Lecture 12
$3 / 13 / 2024$
From now on, we almost always assume that all manifolds

Thy. (Tartan - Ambrose - Hicks). Suppose $\left(M^{n}, g\right)$ and $M^{M \text { simply -connected }}\left(\bar{M}^{n}, \bar{g}\right)$ are complete Rem. melds, fix $I_{:} T_{p} M \rightarrow T_{\bar{p}} \bar{M}$ lin. isometry, and let $\varphi=\exp _{\bar{p}} \circ I_{0} \exp _{p}^{-1}: B_{\varepsilon}(\bar{p}) \rightarrow B_{\overline{\bar{c}}}(\bar{p})$. Suppose for all piecewise geodesic curves γ in M, the map $I_{\gamma} ; T_{\gamma(t)} M \rightarrow T_{\varphi(\gamma(t))} \bar{M}$, given by $I_{\gamma}=P_{\bar{\gamma}}^{0} \circ I_{0} \circ P_{\gamma}$, satisfies $I_{\gamma}(R(X, Y) z)=\bar{R}\left(I_{\gamma} X, I_{\gamma} Y\right) I_{\gamma} Z$ for all $X, Y, Z \in T_{\gamma(t)} M$.
Then φ has a unique extension to a Riem. covering mop $\varphi: M \rightarrow \bar{M}$. In particular, if \bar{M} is simply-connected, then φ is a global isometry.
Pf. Using completeness, can "iterate" previous argument for Corton's theorem:
 hence $\alpha_{1} \beta$ ore homotepic $b_{k} \pi_{1} M=(12)$.
Given $\alpha, \beta:[0, L] \rightarrow M$ piecewise geodesics in M with $\alpha(0)=\beta(0), \alpha(L)=\beta(L)$, the piecewise geoderics $\bar{\alpha} \cdot \bar{\beta}$ in \bar{M} obtained repeating the construction at each break point have the same endpoints $\bar{\alpha}(L)=\bar{\beta}(L)$, so we can extend φ mopping geodesic endpoints in M to geoderic endpoints in \bar{M}. For details, see Cheeger-Ebin $\$ 12$.
Using the dove, and the (previously shown) fact that $\left(M^{M}, g\right)$ has $\sec \equiv k$ iff

$$
\begin{aligned}
& \langle R(X \wedge Y), z \wedge w\rangle=k \cdot\langle x \wedge y, z \wedge w\rangle=k(\langle x, z\rangle\langle y, w\rangle-\langle x, w\rangle\langle y, z\rangle) \\
& \text { ide., } R(X, Y) Z=K(\langle Y, Z\rangle X-\langle X, Z\rangle Y) \leftarrow \begin{array}{c}
\text { So, if } \sec M \equiv k \text { and } \sec \bar{M} \equiv \equiv x \text {, then } \\
\text { clearly } \\
I(R(X Y) Z)=\bar{R}(I X, I Y) I Z \text {. }
\end{array}
\end{aligned}
$$

we obtain:
Thu (Killing-Hopf). A complete connected Rem. meld $\left(M^{n}, g\right)$ with sec $\equiv k$ is isometric to a quotient of $S^{n}(1 / \sqrt{k}), \mathbb{R}^{n}$, or $H^{n}(1 / \sqrt{-k})$, according to $k>0, k=0, k<0$, by a free properly discontinuous action of a subgroup of isometries.
Recall: The Rem. metrics of $S^{n}(1 / \sqrt{k}), \mathbb{R}^{n}$, $H^{n}(1 / \sqrt{-k})$ can be collectively written as the warped product metric $d r^{2}+s n_{k}(r)^{2} g s^{n-1}$, where $s n_{k}$ solves $\left\{\begin{array}{l}s n_{k}^{\prime \prime}+k s n_{k}=0 \\ s n_{k}(0)=0, s n_{k}^{\prime}(0)=1 \text {. }\end{array}\right.$
Ex: Show that a closed manifold $M^{n}, n \geqslant 3$, with $\pi_{2} M \neq\{0\}$ ($e . g, M=\mathbb{C} P, k \geqslant 2$) does not admit any Riem. metric with constant sectional curvature.
Sol: $\pi_{2} M=\pi_{2} \tilde{M}$ and $\pi_{2} S^{n}=\pi_{2} \mathbb{R}^{n}=\pi_{2} \mathbb{H}^{n}=\{0\}$.

Basic Glob bel Results
Thu (Cortan-Hadamord). If $\left(M^{n}, g\right)$ is a complete connected Rem. muffed with $\sec \leqslant 0$, then $\tilde{M} \simeq \frac{\sim}{d i \mid l} \mathbb{R}^{n}$. In porticalor, if $\pi_{1} M=\{1\}$, then $M \frac{\sim}{\overline{d i}} \mathbb{R}^{n}$.

Lemme. If sec ≤ 0, then Jacob fields with $J(0)=0$ and $J^{\prime}(0) \neq 0$ satisfy $J(t) \neq 0, \forall t>0$.
Pf. Let $J(t)$ be a Jacobi field along $\gamma(t)=\exp _{p} t v$, with $J(0)=0$, and set $f(t)=\frac{1}{2}\|J(t)\|^{2}=\frac{1}{2}\langle J(t), J(t)\rangle$. Then $f^{\prime}(t)=\left\langle J, J^{\prime}\right\rangle$, and

$$
\begin{aligned}
f^{\prime \prime}(t) & =\left\langle J^{\prime}, J^{\prime}\right\rangle+\left\langle J, J^{\prime \prime}\right\rangle \\
J^{\prime \prime}+R(J, \dot{\gamma}) \dot{\gamma}=0 \overbrace{\leq 0 \text { because }} & =\left\|J^{\prime}\right\|^{2}-\underbrace{\langle J, R(J, \dot{\gamma}) \dot{\gamma}\rangle}_{\text {sec } \leqslant 0} \\
& \geqslant\left\|J^{\prime}\right\|^{2} .
\end{aligned}
$$

i.e., there are no conjugate points on manifolds with $\sec \leq 0$.

Thus, $f^{\prime}(t)$ is nondecreasing. As $f(0)=0$ and $f^{\prime}(0)=0$, it plows that $f^{\prime}(t) \geqslant 0$ for all $t \geqslant 0$; .e., $f(t)$ is nondecreasing. Moreover, as $J^{\prime}(0) \neq 0$, then

$$
f(t)=\frac{f^{\prime \prime}(0)}{2} t^{2}+0\left(t^{3}\right) \geqslant \frac{1}{2}\left\|J^{\prime}(0)\right\|^{2} t^{2}>0
$$

for $t>0$ sufficiently small, so $f(t)>0$ for all $t>0$ because f is mondecreeang. I
Rmk: Later on, we will parve that $\|J(t)\| \geqslant t\left\|J^{\prime}(0)\right\|$ for all $t \geqslant 0$ (Race I).
Cor. If secs 0, then $\exp _{p}: T_{p} M \rightarrow M$ is a local diffeo.
Pl. By the Inverse Function Theorem, it offices to slow $d(\text { exp })_{p}: T_{x} T_{p} M \rightarrow T_{\text {exp }^{x}} M$ is invertible for all $x \in T_{p} M$. Given $w \neq 0 \in T_{p} M \cong T_{t v} T_{p} M$, let $J(t)$ be the Jacobi field along $\gamma(t)=\exp _{\mathrm{p}} t v$ with $J(0)=0$ and $J^{\prime}(0)=w$. Then $\leftarrow 4$. HF 3 $J(t)=d\left(\operatorname{exxp}_{p}\right)_{t v} t J^{\prime}(0)$, so for $t \neq 0,\left\|d\left(\operatorname{expp}_{p}\right)_{t v} w\right\|=\left\|\frac{1}{t} J(t)\right\|>0$ by the Lemma and for $t=0$ we have shown before that $)_{0}=$ id. Thus $d\left(e_{p} p_{x}\right.$ is invertible $\forall x \in T_{p} M$.

Lemme. If (\bar{M}, \bar{g}) and $(M, \bar{\delta})$ are connected, (\bar{M}, \bar{g}) complete, and $\pi:(\bar{M}, \bar{g}) \rightarrow(M, g)$ is a local isometry, then (M, g) is complete and π is a Rem. covering map.

P8. Basic topology: show that π has the path-lifting property (see [Lee, The 6.23$]$ for details).
Pf of Cortan-Hodamord: Since M is complete, we have $\exp _{p}: T_{p} M \rightarrow M$ well-defined. By Cor. above, it is a local differ everguhtere, so we can use it to pol back the metric g from M to a metric $\bar{g}=\exp _{p}^{*} g$ on $T_{p} M$. Thus, $\operatorname{exxp}_{p}:\left(T_{p} M, \bar{g}\right) \rightarrow(M, g)$ is a local isometry. The manifold $\left(T_{p} M, \bar{g}\right)$ is complete by Hopf-Rinow, because the straight limes $t \mapsto t_{v}$ through the origin of $T_{p} M$ are geodesics w.s.t. \bar{g}, and extend to all $t \in \mathbb{R}$. Thus, by Lemma, $\exp : T_{p} M \rightarrow M$ is a covering map.
Cor: There does not exist a metric with sec ≤ 0 on $S^{n}, \mathbb{C} \mathbb{P}^{n}, \ldots$
Def: A point $q \in M$ is conjugate to $p \in M$ along a geodesic $\gamma:[0, L] \rightarrow M$ of $\gamma(0)=p$, $\gamma(L)=q$ and there exists a Jacobi fill d $J:[0, L] \rightarrow M$ along γ with $J(0)=0, J(L)=0$.
Note: By the above, if $\sec \leq 0$, then there are no conjugate points. Moreover, $q=\exp _{p} L v$ is conjugate to p along $\gamma(t)=\exp _{p} t v$ ff $d\left(\exp _{p}\right)_{L v}: T_{L_{v}} T_{p} M \rightarrow T_{p} M$ is moninvertible. In other words, $\exists \gamma_{s}(t)$ a variation of γ by geodesic with endpoints that, to first order, coincide with pi:

Examples:
On $\left(s^{n}, g_{s n}\right)$, antipodal pts are conjugate along any geode sic that jobs them

On a paraboloid, Conjugate points arise along all meridians but no geaderce other than the meridian joins them!

Recall the second variation of energy: $V=\left.\frac{d}{d s} \gamma_{s}(t)\right|_{s=0}$

$$
\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{s=0}(V, V)=\left.g\left(\frac{D V}{d s} i \dot{\gamma}\right)\right|_{a} ^{b}+\int_{a}^{b}\left\|\frac{D V}{d t}\right\|^{2}-g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t
$$

If the variation has fixed endpoints $\left(\gamma_{s}(a) \equiv \gamma_{0}(a), \gamma_{s}(b) \equiv \gamma_{0}(b)\right)$, then $\frac{D V}{d s}(a)=0, \frac{D V}{d s}(b)=0$.
Moreover, if $\sec \leq 0$, then $-g(R(V, \dot{\gamma}) \dot{\gamma}, V) \geqslant 0$, so it follows that

$$
\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{s=0}(V, V)=\int_{a}^{b}\left\|\frac{D V}{d t}\right\|^{2}-g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t \geqslant 0
$$

re, if sec $\leqslant 0$, then all geodesics are bock minima for E among curves with the same endpoints. However, they need not be global minima: think of closed geoderics on a torus, or an a hyperbolic manifold; which are minimizing up to half their length.

Parallel variations: Let $v \in T_{\gamma(n)} M$ and parallel transport it along the geodesic $\gamma:[a, b] \rightarrow M$ to obtain $V(t)=P_{t} v$ with $V(0)=v$ and $\frac{D V}{d t} \equiv 0$. Note that V is the variational vector field of $y_{s}(t)=\exp _{\gamma(t)} s \cdot V(t)$. Moreover, $\frac{D V}{d s} \equiv 0$ because $s\left(\rightarrow \gamma_{s}(t)\right.$ are geodesics. Then:

$$
\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{s=0}(V, V)=-\int_{a}^{b} g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t
$$

i.e., $\gamma_{s}(t)$ for $0<|s|<\varepsilon$ has $\begin{cases}E\left(\gamma_{s}\right)>E(\gamma) & \text { if } \sec <0 \\ E\left(\gamma_{s}\right)<E(\gamma) & \text { if } \sec >0 \text {. }\end{cases}$

$\sec <0$

$\sec >0$

Jacobi fields in constant currative: if $\sec \equiv k$, then $R(X, Y) Z=k(\langle Y, Z\rangle X-\langle X, Z\rangle Y)$ Let $\gamma:[0, L] \rightarrow M$ be a unit speed geodexc, set $e_{1}=\dot{\gamma}(0)$ and complete it to an o.n.b. $\left\{e_{i}\right\}_{i=1}^{n}$ of $T_{\gamma(0)} M$; set $E_{i}(t)=P_{t} e_{i}$ to be their parallel trans along γ.

$$
\begin{aligned}
& \sum_{i=1}^{n} f_{i}^{\prime \prime}(t) E_{i}(t)+k f_{i} E_{i}(t)=0 \\
& f_{i}^{\prime \prime}(t)+k f_{i}(t)=0 \quad \text { for all } i=2, \sum_{j \neq 1}, n .
\end{aligned}
$$

Thus, if $J(0)=0$ and $J^{\prime}(0)=e_{j}$, then $J(t)=s n_{k}(t) \cdot E_{j}(t)$ for all $t \in[0, L]$, where $s n_{k}(t)$ is the solution to $\left\{\begin{array}{l}s n_{k}^{\prime \prime}+s u_{k}=0 \\ s n_{k}(0)=0, s n_{k}^{\prime}(0)=1 .\end{array}\right.$
Note: if $k \leq 0$, then $s n_{k}(t)>0$ for all $t>0$. No conjugate

$$
s n_{k}(t)=\left\{\begin{array}{l}
\frac{1}{\sqrt{k}} \sin t \sqrt{k}, k>0 \\
t, k=0 \\
\frac{1}{\sqrt{-k}} \sin t \sqrt{-k}, k<0
\end{array}\right.
$$

if $k>0$, then $s n_{k}(t)>0$ for $t \in(0, \pi / \sqrt{k})$, and $s n_{k}(\pi / \sqrt{k})=0$. conjgatece point at distance π / \sqrt{k}.
Note: A unit speed geodenc $\gamma_{:}[0, L] \rightarrow S^{n}(1 / \sqrt{k})$ is not minimizing if $L>\pi / \sqrt{k}$. Indeed, geoderics cannot be minimizing after passing the first conjugate point:
Thu. If $\gamma:[0, L] \rightarrow M$ is a unit speed geodesic and $O<c<L$ is s.t. $\gamma(c)$ is conjugate to $\gamma(0)$ along γ, then $\gamma:[0, L] \rightarrow M$ is not minimizing.
DP. Let $J:[0, L] \rightarrow$ TM be a Jacobi field along γ with $J(0)=0$ and $J(c)=0$.

$$
\begin{aligned}
& J(t)=\sum_{i=1}^{n} f_{i}(t) E_{i}(t) \text { is a Jacobi field } w / J(0), J^{\prime}(0) \perp \dot{\gamma}(0) \underset{=s p a n\left\{\varepsilon_{2}, \ln \right\}}{ }
\end{aligned}
$$

Define $V:[0, L] \rightarrow T M$ as follows:

$$
V(t)=\left\{\begin{array}{lll}
J(t)+\varepsilon W(t) & \text { if } & t \in[0, c] \\
\varepsilon W(t) & \text { if } & t \in[c, L]
\end{array}\right.
$$

Note. V^{\prime} is not continuous at $t=c$, so V is differentiable but not C?
Then let $\gamma_{s}(t)=\exp _{\gamma(t)} s V(t)$ be a variation of γ with variational field V. Note that $\frac{D V}{d s} \equiv 0$, and $\gamma_{s}(t)$ has fixed endpoints. So:

$$
\begin{aligned}
& \left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{S=0}(V, V)=\left.g\left(\frac{D V}{d s}, \dot{\gamma}\right)\right|_{0} ^{\boldsymbol{N}^{0}}+\int_{0}^{L} g\left(\frac{D V}{d t}, \frac{D V}{d t}\right)+g(R(V, \dot{\gamma}) V, \dot{\gamma}) d t \\
& =\left(\int_{0}^{c} g\left(V^{\prime}, V^{\prime}\right)-g(R(V, \dot{\gamma} \mid \dot{\gamma}, V) d t)+\left(\int_{c}^{L} g\left(V^{\prime}, V^{\prime}\right)-g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t\right)\right. \\
& \text { iwt.by parts }\left.\quad \stackrel{2}{=} g\left(V^{\prime}, V\right)\right|_{0} ^{c}-\int_{0}^{c} g\left(V^{\prime \prime}+R(V, \dot{\gamma}) \dot{\gamma}, V\right) d t \\
& \text { within }(0, c) \text { and } \\
& (c, L) \text { the vector } \\
& \text { field } V \text { is smith, } \\
& \text { Scan internode by } \\
& +\varepsilon^{2}\left(\left.g\left(W^{\prime}, W\right)\right|_{c} ^{L}-\int_{c}^{L} g\left(W^{\prime \prime}+R(W, \dot{\gamma}) \dot{\gamma}, W\right) d t\right) \\
& =g\left(J^{\prime}(c)+\varepsilon W^{\prime}(c), \underset{ }{\prime \prime}(c)\right)+O\left(\varepsilon^{2}\right) \\
& =-\varepsilon\left\|J^{\prime}(c)\right\|^{2}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

so for $\varepsilon>0$ and $s \neq 0$ sufficiently small, we have $E\left(\gamma_{s}\right)<E(\gamma)$, and hence $\gamma:[0, L] \rightarrow M$ is not minimizing (for E hence for L).
Rok: Passing a conjugate point is not the only way in which a geodesic stops being minimizing; the other possibility (nonexclusive)
is that there exists another geoderic with same lagth add is that there exists another geoderic with same laugh and endpoints
(e-9.) think of closed geodesics on manifolds with sec ≤ 0 sea (e.g.) think of closed geoderica on manifolds with $\sec \leq 0$, see p.4).

Rok: Using ODE comparison theorems, one can show that if (Mig) has $\overline{s e c} \geqslant K$, then conjugate prints along geodesics in (M, g) arise foster than along geoderics in $S^{n}(1 / \sqrt{k})$. This yields an alternative proof of the next result (Myers theorem)

Def: $\operatorname{diam}(M, g)=\sup \{d(p, q): p, q \in M\}$ is the diameter of (M, g). From basic topology, dian $(M, \delta)<\infty \Longleftrightarrow M$ is compar.
-Later on, we will show that a weather curvature bound ($R_{i c} \geqslant K>0$) is enough.
Thu (Myers, 1941). If $\left(M_{1}^{n} g\right)$ is a complete manifold with $\mathrm{sec} \geqslant k>0$, then it has $\operatorname{dicam}(M, g) \leq \pi / \sqrt{k}$. In particular, it is compact and $\pi_{g} M$ is finite.

Pf: Let $p, q \in M$ and let $\gamma:[0, L] \rightarrow M$ be a unit speed minimizing geodesic with $\gamma(0)=p \quad \gamma(L)=q$. Since γ i minimizing for all variations γ_{s} of γ with fixed endpoints, $\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{s=0} \geqslant 0$. Let $v \in T_{p} M$ with $\|v\|=1$ and $\langle\dot{\gamma}(0), v\rangle=0$, set

Clearly, $V(0)=0, \quad V(L)=0$, and $V^{\prime}(t)=\frac{\pi}{L} \cos \left(\frac{\pi t}{L}\right) P_{t} V, \quad V^{\prime \prime}(t)=-\frac{\pi^{2}}{L^{2}} \sin \left(\frac{\pi t}{L}\right) P_{t} v$. Then $\gamma_{s}(t)=\exp _{\gamma(t)} s V(t)$ is a variation of γ with fixed endpoints, hence:

$$
\begin{aligned}
0 \leq\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{s=0}(V, V)= & \left.g\left(\frac{D V}{d s} / \dot{\gamma}\right)\right|_{0} ^{L}+\left.g\left(\frac{D V}{d t} / V\right)\right|_{0} ^{L} \\
& \quad-\int_{0}^{L} g\left(\frac{D^{2} V}{d t^{2}}, V\right)+g(R(V, \dot{\gamma}) \dot{\gamma}, V) d t \\
= & -\int_{0}^{L}\left(-\frac{\pi^{2}}{L^{2}} \sin \left(\frac{\pi t}{L}\right)^{2}\left\|P_{t}\right\| \|^{2}+\sin \left(\frac{\pi t}{L}\right)^{2} g\left(R\left(P_{t} V, \dot{\gamma}\right) \dot{\gamma}, P_{t} V\right)\right) d t \\
= & \int_{0}^{L} \sin \left(\frac{\pi t}{L}\right)^{2}(\frac{\pi^{2}}{L^{2}}-\underbrace{\sec \left(P_{t} V \wedge \dot{\gamma}\right)}_{\geqslant k}) d t \\
\leq & \left(\frac{\pi^{2}}{L^{2}}-k\right) \int_{0}^{L} \sin \left(\frac{\pi t}{L}\right)^{2} d t
\end{aligned}
$$

Thus, $\frac{\pi^{2}}{L^{2}}-k \geqslant 0$, ie., $L \leq \frac{\pi}{\sqrt{k}}$. It follows that $d(p, q) \leq \frac{\pi}{\sqrt{k}}$ for all $p, q \in M$ hence $\operatorname{diam}(M, g) \leqslant \frac{\pi}{\sqrt{k}}$ and hence M is compact. If $\pi: \tilde{M} \rightarrow M$ is the universal covering, then by the same argument $\left(\mathbb{M}, \pi^{*} g\right)$ is compact, so $\pi_{1} M$ is fruits.

Lecture $14 \quad 3 / 20 / 2024$
Ricei curvature: Let $v \in T_{p} M$ and $\left\{e_{1}, \ldots, e_{n-1}\right\}$ be an o.n.b. of v^{\perp}; so that $\left\{e_{1}, \int_{n-1}, v\right\}$ is an o.n.b. of TM. Then

$$
\operatorname{Ric}(v, v)=\sum_{i=1}^{n-1}\left\langle R\left(e_{i}, v\right) v, e_{i}\right\rangle \pi \begin{aligned}
& \text { if }|v|=1 \text {, then this } \\
& \text { is } \quad \sec \left(v e_{i}\right)
\end{aligned}
$$

The above quadratic form defines, vie polarization, a bilinear symmetric form

$$
\operatorname{Ric}(v, w)=\sum_{i=1}^{n}\left\langle R\left(e_{i}, v\right) w, e_{i}\right\rangle=\operatorname{tr}(x \mapsto R(x, v) w)
$$

which is represented by a symmetry endoworpllism $R_{i c}: T_{p} M \rightarrow T_{p} M$, s.t.

$$
\operatorname{Ric}(v, w)=g(\operatorname{Ric}(v), w)
$$

All of the above are referred to as "Rici curvature." (For us, usually I mean $\left.\begin{array}{c}\text { Pic: } T M \times T M \rightarrow \mathbb{R}\end{array}\right)$
Scalar curvature: \quad scal $=$ tr $R_{i c}=\sum_{i=1}^{n} \operatorname{Ric}\left(e_{i}, e_{i}\right)$ for $\left\{e_{i}\right\}$ o.n.b. of $G M$.

Seal: $M \rightarrow \mathbb{R}$ is a function.

$$
=\sum_{i, j=1}^{n}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right\rangle=2 \operatorname{tr}\left(R: \Lambda^{2} T M \rightarrow \Lambda^{2} T M\right)
$$

Both 〈R(einej), eire ${ }_{j}$) and $\left\langle R\left(e_{j} \wedge e_{i}\right), e_{j} \wedge e_{i}\right\rangle$ appear in seel; bot only one appears in tr R.
Def: The metric g is celled Einstein, with Einstein constant λ if $R_{i c}=\lambda \cdot g$.

Note: If g is Einstein, then $s_{c o l}^{g}=\operatorname{tr} R_{i c}=\operatorname{tr} \lambda \cdot g=\lambda \cdot n$.
If (M, g) has sec $\equiv K_{1}$ then $R_{i c}=k(n-1) \cdot g$, so it is Einstein, seel $=n(n-1) K$.
Often write $A \geqslant b$ to mean $A \geqslant b$. Id where $b \in \mathbb{R}$.
Note: Inequality between symmetric teasers $A \geqslant B$ means $g(A v v) \geqslant g(B v, v), \forall v$, e.g., $R_{i c} \geqslant g$, often written $R_{i c} \geqslant 1$, means $R_{i c}(v, v) \geqslant g(v, v)$ for all v.

Clearly, $\sec \geqslant k \Longrightarrow R_{i c} \geqslant(n-1) k \cdot g \Longrightarrow \operatorname{scal} \geqslant n(n-1) \cdot k$, same for \leq This havpotheris how The was
stated earlier stated earlier!
Thy $(M y e r s, 1941)$. If $\left(M_{1}^{n} g\right)$ is a complete manifold with $R_{i c} \geqslant k(n-1) \cdot g$, then it has $\operatorname{diam}(M, g) \leq \pi / \sqrt{k}$. In particular, it is compact and $\pi_{g} M$ is finite.

P1: Let $p, q \in M$ and let $\gamma:[0, L] \rightarrow M$ be a unit speed minimizing geodesic with $\gamma(0)=p \quad \gamma(L)=q$. Since γ is minimizing for all variations γ_{s} of γ with fixed endpoints, $\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}\right)\right|_{s=0} \geqslant 0$. Let $\left\{e_{i}\right\}$ be an o.n.b. of $\dot{\gamma}(0)^{\perp} \subset T_{\gamma(0)} M$, set

$$
V_{i}(t)=\sin \left(\frac{\pi t}{L}\right) \cdot P_{t} e_{i} \quad \begin{aligned}
& \text { parable transport } \quad e_{i} \in T_{p(0)} M \\
& \text { and } g\left(P_{t}, \dot{j}, \dot{\gamma}(t)\right)=0
\end{aligned}
$$

Clearly, $V_{i}(0)=0, \quad V_{i}(L)=0$, and $V_{i}^{\prime}(t)=\frac{\pi}{L} \cos \left(\frac{\pi t}{L}\right) P_{t} e_{i}, \quad V_{i}^{\prime \prime}(t)=-\frac{\pi^{2}}{L^{2}} \sin \left(\frac{\pi t}{L}\right) P_{t} e_{i}$ Then $\gamma_{s}^{i}(t)=\exp _{\gamma(t)} s V_{i}(t)$ is a variation of γ with fixed endpoints, hence:

$$
\begin{aligned}
0 \leq\left.\frac{d^{2}}{d s^{2}} E\left(\gamma_{s}^{\dot{i}}\right)\right|_{s=0}\left(V_{i 1} V_{i}\right)= & \left.g\left(\frac{D V_{i}}{d s} / \dot{\gamma}\right)\right|_{0} ^{L}+\left.g\left(\frac{D V_{i}}{d t}, V_{i}\right)\right|_{0} ^{L} \\
& -\int_{0}^{L} g\left(\frac{D^{2} V_{i}^{0}}{d t^{2}}, V_{i}\right)+g\left(R\left(V_{i}, \dot{\gamma}\right) \dot{\gamma}, V_{i}\right) d t \\
= & -\int_{0}^{L}\left(-\frac{\pi^{2}}{L^{2}} \sin \left(\frac{\pi t}{L}\right)^{2}\left\|P_{t} e_{i}\right\|^{2}+\sin \left(\frac{\pi t}{L}\right)^{2} g\left(R\left(P_{t} e_{i}, \dot{\gamma}\right) \dot{\gamma}_{,}, P_{t} e_{i}\right)\right) d t \\
= & \int_{0}^{L} \sin \left(\frac{\pi t}{L}\right)^{2}\left(\frac{\pi^{2}}{L^{2}}-\sec \left(P_{t} e_{i} \wedge \dot{\gamma}\right)\right) d t
\end{aligned}
$$

Add over $i=1, \ldots, x-1$ to get:

$$
\begin{aligned}
& \text { Add over } i=1, \ldots, n-1 \text { to get: } \\
& \begin{aligned}
& 0 \leq \sum_{i=1}^{n-1} \frac{d^{2}}{d s^{2}} E\left(\gamma^{i}\right) \\
&\left.\right|_{s=0}\left(V_{i}, V_{i}\right)=\sum_{i=1}^{n-1} \int_{0}^{L} \sin \left(\frac{\pi t}{L}\right)^{2}\left(\frac{\pi^{2}}{L^{2}}-\sec \left(P_{t} e_{i} A \dot{\gamma}\right)\right) d t \\
&=\int_{0}^{L} \sin \left(\frac{\pi t}{L}\right)^{2}((n-1) \frac{\pi^{2}}{L^{2}}-\underbrace{\left.\sum_{i=1}^{n-1} \sec \left(P_{t} e_{i} \wedge \dot{\gamma}\right)\right)}_{=\operatorname{Ric}(\dot{\gamma}, \dot{\gamma})} \geqslant(n \\
& \leq(n-1)\left(\frac{\pi^{2}}{L^{2}}-k\right) \int_{0}^{L} \sin \left(\frac{\pi t}{L}\right)^{2} d t .
\end{aligned}
\end{aligned}
$$

Thus, $\frac{\pi^{2}}{L^{2}}-k \geqslant 0$, i.e., $L \leq \frac{\pi}{\sqrt{k}}$. It follows that $d(p, q) \leq \frac{\pi}{\sqrt{k}}$ for all $p, q \in M$ hence $\operatorname{diam}(M, g) \leqslant \frac{\pi}{\sqrt{k}}$ and hence M is compact. If $\pi: \tilde{M} \rightarrow M$ is the universal covering, then by the same argument $\left(\mathbb{M}, \pi^{*} g\right)$ is compact, so $\pi_{1} M$ is fructe.
Exi $S^{n} \times S^{1}$ does not admit a metric with Tic >0.
(If it did, then it would hove $R_{i c} \geqslant k>0$ by compactness, contradicting $\left|\pi_{1}\right|=+\infty$).

Note: $S^{n} \times S^{1}$ admits metrics with scal>0. Indeed, for a product metric, $\left(M_{1 \times} \times M_{2}, g_{1} \oplus g_{2}\right)$ has $s c a g_{g_{1} \oplus g_{2}}=s c a l_{g_{1}}+\delta c a l g_{g_{2}}$, so the product metric $g_{s^{n}} \oplus d \theta^{2}$ hos $\quad s c a l=\operatorname{scalg}_{s^{n}}=n(n-1)$.
Upshot: $\left|\pi_{1}\right|=+\infty$ detects non existence of metros with $R_{i c}>0$; and can be used to distinguish the classes of closed manifolds that abut metrics with scal>0 and Ric>0. However, we hove the following:
Open Problecn: Does there exist a closed simply-connedted manifold M that admits metrics with sal >0 but does not admit metrics with Tic >0 ?

Issue: Lack of known topological obstructions to $R_{i c}>0$ besides $\left|\pi_{1}\right|=+\infty$.
On the other hand, using h-principle teclimiques, it is known that there ore no topological obstructions to $\mathrm{Ric}<0$:
Thu (Lohkamp, Annals of Math 1994). Every maniple $M^{n}, n \geqslant 3$, admits a counplete metric with $\operatorname{Ric}<0$.

Even more: for any metric g on M, and $C>0, \varepsilon>0$, there is
a metric g^{\prime} on M with $R_{c c_{g^{\prime}}} \leq-C$ and $\left\|g-g^{\prime}\right\|_{C^{0}}<\varepsilon$..
In particular, abo sal <0 is topologically unobstructed. In fact, using PDE one can show that every manifold admits a complete metric with scal $\equiv-1$. However, $\mathrm{Scal}>\mathrm{O}$ is topologically obstructed (this is a very active research area!)
Thu (Lichnerowicr, 1963). If $\left(M^{n}, g\right)$ is a closed Rem. spin mfld with sal >0, then $\hat{A}(M)=0$.
Ex: $M^{4}:=\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \in \mathbb{C} P^{3} \mid x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0\right\}$ is a smooth closed spin 4 -meld with $\hat{A}(M) \neq 0$, therefore it does not admit Riem. metrics with sal >0.
The results above are best suited for a second course in Riem. geometry...
Lecture 15 3/22/2024
Back to the (relatively classical) world of sectional curvature:
Lemma. If $P: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ is a linear isometry, ie. $P \in O(n-1)$, and $\operatorname{det} P=(-1)^{n}$, then 1 is an eigenvalue of P; so $\exists v \in \mathbb{R}^{n-1}, \quad v \neq 0, \quad P v=v$.
Pf. If n is even, then the characteristic polynomial $\operatorname{det}(P-\lambda I d)$ has odd degree $n-1$, and real corf., so P has some red eigenvalues. Since P is orthogonal they are ± 1. The product of complex
eigenvalues is $\geqslant 0$ since they come in conjugate pairs: $(\alpha+\beta i)\left(\alpha-\beta_{i}\right)=\alpha^{2}+\beta^{2}$, and $\operatorname{det} P=1$, so at least one of the real eigenvalues is +1 .
If n is odd, then $\operatorname{det} P=-1$, and as the product of calx eigenvalues is $\geqslant 0$, there's a positive even number of real eigenvalues, so at lest one is +1 .
Run. By the Max. Tors Thu, $\forall P \in O(n-1), \exists U \in O(n-1)$ sit.

Thu. (Weinstein). Let $\left(M^{n}, g\right)$ be an oriented closed Riem. mild with sec >0, and $\varphi: M \rightarrow M$ an isometry that preserves orientation if x is even, reverses if x is odd. Then φ has a fixed point.
Pl. Suppose $\varphi(x) \neq x, \forall x \in M$ and let $p \in M$ be st. $\operatorname{distg}(p, \varphi(p))=\min _{x \in M}\left\{\operatorname{chistg}^{\prime}(x, \varphi(x))\right\}$. Let $\gamma:[\rho, L] \rightarrow M$ be a minimizing geod. from $p=\gamma(0)$ to $\varphi(p)=\gamma(L)$. Let

where P_{t}^{-1} is the parallel transp. along γ from $\varphi(\rho)=\gamma(L)$ back to $p=\gamma(0)$.
Claim. $(\varphi \circ \gamma)^{\prime}(0)=\gamma^{\prime}(L)$.
Consider $\varphi \cdot \gamma:[0, L] \rightarrow M$, which is
a geodetic form $\varphi(p)$ to $\varphi(\varphi(p)$). Given $t \in(0, L)$,

As p was chosen to miminnize displacement by φ,

$$
\operatorname{diot}(\gamma(t), \varphi(\gamma(t)) \geqslant \operatorname{dist} g(p, \varphi(p))
$$

hence equality holds. From equality in \circledast, it follows that $\gamma([0,1]) \cup \varphi(\gamma[[0,1]))$ is a minimizing curve (ie., distances ore achieved along that curve), so it is a geodenc. This it is smooth at $\varphi(8)$, proving the claim.

Thus $\bar{P} \dot{\gamma}(0)=P_{t}^{-1} d \varphi(p) \gamma^{\prime}(0)=P_{t}^{-1}(\varphi \cdot \gamma)^{\prime}(0)=P_{t}^{-1} \dot{\gamma}(L)=\dot{\gamma}(0)$; so \bar{P} fixes $\dot{\gamma}(0) \in T_{p} M$. Moreover, $P_{i}=\left(\bar{P} \mid \dot{\gamma}(0)^{\perp}\right): \dot{\gamma}(0)^{\perp} \rightarrow \dot{\gamma}(0)^{\perp}$ is an isometry of $\dot{\gamma}(0)^{\perp} \subset T_{p} M$, and since $\bar{P} \dot{\gamma}(0)=\dot{\gamma}(0)$, we have $\operatorname{det} P=\operatorname{det} \bar{P}=\operatorname{det}\left(P_{t}^{-1} \circ \operatorname{d\varphi }(p)\right)=(-1)^{n}$. By the Lemme, $\exists v \in \dot{\gamma}(0)^{\perp}, \quad v \neq 0$, s.t. $P v=v$.
Let $V(t)=P_{t} V$ be the porellel transport of $V \in T_{P} M$ along $\gamma:[0, L] \rightarrow M$, note that $g(V(t), \dot{\gamma}(t))=0$ and $d \varphi(p) V(0)=V(L)$.
Then $\gamma_{s}(t)=\exp _{\gamma(t)} S V(t)$ is a variation by
 geodesics sit.

$\gamma_{0}(L)$

$$
\gamma_{s}(L)=\exp _{\varphi(p)} s V(L) \stackrel{\downarrow}{=} \varphi\left(\gamma_{s}(0)\right)
$$

since $s \mapsto \varphi(\gamma s(0))$ is a geod. with $\left\{\begin{array}{l}\varphi\left(\gamma_{0}(0)\right)=\varphi(p) \\ \frac{d}{d s} \varphi(\gamma s(0))=d \varphi_{p} v(0)=V(L) \text {. }\end{array}\right.$
and, $\left.\quad \frac{d^{2}}{d s^{2}} E(\gamma s)\right|_{s=0}(V, V)=\left.g\left(\frac{D V}{d s} / \dot{\gamma}\right)\right|_{0} ^{b}+\int_{a}^{b}\left\|\frac{D V}{d t}\right\|^{2}-\underbrace{g(R(V, \dot{\gamma}) \dot{\gamma}, V)}_{>0} d t$ sec $>0<0$;
contradicting the choice of p, which yields $s=0$ is a minimum for $s \mapsto \operatorname{dist}_{g}\left(\gamma_{s}(0), \varphi\left(\gamma_{s}(0)\right)\right)$.
As a corollary, we recover:
Thu (Synge, 1936). Let $\left(M^{n}, g\right)$ be a closed manifold with sec >0.
(i) If n is even and M is orientable, then $\pi_{1} M=\{1\}$,
M is non-orienteble, then $\pi_{1} M \cong \mathbb{Z}_{2}$.
(ii) If n is odd, then M is orientable. Note: $\pi_{1} M$ can be arbitrarily loge, ecg., lens space $S^{3} / 2 z_{p}$ has sec >0.
Pl. Since M^{n} is closed, $\sec \geqslant k>0$. Let $\pi: \widetilde{M}^{n} \longrightarrow M^{n}$ be the universal cover, and $\tilde{g}=\pi^{*} g$. Then $\left(\tilde{M}^{n}, \tilde{\jmath}\right)$ also has $\sec \geqslant k>0$.
(i) Assume M^{n} is orientoble, and endow \tilde{M}^{n} with a compatible orientation.

Then any deck transformation $\varphi: \tilde{M}^{n} \rightarrow \tilde{M}^{n}$ preserves orientation and hence has a fixed point by Wernstein's Thu, hence $\varphi=i d$ and thus $\tilde{M}=M$ is simply-connected. If M is non-orjantoble, apply previous argument to its orientable double-cover to conclude it is \vec{M}^{\prime} and hence $\pi_{1} M \cong \mathbb{Z}_{2}$.
(ii) If M^{n} is non-orientable, then $\exists \varphi: \bar{M} \rightarrow \bar{M}$ an oriantation-reversing isometry of the orientable double-cover $\bar{M} \rightarrow M$. By Wainstein's Theorem, φ has a fixed point, hence $\varphi=i d$, contradicting that φ is orientation-veversing.
Alternatively, the above can be proven with the second variation of energy and the following result:
Prop. If $\left(M^{n}, 8\right)$ is a closed Rem. mfld, then every nontrivial free homotopy class in M is represented by a closed geodesic that has least length among curves in its free homotopy class.

Pf of Synge: (i) Suppose M is oriented, dim Miseven.
Given a nontrivial element in $\pi_{1} M$, let γ be a closed geodesic with least length
 that represents that free momotoply class. The parallel trouspart along γ gives an orientation-preserving linear isometry $P_{t}: \dot{\gamma}(0)^{\perp} \rightarrow \dot{\gamma}(L)^{\perp}$, which (by Lemma) has a fixed vector $v \in \dot{\gamma}(0)^{\perp}$

$$
\text { let } \gamma_{s}(t)=\exp _{\gamma(t)} s P_{t} V
$$

Then, as $V=\left.\frac{d}{d s} \gamma_{s}(t)\right|_{s=0}=P_{t} v$ hos $\left.\frac{D V}{d t}\right|_{s=0} \equiv 0$, and $\frac{D V}{d s} \equiv 0$, we obtain a contradiction:
γ is loci.

So $\pi_{1} M=\{1\}$. If M is non-orientable, apply the dove to its oriented double-cover to conclude that is its universal cover hence $\pi_{1} M \cong \mathbb{Z}_{2}$.
(ii) Exercise.

Lecture $16 \quad 3 / 27 / 2024$
Subuaniffld Geometry
Let $i: M \longrightarrow(\bar{M}, \bar{g})$ be an immersion, endow M with $g=i^{*} \bar{g}$.
$\bar{\nabla}$: Levi-Civita connection of $(\bar{M}, \bar{g})\}$ Clearly these need not be the ∇ : Levi-Civita connection of $(M, g)\left\{\begin{array}{l}\text { same: e.g. geodesics on } S^{n} \subset \mathbb{R}^{n+1} \\ \text { ore not straight bines in } \mathbb{R}^{n+1} \text { ! }\end{array}\right.$ Henceforth, we often treat i as an inclusion $M \subset \bar{M}$ and write

$$
\begin{aligned}
T_{p} \bar{M} & =T_{p} M \oplus T_{p} M^{\perp} \\
X & =X^{\top}+X^{\perp}
\end{aligned}
$$

Let $U \ni p$ be a small neighborhood of $p \in M$. Given vector fields $X, Y \in \mathcal{X}(U)$, there exist (many) extensions \bar{X}, \bar{Y} to vector fields on $\bar{U} \ni p$; where $\bar{U} \subset \bar{M}$ is a neighborhood of $p \in \bar{M}$ st. $U=\bar{U} \cap M$. There is od-fashioned terminology that stock; the "first fundemenite form" is just $g=i^{*} \bar{g}$
Def. The second fundamental form of $M \hookrightarrow \bar{M}$ is II: $T M \times T M \rightarrow T M^{\perp}$, given by

$$
\bar{I}(x, y)=\left(\bar{\nabla}_{\bar{X}} \bar{y}\right)^{\perp}
$$

Note. II is well-defined, ie., independent of choice of extension of X, Y, tensorial, and symmetric. Indeed,

$$
\begin{aligned}
\mathbb{I}(x, y)-\mathbb{I}(y, x) & =\left(\bar{\nabla}_{\bar{x}} \bar{y}\right)^{\perp}-\left(\bar{\nabla}_{\bar{y}} \bar{x}\right)^{\perp} \\
& =\left(\bar{\nabla}_{\bar{x}} \bar{y}-\bar{\nabla}_{\bar{y}} \bar{x}\right)^{\perp}=\left[\bar{x}_{1} \bar{y}\right]^{\perp}
\end{aligned}
$$

But along $M \subset \bar{M}$, the vector fields \bar{X}, \bar{Y} are tangent to M, hance so is their bracket, so the above voushes (along M); ie.

$$
\mathbb{I}(X, Y)=\mathbb{I}(Y, X) \quad \forall X_{1} y \in T M
$$

Since $\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)_{p}$ only depends on $\bar{X}_{p}=X_{p}$, it is independent of the extension chosen for X, and $C^{\infty}(M)$ - linear in X. By symmetry, same for Y.
$\operatorname{Prop} \cdot\left(\bar{\nabla}_{\bar{x}} \bar{y}\right)_{M}=\nabla_{x} y+\mathbb{I}(x, y)$, for any extennown $\bar{X} . \bar{Y}$ of X, Y.
If. Since $\mathbb{I}(x, y)=\left(\bar{\nabla}_{\bar{x}} \bar{y}\right)^{\perp}$, it suffices to show $\nabla_{x} y=\left(\bar{\nabla}_{\bar{x}} \bar{y}\right)^{\top}$. Both are torsion-free connections on M compatible with g, hence agree by the uniqueness of the Levi-Civite connection on (Mg).
Def: Given $\vec{u} \in T M^{\perp}$ a normal vector field, the symmetric linear mop
 called the Shape operator (or weingarten operation) of M in direction \vec{u}.
Prop. $S_{\vec{n}}(x)=-\left(\bar{\nabla}_{x} \vec{n}\right)^{\top}$
Pl. $0=\bar{X}(\bar{g}(\vec{n}, \bar{y}))=\bar{g}\left(\bar{\nabla}_{\bar{X}} \vec{n}, \bar{y}\right)+\bar{g}\left(\vec{n}, \bar{\nabla}_{\bar{x}} \bar{y}\right)$

$$
\begin{aligned}
& =\bar{g}\left(\bar{\nabla}_{\bar{x}} \vec{n}, \bar{y}\right)+\bar{g}(\vec{n}, \mathbb{I}(x, y)) \\
& =\bar{g}\left(\bar{\nabla}_{\bar{x}} \vec{n}, \bar{y}\right)+\bar{g}\left(S_{\vec{n}} X, Y\right)
\end{aligned}
$$

for all $Y \in T M$, so, along M, we have $\left(\bar{\nabla}_{\bar{x}} \vec{n}+S_{\vec{n}} X\right)^{\top} \equiv 0$, ie. $S_{\vec{n}} X=-\left(\bar{\nabla}_{\bar{X}} \vec{n}\right)^{T}$.
The. (Gauss Equation). The difference between ambient and intrinsic curvature is: $\bar{g}(\bar{R}(\bar{X}, \bar{Y}) \bar{z}, \bar{\omega})-g(R(X, Y) Z, \omega)=g(\mathbb{I}(X, Z), \mathbb{I}(Y, \omega))-g(\mathbb{I}(X, \omega), \mathbb{I}(Y, Z))$
P!: $\bar{g}(\bar{R}(\bar{x}, \bar{y}) \bar{z}, \bar{\omega})=\bar{g}\left(\bar{\nabla}_{\bar{x}} \bar{\nabla}_{\bar{y}} \bar{z}-\bar{\nabla}_{\bar{y}} \bar{\nabla}_{\bar{x}} \bar{z}-\bar{\nabla}_{[\bar{x}, \bar{q}]} \bar{z}, \bar{\omega}\right)$

$$
\begin{aligned}
& =\bar{g}\left(\bar{\nabla}_{\bar{x}}\left(\overline{\nabla_{y} z}+\overline{\mathbb{I}(y, z)}\right)-\bar{\nabla}_{\bar{y}}\left(\overline{\nabla_{x} z}+\overline{\mathbb{I}(x, z)}\right)-\bar{\nabla}_{[\bar{x}, \bar{y}]} \bar{z}, \bar{\omega}\right) \\
& =\bar{g}\left(\bar{\nabla}_{\bar{x}} \overline{\nabla_{y} z}-S_{\mathbb{I}(y, z)} x-\bar{\nabla}_{\bar{y}} \bar{\nabla}_{x} z+S_{\mathbb{I}(x, z)} y-\bar{\nabla}_{[\bar{x}, \bar{y}]} \bar{z}, \bar{\omega}\right)
\end{aligned}
$$

Since $\bar{w} \in T M$, we can get rid of any normal components:

$$
\begin{aligned}
& \left(\overline{\nabla_{\bar{x}}} \overline{\nabla_{y} z}\right)^{\top}=\nabla_{x} \nabla_{y} z, \quad\left(\bar{\nabla}_{[\bar{x}, \bar{y}]} \bar{z}\right)^{\top}=\nabla_{[x, y]} Z, \text { etc., so: } \\
& \because=g\left(\nabla_{x} \nabla_{y} z-\nabla_{y} \nabla_{x} z-\nabla_{[x, y]} z, \omega\right)+g\left(S_{\mathbb{I}(x, z)} y, \omega\right)-g\left(S_{\mathbb{I}(y, z)} X, \omega\right) \\
& =g\left(R\left(x_{y}, y\right) z, \omega\right)+g(\mathbb{I}(x, z), \mathbb{I}(y, \omega))-g(\mathbb{I}(X, \omega), \mathbb{I}(y, z))
\end{aligned}
$$

Cor: If X, Y are orthonormal, then

$$
\overline{\sec }(x, y)-\sec (x, y)=\|\mathbb{I}(x, y)\|^{2}-g(\mathbb{I}(x, x), \mathbb{I}(y, y)) .
$$

Def. $M \hookrightarrow \bar{M}$ is totally geoderic if every geodenc in M is geodesic in \bar{M}.
Prop: $M \hookrightarrow \bar{M}$ is totally geodesic if and only if $I I \equiv 0$.
Pl. If $I \equiv 0$, then Levi-Civita connections of \bar{M} and M agree hence so do their geodesics. Conversely, if M is tot. geod., then let $p \in M, v \in T_{\rho} M$, and $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ be the geodeni in M (and M) st. $\gamma(0)=p, \dot{\gamma}(0)=r$. Then since $\underbrace{\bar{\nabla}_{\dot{\gamma}} \dot{\gamma}}_{=0}=\underbrace{\nabla_{\dot{\gamma}} \dot{\gamma}}_{=0}+\mathbb{I}(\dot{\gamma}, \dot{\gamma})$, we hove $\mathbb{I}(v, v)=0$. As r is arbitrary, $\mathbb{I} \equiv 0$.

Cor: If $M \hookrightarrow \bar{M}$ is totally geodesic, then ambient and intrinsic curvatures agree.
Ex: If $M \subset \bar{M}$ is a hypersurface, ie. $\operatorname{dim} \bar{M}=\operatorname{dim} M+1$, and two-sided (ie, transversely oriented), ie. $T M^{\perp}$ is trivial, then let $\vec{n} \in T M^{\perp}$ be a unit normal to M and note $\mathbb{I I}(x, y)=\underbrace{h(X, Y)} \cdot \vec{n}$, so $g\left(S_{n} X, Y\right)=h(X, Y)$.
Ex: Round sphere i: $S^{n}(r) \hookrightarrow \mathbb{R}^{n+1}$ of radius sailor $r>0$, with $\vec{n}(x)=-\frac{x}{r}$. Then $S_{\vec{n}}(X)=-\bar{\nabla}_{\bar{X}} \vec{n}^{\top}=\frac{1}{r} X$ so $h(X, Y)=\frac{1}{r}\langle X, Y\rangle$ and we recover:

$$
\begin{aligned}
g(R(X, Y) Z, \omega) & =-g(\mathbb{I}(X, Z), \mathbb{I}(Y, \omega))+g(\mathbb{I}(X, \omega), \mathbb{I}(y, Z)) \\
& =\frac{1}{r^{2}}(\langle X, \omega\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, \omega\rangle), \text { re. } \sec \equiv \frac{1}{r^{2}}
\end{aligned}
$$

Ex: What are the totally geoderic submanfolds of \mathbb{S}^{n} ? (this is e $\begin{aligned} & \text { great circe } \\ & \text { in }\end{aligned}$. If $\Sigma^{k} \subset S^{n}$ is tot. geod; let $p \in \Sigma$ and $v \in T_{p} \sum$. Then $\exp _{p} t v \in \Sigma$ for all $t \in \mathbb{R}$, so \sum contains a tot.
 geod. sobsphere $\mathbb{S}^{k}=\exp _{p}\left(T_{p} \Sigma\right) \subset \mathbb{S}^{n}$.
There cant be any $x \in \sum \backslash \delta^{k}$, otherwise the minimizing geodesic from p to x in \sum would have $\dot{\gamma}(0) \in T_{p} \Sigma$ so $x \in S^{k}$; as such γ is also a geodesic in \mathbb{S}^{n}.
Exercise: Given $k \geqslant 2$ distinct points $x_{1, \ldots}, x_{k} \in \mathbb{S}^{n}$, there is a unique (up to congruences) totally geoderic $\mathbb{S}^{k-1} \subset \mathbb{S}^{n}$ with $x_{j} \in \mathbb{S}^{k-1}, \forall j$.
Note: Same is true on \mathbb{R}^{n} and H^{n}.
By a Theorem of Carton, if $\left(M^{M}, g\right)$ is such that $\forall p \in M, \forall \sigma \subset T_{p} M$ 2-dimn $\exists \Sigma \subset M$ tot, geod with $T_{p} \Sigma=\sigma$, then $\left(M^{4}, g\right)$ has $\sec \equiv$ conot. On a generic Riem. mold, the only tot. geod. submanfolds are 1-dimensional...
Lecture 17 4/3/2024
Some basic definitions in Geometric Analysis:
we need those to begin our discussion
of minimal hyperserfaces, since the relevant second variation formula has Δ_{ε} instead of $\frac{D^{2}}{d \varepsilon^{2}}$ If $\tan \varepsilon>1 . d e^{2}$
Let $f: M \rightarrow \mathbb{R}$ be a smooth function on a Riem. mild ($M_{i g}^{h}$).

- Gradient vector field:
$\nabla f \in \mathcal{H}(M)$ is the only vector field ouch that $g(\nabla f(p), v)=d f_{p} v, \forall v \in T_{p} M, \forall p \in M$.
- Hessian:

Hess $f \in \operatorname{Sym}^{2}(T M)$ is defined by (Hess $\left.f\right)(X, Y)=g\left(\nabla_{X} \nabla f, Y\right)$ for all $X, Y \in \notin(M)$
Note: Hess f is symmetric since:

$$
\text { (Hess } f)(y, x)-\text { Hess } f(x, y)=g(\nabla y \nabla f, x)-g\left(\nabla_{x} \nabla f, y\right) \quad\left(\nabla^{2} f=\text { Hess } f\right) .
$$

Note: $f: M \rightarrow \mathbb{R}$ is convex inf Hess $f \geqslant 0$, and concave if Hess $f \preccurlyeq 0$. Equivalently, f is convex if $\forall \gamma: R \rightarrow M$ geodesic, the function $R \ni t \mapsto f(\gamma(t)) \in \mathbb{R}$ is convex; similarly for concave.
(see $H W 4$)

Laplacian:
$\Delta f \in C^{\infty}(M)$ is defined as the trace of the Hessian: $\Delta f=\operatorname{tr}$ (Hess f) (ene, $\Delta f(p)=\sum_{i=1}^{n}$ Hes $f\left(e_{i}, e_{i}\right)$, where $\left\{e_{i}\right\}$ is an o...b. of $T_{p} M$.
Note: If $X \in \notin(M)$, the divergence of X is $\operatorname{div} X=\operatorname{tr} \nabla X \in C^{\infty}(M)$, so at $p \in M$, $(\operatorname{div} X)(p)=\sum_{i=1}^{n} g\left(\nabla_{e_{i}} X, e_{i}\right)$, where \{ei\} ~ i s ~ a n ~ o m b . ~ o f ~ $T_{p} M$. In particular, $\Delta f=\operatorname{div} \nabla f$
By Stokes Thm, if M is a Riem. meld $w /$ boundary ∂M, then $\int_{M} \operatorname{div} X=\int_{\partial M} g(X, \vec{n})$ where \vec{m} is outward unit normal to ∂M. In particular, $\int_{M} \Delta f=\int_{\partial M} \frac{\partial f}{\partial \vec{n}}$, and if M is closed $(\partial M=\phi)$, then $\int_{M} \operatorname{dir} X=0 ; \int_{M} \Delta f=0$.

Some facts about $(-\Delta)$: or Laplace- Beetrami (on functions)
In what follows, we assume $\left(M^{n}, g\right)$ is connected and closed, ie., compact and $\partial M=\phi$. Since $\left\langle(-\Delta) f_{1}, f_{2}\right\rangle_{L^{2}}=-\int_{M} f_{1} \Delta f_{2}=\int_{M} g\left(\nabla f_{1}, \nabla f_{2}\right)=-\int_{M} f_{2} \Delta f_{1}=\left\langle(-\Delta) f_{2}, f_{1}\right\rangle_{L^{2}}$ the operator $(-\Delta): C^{\infty}(M) \longrightarrow C^{\infty}(M)$ is essentially seff-adjoint in $L^{2}(M)$ and nonnegative. We also denote by $(-\Delta)$ its self-adjoint extension to $L^{2}(M)$, which has compact resolvent, and hence the following hold: $\quad=\operatorname{Spec}(-\Delta)$ or $\sec (M, \delta)$.

1. The spectrum of $-\Delta$ consists of a sequence $O=\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots 9+\infty$ of eigenvalues, each with finite multiplicity, which accumulates only at $+\infty$.
2. For each eigenvalue λ_{k}, the corresponding eigenapece $E_{k}=\operatorname{Ker}\left(\Delta+\lambda_{K} I d\right) \subset W^{1.2}(\mu)$ consists of smooth functions and is fenite-dimensonal: $m_{k}=\operatorname{dim} E_{k}<+\infty$.
3. Eigenfunction with different eigenvalues ore L^{2}-arthogond, since $\left\{\begin{array}{l}-\Delta f_{i}=\lambda_{i} f_{i} \\ -\Delta f_{j}=\lambda_{j} f_{j}\end{array}\right.$

$$
\lambda_{i} \int_{M} f_{i} f_{j}=-\int_{M} f_{j} \Delta f_{i}=-\int_{M} f_{i} \Delta f_{j}=\lambda_{j} \int_{M} f_{i} f_{j} \Rightarrow\left(\lambda_{i}-\lambda_{j}\right)\left\langle f_{i}, f_{j}\right\rangle_{L^{2}}=0 .
$$

4. The eigenfunction of $-\Delta$ form a complete orthogond set, so $L^{2}(M)=\bar{\bigoplus} \underset{k \geqslant 0}{ } E_{k}$
5. Eigenvalues have a variational (min-max) characterization using Rayleigh quotients:

$$
\begin{aligned}
& 18
\end{aligned}
$$

6. Weyl's Lew; $N(\lambda)=\sum_{\{k ; \lambda, \lambda \leq \lambda\}} m_{k}=\#\left(S_{\text {Compering }}(-1) \cap[0, \lambda]\right) \approx \frac{w_{n}}{(2 \pi)^{n}} V_{l}(M, g) \cdot \lambda^{\frac{n}{2}}+O\left(\lambda^{\frac{n-1}{2}}\right)$,
7. Couraut's Nodal Domain Theorem: if $f \in E_{k}$, then
$M \backslash\{f=0\}$ has $\leqslant k+1$ connected components. ~ How lore sum el
Example: The Laplace spectrum on $\left(S^{n}\right.$, groomed $)$ consists of:
$\lambda_{k}\left(S^{n}, g_{\text {noun }}\right)=k(k+n-1)$, with multiplicity $m_{k}=\binom{n+k}{k}-\binom{n+k-2}{k}$, and the corresponding eigenfonctions ore the restriction to $S^{n} \subset \mathbb{R}^{n+1}$ of harmonic homogeneous polynomids on \mathbb{R}^{n+1} of degree k. Since $(-\Delta)_{\alpha g}=\frac{1}{\alpha}(-\Delta g)$, the eigenvalues on $S^{n}(r)$ are $\frac{1}{r^{2}} k(k+n-1)$.

Note: "Spectral Geometry" is an active research area, investigating how Spec $(-\Delta)$ is related to the geometry of (M^{n}, q), see egg., recent AMS Book b) Levitin, Mangoubi, Pothervidh; the classic book by I. Chore "any ant! Back to submasifold geometry: "Eiqgendens in Riemanamimen Greanetry" and Mac's "Con yo o hear the shape fa dom?". Recall: The second fundamental form of a sobmifld $M c \bar{M}$ is $\mathbb{I}(X, Y)=\bar{\nabla}_{x} y-\nabla_{x} y$ Suppose $f: M \rightarrow \mathbb{R}$ is smooth and $c \in \mathbb{R}$ is a regular value. $\quad=\left(\nabla_{x} y\right)^{\perp}$
Then $f^{-1}(c) \subset M$ is a sobmonifold of codimension 1, two-sided, ie, of jorjectrve; equivivantly. $\nabla f(p) \neq 0$

Example: Suppose $f: M \rightarrow \mathbb{R}$ is the distance function to a point, or submancfold, or more generally, a solution to the Eikond equation $|\nabla f|=1$. Then, if $c \in \mathbb{R}$ is a regular valve of f, the hypersurface $f^{-1}(c)$ has unit normal $\vec{n}=\nabla f$, second fundamental form $\mathbb{I}(X, Y)=-($ Hess $f)(X, Y) \vec{u}$, fo all $X, Y \in T_{p}\left(f^{-1}(c)\right)=n^{\perp}$ and shape operator $S_{\vec{n}} X=-\left(\nabla_{x} \vec{n}\right)^{\top}=-\left(\nabla_{x} \nabla f\right)^{\top}$, for all $x \in T_{p}\left(f^{-1}(c)\right)$. Note also $\mathbb{I}=\mathcal{L}_{\vec{n}} g$.
Ex: $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, f(x)=|x|$ is the Euclidean distance to $x=0$. Then:
$\nabla f(x)=\left(-\frac{x_{1}}{f(x)}, \ldots,-\frac{x_{n}}{f(x)}\right)=-\frac{x}{f(x)}$ satisfies $|\nabla f|=\frac{|x|}{f(x)}=1$; and all $r>0$ are
regular valves, so $f^{-1}(r)=S^{n}(r)$ has shape operator $S_{n} X=-\left(\nabla_{x} \nabla f\right)^{\top}=-\left(\nabla_{x}\left(-\frac{i d}{r}\right)\right)^{\top}=\frac{1}{r} X$. for all $X \in T_{x} S^{n}(r)=x^{\perp} \subset \mathbb{R}^{n+1}$.

In what follows, assume $M \subset \bar{M}$ is a two-sided hypersurface, with unit normal \vec{n},

$$
\mathbb{I}(x, y)=h(x, y) \cdot \vec{n}
$$

Since $h: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is symmetric,
there is an o.n.b. $\left\{e_{i}\right\}$ of eigenvectors with eigenvalues K_{i}; that is, $h\left(e_{i}, e_{j}\right)=K_{i} \delta_{i j}$, or, in terms of the shape operator, $S_{\vec{n}} e_{i}=K_{i} e_{i}$.
Def. K_{i} are the principal curvatures of $M \subset \bar{M}$, and e_{i} are the principal directions. The neon curvature of M is $H=\operatorname{tr} h=\sum_{i=1}^{n} k_{i}$.
Def. $M^{n} \subset \bar{M}^{n+1}$ is a minimal hyparsurface if it has $H \equiv 0$. Similarly, a submonfold $M^{k} \subset \bar{M}^{n+1}$ of codimension >1, is minimal if $\operatorname{tr} S_{N}=0$ for all normal vectors N, or, equivalently, $\operatorname{tr} \mathbb{I}=0$. - vector valued II: $T M \times T M \rightarrow T M{ }^{\perp}$.
Ex: Minimal hypersorfaces M^{n} in \mathbb{R}^{n+1} :
$n=1$: affine subspaces (note $H=0$ for a 1-dim subulfed if it is a geodesic)
$n=2$: this is very classical; going back to Lagrange 1762. Derides affine subspaces, lots of examples are now known (see e.g., minimalsurfaces. blog, by M. Weber)

obtained votaring a catenary $y=\alpha \cosh \left(\frac{x}{\alpha}\right)$

Costa Surface (1982)

Thu. A hypersurface $M^{n} \subset \mathbb{R}^{n+1}$ is minimal if and only if ifs coordinate functions in \mathbb{R}^{n+1} restrict to harmonic functions on M^{n}; ie., $\Delta_{M}\left\langle e_{i}, x\right\rangle=0, i=1, \ldots, n+1$.
PL: Given $v \in \mathbb{R}^{n+1}$, let $\bar{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be the function $\bar{f}(x)=\langle x, v\rangle$; and let $f=\left.\bar{f}\right|_{M}: M \rightarrow \mathbb{R}$. Then $\bar{\nabla} \bar{f}=v$, so $\nabla f=(\bar{\nabla} \bar{f})^{\top}=v-\langle v, \vec{n}\rangle \vec{n}$, where 20 20
\vec{n} is a unit normal for $M \subset \mathbb{R}^{n+1}$. The Leplacion of f on M is:
and $\operatorname{div}_{M} \vec{n}=\sum_{i=1}^{n}\left\langle\nabla_{e_{c}}^{\vec{n}}, e_{i}\right)=-\sum_{i=1}^{n}\left(S_{\vec{n}}, e_{i}, e_{i}\right)=-\operatorname{tr} S_{\vec{n}}=-H$;
So it follows: $\Delta_{M} f=H\langle v, \vec{u}\rangle$ on M
Setting v to be a coordinate vector in \mathbb{R}^{n+1}, it follows that $H \equiv 0$ implies all coordinate functions restrict to harmonic functions on M.
Conversely, if all coordinate functions restrict to harmonic functions on M, then $0=H\langle v, \vec{n}\rangle$ for a linearly independent set of $v \in \mathbb{R}^{n+1}$, so $H \equiv 0$.
Cor: Complete minimal hypersurfaces in \mathbb{R}^{n+1} are either noncompact or have boundary. (ff HW4: if M closed, then only .)
Some important research questions regarding minimal hypersurfaces in \mathbb{R}^{3} :
Q: How many ends does it have? Does it hove finite total curvature $\left|\int_{M} k\right|<+\infty$?

	Plane	Catenoid	Helicoid	Costa of genus K	Riemann
$\int_{M} K$ vol z	0	-4π	$-\infty$	$-4 \pi(k+2)$	$-\infty$
\# ends	1	2	1	3	$+\infty$
genus	0	0	0	K	$+\infty$

Classification results for embedded min. surfaces $M^{2}<\mathbb{R}^{3}$ with $\left|\int_{M} K\right|<\infty$:
\# ends $=1 \Longrightarrow M^{2}$ is isometric to a plane
\# ends $=2 \Rightarrow M^{2}$ is isometric to catenoid [schoen, 1983]
genus $(M)=0 \Rightarrow M^{2}$ is isom. to plane or catenoid [López-Ros, 1997]
genu w $(M)=1$, \#ends $=3 \Rightarrow M^{2}$ is ism. to Costa surface (or Hofleman-Meaks deformation) [Cooker $\left.11 י 1\right]$
Open questions: - Are there embedded genus 1 minimal surfaces in $\mathbb{R}^{3} w /\left|\int_{M} k\right|<\infty$ and >3 ends? (Conjecturally No by Hoffeman-Meeks)

- $\operatorname{gens}(\mu) \geqslant \# \operatorname{ends}(M)-2 ?$

Lecture $18 \quad 4 / 5 / 2024$
First variation of Area. Given $M \subset \bar{M}$ a subufled, consider a variation $f_{t} ; M^{m} \rightarrow \bar{M}^{n}$, ie, $f_{0}(x)=x, \forall x \in M$ and $f_{t}(M) \subset \bar{M}$ are nearby submefed

$$
\begin{aligned}
& d f_{0}(x)=i d: T_{x} M \rightarrow T_{x} M \\
& \text { Area }\left(f_{t}(M)\right)=\int_{M} \sqrt{\operatorname{det}\left(d f_{t}\right)^{\top}\left(d f_{t}\right)} \oint_{\hat{1}}^{d x}
\end{aligned}
$$

Recall from calculus: if $A_{t} \in \operatorname{Sgm}\left(\mathbb{R}^{n}\right)$ with $A_{0}=I d$, is the volume form of $M \subset \bar{M}, g=f_{0}^{*} \bar{g}$.

$$
\begin{gathered}
\left.\frac{d}{d t} \operatorname{det}\left(A_{t}\right)\right|_{t=0}=\operatorname{tr}\left(\left.\frac{d}{d t} A_{t}\right|_{t=0}\right) \cdot\left(\text { e.j, use } \operatorname{det}_{\prime \prime} e^{t x}=e^{\operatorname{tr}(t X)} \cdots\right) \\
\operatorname{det}(I+t X+\cdots)
\end{gathered}
$$

So:

$$
\begin{aligned}
\left.\frac{d}{d t} \operatorname{Area}\left(f_{t}(M)\right)\right|_{t=0} & =\left.\int_{M} \frac{d}{d t} \sqrt{\operatorname{det}\left(d f_{t}\right)^{\top}\left(d f_{t}\right)}\right|_{t=0} d x \\
& =\left.\int_{M} \frac{1}{2 \sqrt{\operatorname{det}\left(d f_{0}\right)^{\top}\left(d f_{0}\right)}} \cdot \frac{d}{d t} \operatorname{det}\left(\left(d f_{t}\right)^{\top}\left(d f_{t}\right)\right)\right|_{t=0} d x \\
& =\frac{1}{2} \int_{M} \operatorname{tr}\left(\left.\frac{d}{d t}\left(\left(d f_{t}\right)^{\top}\left(d f_{t}\right)\right)\right|_{t=0}\right) d x
\end{aligned}
$$

Let $V(x)=\left.\frac{d}{d t} f_{t}(x)\right|_{t=0}$ be the corresponding variational field, so, in normal cord. $\left\{x_{i}\right\}$ around a point, $\quad d f_{t}(x)=\left(\frac{\partial(f t)^{j}}{\partial x_{i}}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ so

$$
\begin{aligned}
\operatorname{tr}\left(\left.\frac{d}{d t}\left(\left(d f_{t}\right)^{\top}\left(d f_{t}\right)\right)\right|_{t=0}\right) & =\left.\sum_{i=1}^{m} \sum_{k=1}^{n} \frac{d}{d t}\left(\frac{\partial\left(f_{t}\right)^{k}}{\partial x_{i}}\right)^{2}\right|_{t=0} \\
& =2 \sum_{i=1}^{m} \sum_{k=1}^{n} \frac{\partial\left(f_{0}\right)^{k}}{\partial x_{i}} \frac{\partial V^{k}}{\partial x_{i}} \\
& =2 \sum_{i=1}^{m} g\left(e_{i}, \nabla_{e_{i}} V\right)=2 \operatorname{div}_{M} V
\end{aligned}
$$

So:

$$
\frac{d}{d t} \operatorname{Area}(f t(M))_{t=0}=\int_{M} \operatorname{div}_{M} V d x
$$

It is useful to decompose $V=V^{\top}+V^{\perp}$ along M, to disregard tangentiol variations, which are not geometric (just change coordinates on M...)

$$
\operatorname{div}_{M} V=\operatorname{div}_{M} V^{\top}+\operatorname{div}_{M} V^{\perp}
$$

$$
\begin{aligned}
& \operatorname{div}_{M} V^{\perp}=\sum_{i=1}^{n} g\left(e_{i}, \nabla_{e i} V^{\perp}\right)=\sum_{i=1}^{n} e_{i}(\underbrace{g\left(e_{i}, V^{\perp}\right)}_{=0}-g\left(\left(\nabla_{e_{i}} e_{i}\right), V^{1}\right)) \\
& \bar{\uparrow}-\sum_{i=1}^{n} g\left(\mathbb{I}\left(e_{i}, e_{i}\right), V^{\perp}\right)=-g(\underbrace{\sum_{i=1}^{n} \mathbb{I}\left(e_{i}, e_{i}\right)}_{\vec{H}}, V^{\perp})=-g(\vec{H}, V) .
\end{aligned}
$$

$$
I(x, y)=\left(\bar{\nabla}_{x}, y\right)^{\perp}
$$

So; if $M \subset \bar{M}$ is closed, we obtain:

$$
\frac{d}{d t} \operatorname{Area}(f t(M))_{t=0}=-\int_{M} g(\vec{H}, V) d x
$$

Thus, minimal sobmanfolds are critical points of Area.
Note: If $\vec{H} \neq 0$ at $p \in M$, then we con find V st. $g(\vec{H}, V)>0$ near p and $g(\vec{H}, V)=0$ awry from p, so for $\varepsilon>0$ small, we have Area $\left(f_{\varepsilon}(M)\right)<\operatorname{Area}\left(f_{0}(M)\right)$. Thus, if $M \subset \bar{M} \xrightarrow{\text { minimizes }}$ Area, then it is minimal. However, the converse does nothod!! "Area-minimizing submanifold" V. "Minimal submanifold"

Note: A 1-dim. submanfold is minimal iff it is geoderic:

$$
\vec{H}=\operatorname{tr} \mathbb{I}=\mathbb{I}(\dot{\gamma}, \dot{\gamma})=(\nabla \dot{\gamma} \dot{\gamma})^{\perp}
$$

(recall $\left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)^{\top}=0$ if γ has constant speed.)
Second Variation of Area: Assume $\vec{H}=0$ and, for simplicity, $V^{\top} \equiv 0$.

$$
\begin{aligned}
&\left.\frac{d^{2}}{d t^{2}} \operatorname{Area}\left(f_{t}(M)\right)\right|_{t=0}=\int_{M}\left\|(\nabla V)^{\perp}\right\|^{2} \\
& \sum_{i=1}^{m}\left\|\left(D_{e i} V\right)^{\perp}\right\|^{2} \\
&(\sum_{i, j=1}^{m}\left\langle\bar{R}\left(e_{i}, V\right) V, e_{i}\right)-\underbrace{\|\langle I I, V\rangle\|^{2}} e^{2}), V\rangle)^{2}
\end{aligned}
$$

If $M \subset \bar{M}$ is a two-sided Mypersurface, let \vec{n} be a unit normal,

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}} \operatorname{Area}\left(f_{t}(M)\right)\right|_{t=0} & =\int_{M}\|\nabla \phi\|^{2}-\operatorname{Ric}(\vec{n}, \vec{n}) \phi^{2}-\|h\|^{2} \phi^{2} d x \\
& =\int_{M}\left(\left(-\Delta_{g}\right) \phi-\left(\operatorname{Ric}(\vec{n})+\|h\|^{2}\right) \phi\right) \phi d x \\
& =\langle J \phi, \phi)_{L^{2}(M)} \quad \begin{array}{l}
\text { also called } \\
\text { "stability operator" }
\end{array}
\end{aligned}
$$

where $J \phi:=\left(-\Delta_{g}\right) \phi-\left(R_{i c}(\vec{n})+\|h\|^{2}\right) \phi$ is the Jacobi operator
Def. The two-sided minimal hypersurface $M \subset \bar{M}$ is stable if for all normal variations $f_{t}(M)$, we have $\frac{d^{2}}{d t^{2}}$ Area $\left.(f(M))\right|_{t=0} \geqslant 0$; equivalently, $\forall \phi \in C^{\infty}(M)$, $\int_{M}\|\nabla \phi\|^{2} \geqslant \int_{M}\left(\operatorname{Rc}(\vec{n})+\|h\|^{2}\right) \phi^{2}$; equivalently, J is a nonnegative operator.

$$
\operatorname{Spec}(J) \subset(0,+\infty)
$$

Note: Area-minimizing (minimal) hypersurfaces are stable.
Thy (Simons'68). If \bar{M} has Ric>0, then it hes no two-sided stable minimal hypersurfaces. If \bar{M} has $R_{i c} \geqslant 0$ and $M \subset \bar{M}$ is a two -sided stable minimal hypersurface, then M is totally geodesic and $\operatorname{Ric}(\vec{n}) \equiv 0$.
Pi. Set $\phi \equiv 1$ on the stability inequality: $0 \geqslant \int_{M} \operatorname{Ric}(\vec{n})+\|h\|^{2}$.
Prop. (Schoen - Van 179). Suppose $\left(\bar{M}^{3}, \bar{g}\right)$ hes sal> >0 and $M^{2} \longleftrightarrow \bar{M}$ is a connected closed two-sided stable min. hypersurfoce. Then $M^{2} \cong S^{2}$.
Ph. Choose $\left\{e_{1}, e_{2}\right\}$ that diogondize h, so $\|h\|^{2}=h\left(e_{1}, e_{1}\right)^{2}+h\left(e_{2}, e_{2}\right)^{2}=K_{1}^{2}+K_{2}^{2}$. Using the Gauss equation; as $\left\{e_{1}, e_{2}\right\}$ is o.n.b. of $T_{x} M$, setting $e_{3}=\vec{n}$,

$$
\begin{aligned}
\sec _{M}\left(e_{1} \wedge e_{2}\right) & =\sec _{M}\left(e_{1} \wedge e_{2}\right)+h\left(e_{1}, e_{2}\right)^{2}-h\left(e_{1}, e_{1}\right) h\left(e_{2}, e_{2}\right) \\
& =\sec _{M}\left(e_{1} \wedge e_{2}\right)-K_{1} K_{2}
\end{aligned}
$$

So: $\quad \operatorname{Ric}(\vec{n})=\sec _{\vec{M}}\left(e_{1} \wedge \vec{n}\right)+\sec _{\vec{M}}\left(e_{2} \wedge \vec{n}\right)$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{3} \sec _{\bar{M}}\left(e_{i} \wedge \vec{n}\right)\right)-\sec _{\bar{M}}\left(e_{1} \wedge e_{2}\right) \\
& =\frac{1}{2} \operatorname{scal}_{\bar{M}}-\sec _{M}\left(e_{1} 1 e_{2}\right)+K_{1} K_{2} \\
& \operatorname{Ric}(\vec{n})+\|h\|^{2}=\frac{1}{2} \operatorname{scal} \bar{M}-\sec _{M}+K_{1} K_{2}+K_{1}^{2}+K_{2}^{2} \\
& \left.\begin{array}{l}
H=K_{1}+K_{2}=0 \\
\text { so: } K_{1}^{2}+K_{2}^{2}=-2 K_{1} K_{2}
\end{array}\right\} \stackrel{1}{2} \operatorname{scal} \bar{M}-\sec M+\frac{1}{2}\|h\|^{2} \geqslant \frac{1}{2} \operatorname{scal} \bar{M}-\sec _{M} \\
& K_{1} K_{2}=-\frac{K_{1}^{2}+K_{2}^{2}}{2}
\end{aligned}
$$

Set $\phi \equiv 1$ in the stability inequality and use Garss-Bounet:

$$
0 \geqslant \int_{M} \operatorname{Ric}(\vec{r})+\|h\|^{2} \geqslant \underbrace{\frac{1}{2} \int_{M} \operatorname{scal} \bar{M}-2 \pi X(M) \Rightarrow X(M)>0}_{>0} \begin{aligned}
& \text { Movient, } \\
& \text { connected }
\end{aligned} \Rightarrow M \cong S^{2}
$$

Thu (Federer, Fleming, De Giorgi, Almgren, Allord). If $\left(\bar{M}^{n}, \bar{g}\right)$ is a closed oriented Riem meld, $n \leq 7$, and $\alpha \in H_{n-1}(\bar{M}, \mathbb{Z})$, there exist (embedded) two-sided stable minimal hypersurfaces M_{1}, \ldots, M_{k} so that $\alpha=\left[M_{1}\right]+\ldots+\left[M_{k}\right]$, obtained by minimizing area in α.also Gromov-Lowson 83, for all $n \geqslant 2$, w/ Thu. (Schorn-Yan 79). T, $2 \leqslant n \leq 7$, does not admit metrics with scal>0.
Pd. $(n=3)$. Suppose $\left(T^{3}, \bar{g}\right)$ hos sal >0, and let $\alpha \in H_{2}\left(T^{3}, \mathbb{X}\right)$ be the class $\alpha=\left[\left\{x_{3}=0\right\}\right]$, so that any vepresentative $M \in \alpha$ hos $\int_{M} \omega=1$ where $\omega=d x_{1} \wedge d x_{2} \in H_{d R}^{2}(M, \mathbb{R})$. Minimize area in α to find M_{1}, \ldots, M_{k} stable min. hyp. sit. $\alpha=\left[M_{1}\right]+\cdots+\left[M_{k}\right]$. Then $\sum_{j=1}^{k} \int_{M_{j}} \omega=1$ so $\int_{M_{j}} \omega \neq 0$ for some $1 \leq j \leqslant k$. This implies $\left[\left.d x_{1}\right|_{M_{j}}\right] \quad\left[d x_{2} \mid M_{j}\right] \in H_{d R}^{1}\left(M_{j}, \mathbb{R}\right)$ are nonzero. Indeed, if $\left.d x_{1}\right|_{M_{j}}$ is exact in M_{j}, then let $f i M_{j} \rightarrow \mathbb{R}$ be s.t. $d f=\left.d x_{1}\right|_{M_{j}}$, and compute:

$$
0 \neq \int_{M_{j} d f} d x_{1} \wedge d x_{2}=\underbrace{\int_{M_{j}} d\left(f d x_{2}\right)}_{\begin{array}{c}
=0 \text { by Stokes } \\
\text { blc } \partial M_{j}=\phi .
\end{array}}-\int_{M_{j}} f \underbrace{d\left(d x_{2}\right)}_{=0}=0 \quad \begin{aligned}
& b_{c} M_{j}^{2} \subset \bar{M}^{3} \text { is } \\
& \text { connected 2-sided } \\
& \text { stable minn surf. } \\
& \text { in meld w/scl>0. }
\end{aligned}
$$

so $\left[\left.d x_{1}\right|_{M_{j}}\right] \neq 0$ in $H_{d R}^{1}\left(M_{j}, \mathbb{R}\right)$. This contradicts $M_{j} \cong S^{2}$.
For $3<n \leqslant 7$, there is a dimension-reduction scheme that reduces the problem to the case $n=3$. The above proved a conjecture of Geroch.

Rok. The above proof is adapted from notes of Otis Chodosh. The original proof by Schoen-Yan uses a different aree-minimization technique, showing that if $\Gamma_{g}<\pi_{1}\left(\bar{M}^{3}\right)$ is a subgroup ism. to the fund. group of a surface of gems $g \geqslant 1$, then there is a two-sided stable min. surface $M^{2} \subset \bar{M}^{3}$ of genus g. For the case $\bar{M}^{3}=T^{3}$, tale $\Gamma_{1}=\pi_{1}\left(T^{2}\right)=\mathbb{1}^{2}$ and get a contradiction.

Lecture $19 \quad 4 / 10 / 2024$
Comparison theory for Jacobi fields
Prop: If $\gamma:[0, L] \rightarrow M$ is a geodesic with $\gamma(0)=p, \dot{\gamma}(0)=v$, $\omega \in T_{V} T_{p} M$ hos $\|\omega\|=1$ and $J(t)$ is the Jacobi field along $\gamma(t)$ with $J(0)=0$ and $J^{\prime}(0)=w$, ie., $J(t)=d\left(\exp _{p}\right)_{t v} t w$, then:

$$
\|J(t)\|^{2}=t^{2}-\frac{1}{3}\langle R(v, w) w, v\rangle t^{4}+O\left(t^{5}\right)
$$

Pf:

$$
\begin{aligned}
& \left\langle J, J_{"}\right\rangle(0)=0 \\
& \left\langle J, J^{\circ}\right\rangle^{\prime}(0)=2\left\langle J_{\Delta}, J^{\prime}\right\rangle(0)=0 \\
& \langle J, J\rangle^{\prime \prime}(0)=2 \underbrace{\left\langle J^{\prime}, J^{\prime}\right\rangle(0)}_{\|\omega\|^{2}=1}+2\left\langle J^{\prime \prime}, J_{n}^{\prime}\right\rangle(0)=2
\end{aligned}
$$

Also, $J^{\prime \prime}(0)=-R(\underset{\substack{\| \\ 0}}{J, \gamma)} \bar{\gamma}(0)=0$ so

Moreover, for any vector field W along γ,

$$
\begin{aligned}
& \left\langle\frac{D}{d t} R(J(t), \dot{\gamma}(t)) \dot{\gamma}(t), W\right\rangle=\frac{d}{d t} \underbrace{\langle R(J, \dot{\gamma}) \dot{\gamma}, W)}_{=\langle R(\omega, \dot{\gamma}) \dot{\gamma}, J\rangle}-\left\langle R(J, \dot{\gamma}) \dot{\gamma}, \omega^{\prime}\right\rangle \\
& \begin{aligned}
=\left\langle\frac{D}{d t} R(\omega, \dot{\gamma}) \dot{\gamma}, J\right\rangle+ & +\underbrace{\left\langle R(W, \dot{\gamma}) \dot{\gamma}, J^{\prime}\right.}_{\|}\rangle \\
& -\left\langle R(J, \dot{\gamma}) \dot{\gamma}, W^{\prime}\right\rangle \quad{ }_{\left\langle R\left(J^{\prime}, \dot{\gamma}\right) \dot{\gamma}, \omega\right\rangle}
\end{aligned} \\
& \text { So at } t=0 \text { i } \\
& -\left\langle R(J, \dot{\gamma}) \dot{\gamma}, \omega^{\prime}\right\rangle \quad{ }^{\|}\left\langle R\left(J^{\prime}, \dot{\gamma}\right) \dot{\gamma}, \omega\right\rangle
\end{aligned}
$$

$$
\frac{D}{d t} R(J, \dot{\gamma}) \dot{\gamma}=R\left(J^{\prime}, \dot{\gamma}\right) \dot{\gamma}
$$

(all other terms ore zero) at $t=0$, bc $J(0)=0$.

$$
\left(\begin{array}{l}
4 \tag{4}\\
1 \\
1
\end{array}\right)+\binom{4}{3}
$$

Thus:

$$
\left.\begin{array}{rl}
\langle J, J\rangle^{\prime \prime \prime}(0) & =8^{\prime \prime}\left\langle J^{\prime}, J^{\prime \prime}\right\rangle(0)+6\left\langle J^{\prime \prime}, J_{\substack{\prime \prime}}^{\prime \prime}(0)+2\left\langle J^{\prime \prime \prime \prime}, J\right)(0)\right. \\
0 \\
0
\end{array}\right)=-8\left\langle J^{\prime}, R\left(J^{\prime}, \dot{\gamma}\right) \gamma\right\rangle(0)=-8\langle R(w, v) v, w\rangle .
$$

The goal is to extend the above comparison result beyond just $t \approx 0$, and up to $0 \leqslant t \leqslant T$ where $\gamma(T)$ is the ferst conjugate point to $\gamma(0)$ along γ (Ravch companion the).
Setup: Let $\Sigma \subset M$ be a two-sided hypersorface, and consider unit speed geotexics

$$
\gamma: \sum_{\underset{y}{w}} \times(-\underset{t}{\varepsilon, \varepsilon)} \rightarrow M
$$

with $\gamma(s, 0)=s,\left.\frac{d}{d t} \gamma^{(s, t)}\right|_{t=0} \in T \Sigma^{\perp}, \quad \forall s \in \Sigma$, $V=d \gamma(s, t)\left(\frac{\partial}{\partial t}\right)$ tangent field to geodesic)
(so $V_{I_{\Sigma}} \in T \varepsilon^{\perp}$ and $\|v\|=1$) $J=d \gamma(s, t)(\omega), \omega \in T_{s} \Sigma$ Jacobi field.
In other words, $\gamma(s, t)=\exp _{s} t \vec{n}_{s}$, where \vec{n} is unit normal to $\sum 28$

We can close $\varepsilon>0$ suff smell so that $\Sigma_{t}=\{\gamma(s, t): s \in \varepsilon\} \subset M$ ore smooth hypersorfaces for each $t \in(-\Sigma, \varepsilon) ; c f$ "focal radius" of Σ.
Let $S_{9}=\nabla V$ ie. $S: X(M) \rightarrow f(M)$, and $R_{V}: X(M) \rightarrow \notin(\mu)$ This is the shape operator of \sum, with opposite sign, i.e., $X \longmapsto \nabla_{X} V$

$$
X \mapsto R(X, V) V
$$

with the opposite unit norma $-\vec{n}$.
$\operatorname{Sin} u[J, V]=0$, we have $\nabla_{V} J=\nabla_{J} V=S(J)$, so the
$\begin{gathered}\text { Jacobi equ.: } \\ \left(2^{n-1} \text { order ODE) }\right.\end{gathered} J^{\prime \prime}+\underbrace{R(J, V) V}_{R_{V} J}=0 \Longleftrightarrow\left\{\begin{array}{l}J^{\prime}=S J \\ S^{\prime}+S^{2}+R_{V}=0\end{array}\left(\begin{array}{c}\text { System of } \\ 1_{1}^{\text {st }} \text { order } \\ \text { ODEs }\end{array}\right)\right.$.
Indeed:
"Riccate equation"

$$
\begin{aligned}
\left(\nabla_{V} S\right) X & =\nabla_{V}(S X)-S\left(\nabla_{V} X\right) \\
& =\nabla_{V} \nabla_{X} V-S\left(\nabla_{X} V+[V, X]\right) \\
& =R(V, X) V+\nabla_{X} \underbrace{}_{V} V=0 \\
& =-R_{V}(X)-S(S(X)), \quad \forall X
\end{aligned}
$$

ie. $S^{\prime}+S^{2}+R_{V}=0$.
(This equation con be solved independently!)
Note S is sulf-edjoint for each t, ie., $\langle S X, Y\rangle=\langle X, S Y\rangle, \forall X, Y \in T \Sigma_{t}$, since it is (the opposite of) the shape operator of the hypersorfece $\Sigma_{t}=\left\{\gamma(s, t): s \in \Sigma_{0}\right\}$. Eigenvalues of S are principal curvatures (with normal $-\vec{n}$) and $H_{\Sigma_{7}}=\left|t_{r} S\right|$.
Example: If sec $\equiv K$, then $R_{V}=K I d$; and the Riccati equation becomes a scalar equation for umbilical surfaces (with $S=\lambda \cdot I_{d}$).

$$
S^{\prime}+S^{2}+R_{v}=0 \Leftrightarrow \lambda^{\prime}+\lambda^{2}+k=0
$$

If $k>0$, the solutions are $\lambda(t)=\sqrt{k} \cot \left(\sqrt{k}\left(t-t_{0}\right)\right)$ corresponding to $\sum_{t}=\left\{p \in S^{n}(1 / \sqrt{k}): \operatorname{dist}\left(p, p_{0}\right)=\left|t-t_{0}\right|\right\}$, which are concentric spheres (latitude circles).
 ε_{t}

- If $k=0$, the solutions are $\lambda(t)=\frac{1}{t-t_{0}}$, corresponding to concentric spheres $\Sigma_{t}=\left\{p \in \mathbb{R}^{n}: \operatorname{dist}\left(p, p_{0}\right)=\left|t-t_{0}\right|\right\}$,

and $\lambda \equiv 0$, corresponding to parallel hyperplanes

$$
\Sigma_{t}=\left\{p \in \mathbb{R}^{n}: \operatorname{dist}\left(p, p_{0}^{\perp}\right)=\left|t-t_{0}\right|\right\}
$$

- If $k<0$, the solutions are

$$
\begin{equation*}
\lambda(t)=\sqrt{-k} \operatorname{coth}\left(\sqrt{-k}\left(t-t_{0}\right)\right), \tag{土}
\end{equation*}
$$

corresponding to Σ_{t} being concentric spheres,

$$
\lambda(t)=\sqrt{-k} \tanh \left(\sqrt{-k}\left(t-t_{0}\right)\right)
$$

corresponding to \sum_{t} being horospheres,

and $\lambda(t) \equiv \pm \sqrt{-k}$, corresponding to Σ_{t} being hyperwrfeces parallel to $H^{n-1}(1 / /-k) \subset H^{n}(1 / /-k)$.

Note: The dove are all the unbilic hypersurfaces of spaceforms! Their principal curvatures are given by $\lambda(t)$, and mean curvature by $H=(n-1)|\lambda(t)|$.

To facilitate comparison, identify $T_{\gamma(t)} M \cong T_{\gamma(0)} M$ via poorellal troupport along γ; so that $S_{t}: T_{\gamma(t)} M \rightarrow T_{\gamma(t)} M$ can be written es $S_{t}: E \rightarrow E$, where $E=T_{\gamma(0) M} M$, ie., $S_{t} \in S_{y m}{ }^{2} E$ is a curve of self-adjoint operators on a fixed vector space. We prove the following ODE companion reaueto:

Thu. Let $R_{1}, R_{2}: \mathbb{R} \rightarrow S_{y n}{ }^{2} E$ be smooth curves with $R_{1}(t) \geqslant R_{2}(t), \forall t$ Let $S_{i}:\left[t_{0}, t_{i}\right) \rightarrow S_{y m}^{2} E$ be the maximal solutions to $S_{i}^{\prime}+S_{i}^{2}+R_{i}=0$ If $S_{1}\left(t_{0}\right) \leqslant S_{2}\left(t_{0}\right)$, then $t_{1} \leqslant t_{2}$ and $S_{1}(t) \leqslant S_{2}(t)$ for all $t \in\left[t_{0}, t_{1}\right)$.

Pl. Let $U=S_{2}-S_{1}$, so $U\left(t_{0}\right) \geqslant 0$.

$$
U^{\prime}=S_{2}^{\prime}-S_{1}^{\prime}=S_{1}^{2}-S_{2}^{2}+\underbrace{R_{1}-R_{2}}_{\Delta}
$$

Define $\Delta=R_{1}-R_{2}$ and $X=-\frac{1}{2}\left(S_{1}+S_{2}\right)$, so that

$$
X U+U X=-\frac{1}{2}\left(S_{1}+S_{2}\right)\left(S_{2}-S_{1}\right)-\frac{1}{2}\left(S_{2}-S_{1}\right)\left(S_{1}+S_{2}\right)=S_{1}^{2}-S_{2}^{2}
$$

So $U^{\prime}=X U+U X+\Delta$, an inhomogeneous linear $O D E$ we con solve by "variation of constants". Namely, let $g_{i}\left(t_{0}, t^{\prime}\right) \rightarrow S_{\text {yon }}{ }^{2} E$ be the solution to the hanogeneors linear ODE $g^{\prime}=X_{g}$, where $t^{\prime}=\min \left\{t_{1}, t_{2}\right\}$. Then $U=g V g^{\top}$ is the desired solution, where V satisfies $V^{\prime}=g^{-1} \Delta\left(g^{-1}\right)^{\top}$.

Indeed: $V^{\prime}=g^{\prime} V g^{\top}+g V^{\prime} g^{\top}+g V^{\top}\left(g^{\top}\right)^{\prime}$

$$
\begin{aligned}
& =X g V g^{\top}+g g^{-1} \Delta \cdot\left(g^{-}\right)^{\top} g^{\top}+g V g^{\top} X^{\top} \\
& =X U+\Delta+U X .
\end{aligned} \quad\left(X^{\top}=X\right)
$$

Since $\Delta=R_{1}-R_{2} \geqslant 0$, we have $V^{\prime}=g^{-1} \Delta\left(g^{-1}\right)^{\top} \geqslant 0$.
Since $U\left(t_{0}\right)=g\left(t_{0}\right) V\left(t_{0}\right) g\left(t_{0}\right)^{\top}=S_{2}\left(t_{0}\right)-S_{1}\left(t_{0}\right) \geqslant 0$, we hove $V\left(t_{0}\right) \geqslant 0$.
Thus $V(t) \geqslant 0$ for all $t \in\left(t_{0}, t^{\prime}\right)$ and hence also
 for $t \in\left(t_{0}, t^{\prime}\right)$. Since S_{i}^{\prime} is bounded from dove $\left(S_{i}^{\prime} \leq-S_{i}^{2}-R_{i} \leq-R_{i}\right)$ the only singularity possible is $-\infty$, so $S_{1} \leqslant S_{2}$ implies $t^{\prime}=t_{1} \leq t_{2}$.

Rok: The above still holds if S_{1}, S_{2} are singular at to, but $U=S_{2}-S_{1}$ hos a continues extension to to. with $U\left(t_{0}\right) \geqslant 0$.
 first singulanty
well be $t^{\prime}=t_{1}$.

Geometric interpretation: "Principal curvatures of equidistant "hypersurfeces grow (in absolute value) faster on the space of longer curvetive."

(could also just nepos w/ $-\bar{n}$,
 would flip $S=\nabla \vec{n}$ oud $\left.S_{n}=-\sqrt{n}\right)$

Ex: In the umbilic core with $\sec \equiv k>0$:

$$
0<r_{1}<r_{2} \Rightarrow \frac{1}{r_{1}^{2}}>\frac{1}{r_{2}^{2}}
$$

$\sec =\frac{1}{r_{1}^{2}}$

The (opposite q) principal currotino are eigenvalues of $S=\nabla V$

(for actual principal curvatures, (flop \uparrow, ie, change sign!')

