fla) = 0 apply to extending it smoothly tov = b if f(b) = 0

,

-

namely , of extends smoothly to [a , b] x 5/ - 32
N

if
f(a) = 0 f(b) = 0 I flof'(a) = A f'(b) =

- 1 n-
>
r- -

f(even) (a) = 0 f(even) (b) = 0 a i

E .g. f(r) = sin u satisfies that on (a , b]= [0 , i]
,
and the

metric gsidr+ SinwdR2 is isometric to the round metric ons?

Def: ggn = P
*

(gEnc) where D :
SPR"+

--
is the ensued inclusion of the unit sphere.

More generally , for u 2
,

we can write the unit round metric gsn
as a warped product on (0 ,i) <

S" = S "L [IN] by setting

Est
= d& and then Ign

= dr+ sink- ggn - a
Indeed, We have

an isometric embedding $1 : (St, gsi)-> (R2, gene) ,
Pell = (sim 0 ,

cos 8),
and we inductively set Pui)S"8st-> (Rigine) to be the

extension to r= 0 and r=i of
U- 1

dai(0 , π) xS - RU
+ 1

=
R" &R

r=
0 a
Xu+

(rp) +> ((sin 2) -,
(8) ,

cos 2)

· Assume OnE . (dxit . - + dxxt) = ggn- ·

Then

- T
④

L

Xu E (x , , xn) = (sin 2) ne(p)
⑬

XI Xn+ = Cos r

r=
Y
·

By Q,
↑

*

&xi = (a) r) On- (p) dr +sinrE(dxi-
[Pi

=> Pdxi) = cosr p: dr + 2 cosrsinr(Pi, xi)dr +
sin (dxi

15



Note: 14n-110) I= 1 in R"
,

in
,
PP ... tP = 1 => 2019 dx)+. .. . + 2Pn#,(dxn) =

0

So

* (dxit .. - +dxi) = C3~ pi)Dr+ 2 corsinn /Riddxdr + simrod t.. -Adx a
-

= O

=1 ggn-

B ⑲ (dxn+] =
-sinwdr-> Oldxi) = sinrdr2

so
* /dxi+.. -+dx) = Cordr + sintr gan-sinter = dressing
--

Similarly, we can inductively endow (((0) =(0 ,
+ 2) xSh" with the metrics

3
· dr+ 22.

ggn- Enlidean metric (isometric to gence = dx+... +dx
SH- , (r) Sup(v),

< 0

-SHo(v)
W

sny() ,
> O

· dr+ sinkrggn- hyperbolic metric ·sinwiseeboth of which extend smoothly to r = 0.

The above warping functions [sin r Is fit in a 1-peremeter familo of
sinho (HY)

warping functions SUx(v) s . t . dr2+ SUx(v12ggn - >

extend smoothly to r= 0,

namely the solutions to the 1-peremeter family of
ODEs

Note this function vanishes

at v = 0 and r=M/, and

"(r) + ↓ sny() = 0
,

extends smoothly to both points!
SUL

keIR ↓& Sny(0) = 0
,
>10) = 1

,

E
# sin(), k

>0

which can be computed explicitly to be SUx(v) = V
,

= 0

( WO
As we will see later

,

dr+ snx(v)Ggny has # sinh-k /

constant sectional curvature K .

16



(Leftovers from Lecture 2 : Isometry group
and induced metric on M/p)

Lecture4 2/7/2024

&
Products: M = MaxM2xM3 , 4 ,

5: M1 -> IR
Doubly-warped

g4,4 = gM, * 42gM2 BIT29M
E.
g, on M = (a , b) x S xSt > T

consider dr+ 4 (r)dQ? +T(r)de
, ine

.

N

geometrically ,
this is a 1-par. family of flat fori is

"U
-

Q : When does the above metric extend smoothly to r= a (or + =b) ?

Note : At most 1 of 4 ,
5 can vanish at each endpoint, otherwise it would

not be a manifold point (come over a torrs) .

En come over X is only a manifold

if X is a sphere...

Similar considerationsdo (single) warped products yield:

A: If 4(a) = 0
,
then dr2+ 4(v)d8Y+ 45(r7&0E extends smoothly to r = a if

Y(a) = 0 Y(a) > O

i.e.,
( similarlyat s.

(a) = 1 Yodd(a) = 0 ~ has extension
or if

L

as even function
i.e., ap(even) (a) = 0Ihasextensione "function. /

fNote: Same criteria hold replacing (St,dewith (S2-! gsn).

E
.f : setting

featur
get a medi isomatics is

More generally ,
for any

1 [K[U-2,
the metricCabooiz ↑disin gat costrggn-k- 1·

circle

circle ↑ 54(x203 7 on (0 ./2) x S* x Sh-2
- +

< SM

[03xS (2) forus Alz
is isometric to

S2(sinv) xS (cosr)

((,2) ,
(vz , 82)) ( i

.

e.,
restricted to ggn .

U(r)= (sin r
,

0
,

cosr , 0) EIRPEIRDI s -(St+ 203)U(503xSn
- 4-1)

of genus 1 Heegaard splitting of S3. 17



In the above coordinates (2,
8

.. 02) on 55
,

the Hopf fibration is

93= [0 ,5/2]xSx 7 (r ,
0
, &)Fe(r ,

0
,
- 0z) e (0 , +1) x St E 52(12)

-

dr+sir do? cor de dr+ Sn (v)de
4

=
d + de

ii e.,
the Hopf circles areπT" (ri8) = < (r ,

0 + t
, t)i te (0.

2+]] for each (nit<5 /'(2).
Let p = (v , 01 , 02) and recell thatπ-<(r .

0)CS" is ebmanifold, with

*bl +
is

in
"Vertical V ·I

-

space" P
Tp(t (v,M) = New

dipSponsto-coa + (b-coT
eTpS3

"Horizontal Hp := Tp (A (r ,0)
+
8

= Span Ser , Got r) 0-Hourtcon]
space"

Vp π (,b) ↑
g(z,

+ , Cotro-tour on

/ =
cot rol- four o

(=Cr .Siner-since .

p · Hp others are clear Note Notre - tenrt211
,

i so this is a othonormalbasis.

TS = HpVp g-orthogonal direct sum.

2and dip/Hp : Hp -> Tip S( is a (linear sometry :

&Er , Got 2) 0 ,

-(fourt co2] of Hp
ditp =) ( in the 0.n. b

.

bases

Seri rol of ThpS(').

Ibl disp (cotro-tenron) = (cotr-tent o
= sinr = zo

and it is orthogonal to ErETiS"(12). Therefore ,
i : (1) -> 52(+2) is

Riemannian submersion. < In some sense
,
this is a

a z
- dual notion to isometric immersion.

18



Def: A submersion it: (M ,g) -> (Nih) is a Riemannian submersion if
-

for all peM ,
the restriction of dip : TpM-TipN to Hp = (Her ditp)t8 is

Careful The distribution of horizontal ↑-
a lineor isometry. spaces in M need not be integrable!

Q : If T : (Mig) - N is a submersion
,

can we endow N with a Riem .

Metric

so that it becomes a Riem
,

submersion ?

A:
In general , no .

Need horizontal space along eachπf(x) to be isometric
...

Write g =

Jho * Ever
Writ . TpM = Hp P Up ,

where Up = Xewditp . Hp = Upt9.

Prop. Suppose T: (Mig) -> N is a submersion with connected fibers i 1(x) ,

XeN
.

There exists

a metric I on N sit. it is a Riem. submersion iff = 0 EVEVp , UPeM.

↓

If: See e .

g. Gromoll-Walschop's
book Lie derivative of for in the direction Vi

"Metric foliations andCurvature"
,
Thr 1 .

2
.
1 (UVSnor) (X,Y) = V (Eum(X,Y) -Gnor([V, X]

. Y) -guor(X, [V,Y])

Cor: If GCIsom (M , g) acts on (M ,g) in such way
that M/G is a manifold (e .

g. freely
then there exists a Riem . Metric on M/G sit.i: (M

,g) -> )/Gig) is a Riem
.

submersion.

Ex: Stu S2u+1 KU+

by unit complex multiplication , freely and isometrically , so there is

a Riem ,

metric on Str+ /st = KP" s.

t
.
it:

S24+1(1) -> KP" is a Riem .
submersion.

-

↑ called "Fubini-Study metric" grs.
Note: By the above

, for m= 1
, (DP+, grs) FomS4(72).

Similarly for SASin
+ 3

< #+

by unit quaternion mult
,

and ganiyg = HIP"
.

---

Side Ex 1 Compute the length of the Hopf circle it' (v,0) CS".
-

I
Integrating the length of the targent vector so,

*

or
We find the lefth is :

Seat Fall viana = S
**

(sinPr + cos22)&t = 2π
.
(independent of (rib) ...)

π (r
,
b)

sideErzComputeRevolumeg(gee.
19



Connections-

& How do we differentiate vector fields with respect to each other in 1" ?

1: Vector fields X , Y : IR" -> R" are nu temples of functions ai , bj : Me"-> IR
,

X = as Ex + az
2

* - .. - an Ex Note : Here we are identifying(ToM"ERY,

which is only)Y = be Ex
,

+ be Ext--- + bu Exn possible bl R" isa vector space...

and each Xj can be differentiated at pelR in the direction X(p) :

Ob .(X(bj ()p = an() bj(p) + ... aufb() = wildi Sp)

so we write

Ex = X(Y)= a di
is

or dY(X...
X(bj)

On a manifold M
,
vector fields are sections of TM ,

ie. X ,Y :M-TM,

so a "derivative" would be dY/P) : TpM-> TyTM for each PtM,
i . e.

M-> T(TM)
,

and "DxY" = dY (X) would lond in T(TM)
,

not TM
.

Note : MEGTM **T(TM)
,
and

,

slee M=R, there's no canonical choice of "horizontal":

If M = R"
,

we identify TolR" =IR" so TIR"= R<
I" and X : /" -> THR"

.

Then
(3 , Y(p) , (Y(p) , dYpr)

dY : TIR" -> T(TIRY) =(R2 < AY) : (R
"

x (R2) OTR MRLin
P + (p,)

on (pyFI
, The

(v))
En

canomical "horizontal" port for#(p, v) +-> ((p , Y(p) , (YIo, bundle T(TM) -> TM
, if M=R".

AdY(X)= ,
((p , X(p)) = ((p , Y (p)),

(Y (p) , d(X(n) = dY(o =x.orstim

On a manifold M
,

we could also choose coordinates near a point and

compute derivatives of vector fields w.
r.

t
.

each other in IR"
,

but this would
L

depend on the choice of coordinates (charts). Issue : difference quotient" is illpond on M :

to some vector space,
and

Can't define dY(X)
,

"

=
"himIdonotbelogeconomical

way
q - p dist(p , g) to identify TpM end TqM,

even for q mearp. 20along X



Lecture5 2 19/2024

Ref: A connection i) on a vector bundle E-M is a mop

Di(f(M) x N(E)- N(E)
s . t .

IX , Y) -> DY

(i) X I> TXY is COM) -lineer : Pfixi+82XzY = f i Dx
,

Y + fzTxzY FfieCO(M)

I(ii) Y +> DXY is R-lineowi <x(c ,
Y1 + 24z) = <+Try Ye + <TX Y2

.
UciEIR

(iii) Leibniz rle Dx(fY) = f TxY + X(f) Y .

e.g: E= (TM*)*** TM
*>

Note: The aboveT on R is a connection on T" -> 1".
Using partitions of unity,

can easily show that
every vector bundle E-M can be

endowed with a connection (pull-back fromR using brudle chorts...).
--

& will define this soon

Rop : The value of (DXY)
,
ETpM depends only on X(p) ETpM and

Y in a neighborhood of p+M.

Pf Use a bump function on neighborhood of PEM and (i) -fixi) to prove-i

locality ,
then is to prove it only depends on X at p. (Cf . Lee p . 89-91.)

---

Let us now specialize to E = TM
,

so D : <t(M) x(t(M) -)f(M)
.

On achort X : UCM -- x (U) CIR"
, using

coordinate rectors [Ex. . .
n -

Coefficients [Ni
"

3 of T <Ax
;

are

↑Me = E M
called "Christoffel Symbols" (of T) .

if 2xx
w = 1

Then
,
if X = [aiz Y = [bjer on U

,
we have

DXY = Dais (Ebi) = [ai M(Eb ; i& j i j
S

= aib
; DE x + Eastis

as in IR"
...-

& Tijk x
X(bj) = (replac index j with 2)2xj 21



In I"
,

the usual -
= Sabi + Eaib,Ni ( has WiNED ,

so (-
this is this is the

that TxY = X(Y).
"X(y)" "correction" to

make it word .

in coordinates invorient.

of. Din I"
.

NoteThe above confirms that (PXY)p only depends on ailp) and by near p
-i

From D we defined Nif, end
, conversely , given It can define a uniqueis

↑

connection 7 with these prescribed Christoffel Symbols fin charts
, by formula above).

k#GandareconnectionsanTM
,

withChristelfelgenbergennthen A = D-T is a (12) - tensor Aij =

↑ choose* difference to
a connection any other connection.

If: To check A is COMI-lineer in the remaining slot use Leibniz rile for

D and I and see that monlinear terms concel
.

I
same symbol...

Note: From a connection - on TM
,

can define induced connections - on TM
*

by setting for a 1-form WeN (TM*) Ed[(M),
connection

~ OUTM
L

(Dxw) (Y) = X (w() - w(xY) WX , yeft(M)

and
,
moreover

,
on all tensor bundles over M

,
i
.

e
,

on E = (TM*)
*&TM *S

,
vie

(DxT) (Ya
, . . .,

Yo
,
Wi , . . . ws) =X(T (Ye , ...

Yo
,

wa
,
-- ,w) the geneeDon TM

L

- TWa
..,
TY ,

--

,
Yo

,
wi ,

- - ,wa
k = 1 defined above

e

-T(Y . -
Yo

,
we ,

-- . wa-- ,Ws)
k = 1

Note : Can think of DT - N (M*)
- r+

TM
*S) ,

setting

IDTT(Xi
Y, ... Yo,

we . ., wos) = (PxT) (Yz -
-- ,Yr, w+ --

>w) .

So D : ME) - ↑ (TM*
* E)
zz



Pef: Given a connection 4 on E-N and a smooth mop fiM-N,
the preeback connection f*D on &*E-M is determined by

(f*D(x(f*s) = f
* (tab(x)s)

Importantexample : Let U : (a . b) -> M be a smooth curve in M
,

and

Y
*TM be the pullback bundle of TM vieU, ie

,
the vector bundle

over (ab) whose sections VEN (f*TM) are rector fields along U :

~ T Vi(a ,b)-> TM st
. V(t) e TUMM Vte(aib) .

e.g. Je N(
*

TM)
(ab)t M ↑ +

is a vector field

- 4444 ↑
*

-nR along U;
which

↑ ↑ y z not be theI Z

e. g .,
restrict on ambient may

ing
+

restriction of an

Vector field to U,
we

embient vector field .

obtain a vector field X(UH)

along V.

Given a connection i on TM, use the pullback connection
*
T

to define the centderivative of rector fields along 8:

VET(TM) was
1 V : =

*

4)
, ,
V e N(yYTM)

dt

satisfying the following properties :

· ( , V , +2Vz) =c V
,

+ GVz ,
Y,E

· (V) = f .
V + f . V , XfzCt((a ,b) . (R)

· If V is the restriction of an ambient vector field You M
,

-

then RV = DV .

dt

similarly for any other tensors along 2,
i
.

e
.,
sections of y

*((TM*

)*** TMOT



In coordinates
,

with De Ex = [NiTExx , we have that a

L

VET (UTM) ,vector field along8 , say can
be written as

-- ---

- # -
. 2142 VA) = ic Estrit Vegiz/vie

& nVIH= Vj(t Exluit "

%xx -

S I al I ↑

-↑ -
&
--> d->

-

I&-I --y i-> Aj = 1 ofxz -->

for some functions Vj : (a .b)-> IR
,

so

-

↑ tax ↑
->

-
---

d j
↳ VI = [ vj(t) xilui +Wj(tri

s ble distries
the restriction

t E a! (t) . Vj(t) .T
,

"

(v(t) xx(y(t)-= & vic ligh
engin

·f Exj-
&

↑

S
--°

Write plt) in coordinates :

U(E = (<1 (A)
,
---, ault) s -intEakr; Nijk) xalo

W = ailt x/git ↑L dt
i = 1 So these are the coefficients of RV

and hencei
-

as a vector field along 2.
( &

Dilt) =

"

Eailt) Tax
= Gilt) Nie 2X I
Sch

: A vector field V along y is all if VED
. (Similarly

for any
tensor along 2)

Prop: Given a (piecewise) Smooth curve U : (a . b)-> M
,

a connection on TM,

and a vector Ve TUlto)M , for some to ea , b)
,
there exists a unique

parallel vector field V : (a ,b) ->TM along 2 s .
%

.

V(to) = r. Moreover,

VIH depends smoothly on the initial date v.

24



: Existence , uniqueness and smooth dependence on initial data for
the first-order linear ODE system

E
vilt) +

aVictNighta
↓ = 1

, . - -,
U

Vx(to) = VW
coeff of initial data

E

Dd:
The above VIE) is called the panelled transport (or translation) writ.T

g

of veTUHM along J .

Sometimes write Pr : TokaM -TrM , PPV : = VIt.

↑ Dependence onI

is not indicated in this motation...

translation is "constant" and
Ex: In RY

,
wort . DxY = XIY)

,
parallel

K
= PUz v

<

d P
+ V

independent of the path :
N

↑ I-PV = V
,

EveR"
,

V ↑ er
H

T . -
TYIERU gals M ⑭ -

None of these features hold in general... (see e.

g. HW2)

Def: Let M be a smooth menfold andI be a connection on TM.

A curve ( : (a ,b) -> M is a geodesic in M of Dj8 = 0
.

In coordinates, if V = St= [ailt Exilgi /

then by
above computation :

: Wilt)

Pow = [(alt + [allhajt My(vh) xivit
L

i, j (
so U(A = (211), ...,ault) is a D-geodesic iff "Geodesic equation"

* System of second order

quasilinear ODEsal + [ala! + = 0
. N = . .

( (
Intuition : Dj is the

acceleration of U;
so Djj=0 En & free fall

25



Prop: Given UEM and VETpM ,

and a connection 1 on TM
,
there exists

a unique
maximal D-geoderic 8 : I ->M ,

with to tI and g(t)= p , j(t0) = V
,

which depends smoothly on (p ,VETM .

If: Again ,

existence
, uniqueness ,

and smooth dependence for second-order ODEs. -

E.g. in M with DxY = X(Y)
,

we know that TE0 ,
so geodesics are straight lines.
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