
From now on
,

we almost always assume that all Manifolds
Lecture 12 3/13/2024

are complete to deal with global questions.

"Global Riem
. Geom

!

"

-- "in the large" (1960s)

M simply-connected
n LIhm. (Cortan - Ambrose - Hicks) · Suppose (M ,g) and (M) are complete Riem

. melds,
- 1

fix I : TpM-TpM lin
. isometry,

and let 4 = expo
Io expp : Belp)- Bill . Suppose for all

piecewise geodesic curves J
in M

,
the map IV :TM-TYM , given by

parallel transport
- ↓

D L -

Py ,
satisfies IJR(M) = R(X ,I It for all XIZETM .

If = I jo I

ThenI has a unique extension to a Riem . covering mop 4 :M->M
.

In particular,
-

if M is simply-connected ,
then 4 is a global isometry

If . Using completeness ,
can iterate" previous argument for Corton's theoremi

*

·
M

& T Fi---↳.
M

↳⑳ O--
O

5 PE
⑧

Hence XiP2
ere homotopia

-
bk #, M = [13.

2

x
,B : [0 ,2) ->M piecewise coderics in M with < (0) =B(0) ·

<(L) = B(L), the piecewiseGiven g
geodesics - B inM obtained repeating the construction at each break point

& A

(points (L) =5IL) ,
so we can extend I mapping geoderic endpoints

in M
have the same eno

L
to geodesic endpoints inM .

For details , see Cheeger-Ebin 12. L

Using the above
, and the (previously shown) fact that (MYg) has sec = iff

<RIM) , zRW) = x . < X Y
,
aw) = <((X,

2) < Y
,
W) - <X,W)<Y,z)

R(,Y)z = /(Y,
>X - <X, 2 Y) &

So
, if seem and Sear,

then
-

i.e., clearly I (R(X,(2)= R(IX,
IX)EZ

.

We obtain :

Ihm (Killing-Hoph) .

A complete connected Riem
. mfld (Mg) With sch is isometric

to a quotient of S(1) ,

RY
,

or HM(/)
, according to >0=0, O

;

by a free properly discontinuous action of a subgroup of isometrics.

Recall : The Riem .

metrics of 5(1)
,

R2
,
HM(E) can be collectively written as

-

the warped product metric dr+Suggn1 ,
where sny solves Sn + S =

SNx(0) = 0
, Su(0) =

1

.

Ex: Show that a closed manifold M, >3
,

with M 303 (e.g, M =KP >2)
does not admit any Riem . metric with constant sectional curvature.

Sol: M=M and 2
S = ThR" = IH" = 203

.

1



Ex : Give a counter-example if completeness is dropped .

--

BasicGlobal Results
Hint : Can RVLEO3 be simply-connected?

↓
Ihm /Certan-Hadamard) . If (MY, 8) is a complete connected Riem

. mold with

seco
,
then MER In particular

, if M = 113
,
then MER

Lemma . If see O
,
then Jacobi fields with J(0) = 0 and 5/10) # 0 satisfy J( 0

,
+ > 0

.

18 . Let JH) be a Jacobi field along JH = expptv ,

with 5(0)=0
,
and ↓

set f() = EIJ) /F= <JA) , JHL) · Then 7'(t) = 5
,5 ,

and
i. e., there are no

conjugate points
f"(t) = < 5 ! 5) + <5

, 5") on manifolds
With sec 10.

J"+ R(5, j)8 = 0-
= 115/1 - <J , R (J

, 8)U)
-

IJ'
.

10 because Sec 0

Thus
,
f'lt) is nondecreasing .

As f(01 = 0 and f'10) = 0
,

it follows that fl, 0

for all C, 0
;

i. e., fH) is nondecreasing .

Moreover
,

as 5'10) #0 ,
then

f(t) =
7

x(0)tz + 0(3)> 5'(E o

for +20 sufficiently small
,

so f(t) > 0 for all >0 because f ismondecreasing .

[

&MK : Later on
, we will prove that I/J()( > + 15(0)I for all +0 (Rarch 1) .

Cov . If see 0
,
then expp

:TpM-> M is a local differ.

If. By the Inverse Function Theorem
,
it suffices to show dexpp)x :T

,TM-T M
exPpX

is invertible for all XTpM . Given WOETIMETIM,
let J) be the

Jacobi field along U/) = expptv with 510)=0 and 510= W
.

Then = cf .
HW3

J() = d(expEtJ'(0) ,

so for 0
, Ideal = /EJA)/O by the Lemma

and for t=0 we have shown before that dexplo = id. Thus deply is invertible M.

TL
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Lemme. If (M.j) and (M ,8) are connected
, (M ,j) complete, and : (M,5) - (M

, g) is e

local isometry ,
then (M

,g) is complete and It is a Riem . covering map.

If .

Basic topology : show that it has the path-lifting property (see (Lee ,
Thm 6.23] for details).

Ifof Cartan-Hadamord : Since M is complete ,
we have exppiTM-> M well-defined.

By Cor
.

above
,
it is a local differ everywhere, so we can use it to prseback the

metric
g from M to a metric g = exppg on TpM .

This
, expp : (pM , g) -> (M

, g) is

a local isometryThe manifold (TpM,g) is complete by Hopf-Rinow,

because the

Straight lines tretv through the origin of TpM are geoderics w. r. t., and extend

to all tER
.

Thus
, by Lemma

, expp : TpM-M is a covering map. I

for: There does not exist a metric with seco on S
,

KPY, ..

Ref: A point EM is onjugate to &M along a geoderic 2 : [0 ,2] -M if (10) = p,

UILl= 9
and there exists a Jacobi field J: [0 .2) -> M along 2 with 5101 =0

,
5(4= 0.

Note: By the above
,
if see 0

,
then there are no conjugate points .

Moreover
,

q = exppLV is conjugate to p along JH) = expptr if d(exp)Iv :TTpM-T&M

is noninvertible. In other words
, 5Us a variation of 8 by geodesics

with endpoints that ,
tofirst order ,

coincide with p . q :

=q
I

⑧

& / / conjugate pt
· #(0(s)

J

On O paraboloid,
Congen ingate points

EMeridians but

along any

arise along ach

on.......are conjugate
thegeodesicotheraen

/
-

geodesic joins them ! ·
joins



Recall the second variation of energy : V= USH/s =0

E()(s=

( = g( ,) + SEN-g(R(,du) d

If the variation has fixed endpoints (Us(a)= o (a)
, Us(b) = Colb)) ,

then (a)= 0
, V:.

Moreover
,
if see 10 , then-g(R(V, U,V/ O

,
so it follows that

E((s = SE-g((Vidva
i. e
, if see 0

,

then all geoderics are local minima for E among curves with the same endpoints.
-

However, they need not be global minima think of closed geoderics on a torrs,-

or on a hyperbolic manifold; which are minimizing up
to half their length.

- -
%

Parallelvariations : Let veTrM and parallel transport it along the geodesz 8 : (a,b)- M

to obtain VIH =Pr with V10l = v and =0· Note that V is the variational

rector field of Us() = exp S .VA)
.

Moreover, *= because SHUSI are geodesis.

Then :

E()(s = - Seg(R(V, du , v) d

i
, Us/) for 0 <15/ has GE()

> E() if see 20

ENs) < E() if see > o·

Us/t Us(t)

V(t) V(t)

(a) o · U(b) Ulal Ulb)

Sec < O Sec > O
4



Lecture13 3/15/2024 R(X .YE = K

Jacobi fields in constant curvature : if see=, then R(,Y)z = ( <Y,
>X - <X,

2)Y

Let U : [0 ,2] - M be a unit speed geodesi, set == Ul0) and complete it to an

a.

n .

b
. Gei3 + of TpM;

set Eilt) = Pfei to be their parallel trang along U.

J(H)
=E fiEil is a Jacobi field w/5(0) , 5'(0)+ j(0)

sponez,-- en]
-

# <5(0) , 810)) = 0

Reall: (JI), H WAR
,
810) +E / I - (J"+ R(J,) =0 < 5'10) , U(0)) = 0

= 0

I

t
if 2 Ein + 5,(D)

RI5=5 - so f1 = <5,) = 0

/EIH + KEH e

~

-
for i= 1

,
we have filt) = O <

J

f(t)+ fiH) = 0 for all i = 2
,
- ,

n .

-j+ 1

Thus
,
if 5(0) = 0 and 5/10) = ej ,

then J( = SM/ . EJA) for all telOL),

t /

where sny(t) is the solution to StSunold=1 G
sin Oh, o

SNy(t)= x =0
S

panjugate
e Sin,Note : if EO

,
then Small o for all 20. .

No

if >O ,
then su ) > O for te(0,) ,

and Suy() = 0
. Conjugate

at distantinr

Note A unit speed geodesi y : (oL-5Y/Y) is not minimizing--

if L / ·

Indeed
, geoderics cannot be minimizing after

passing the first conjugate point :

Ihm . f 8 : [0 .2) -> M is a unit speed geodesic and OCCL is st.
↓

Ulc) is conjugate to(10) along U ,
then U : (3 .2) -> M is not minimizing.

f. Let J : [0 ,L] -> TM be a Jacobi field along y with J(0) =0 and J()= 0 .

smooth
V

Let W : [0 ,L]-TM be a vector field along 2 with W(0)=0
, W(c) = -5/l) W(L) = 0.

S

b 50 .
5



Define Vi[OL] -TM as follows:
Note. V' is not

if 7 [0,) continuous at += C,

so V is differentiableV(H) = <THE WA if te[cL) but not CA

Then let Usl-expUH) be a variation of J with Variational field V.

Note that DVEO ,
and USCA has fixed endpoints .

So :

R/N= 8 Sg() + g(RNCVC) A

= ((VIVI-g( + (IV) - g(UN) of
parts Within (0 ,2) and

by (c, L) the rectorint
Eg(v, 1 -So 8 (V" + RIV,( , v) at field V is smooth,

so can integrate by
parts -

+ 32 (g(w,N)( -S
,

8 (" + R(w
,
u)) ,) (t)

= g(5'(c) + 3W((d) , <W(c) + 0(22)
Il

- J'(c)

=
- E(5'(c)(R + 0(Ez)

so for 30 and S*0 sufficiently small
,

we have Els) < E(U)
,
and

hence : [0 .2] - M is not minimizing (for E Hence for 2).

: Passing a conjugatepointisnottheauwag
inwhereentere

geodericstops
benone with some legth and endpoints
there

(e .

g.,
think of closed geoderics on manifolds with sea 10

,
see p . 4).

Ruk Using ODE comparison theorems, one can show that if (Mig) has
-i
sec

,
then conjugate prints along geodesics

in (M ,g) arise faster
in S(/) .

This yields an alternative proof of the next
than along geodesics regret (Myers theorem) 6



Defi diam (M
, g) = sup (f) : FEM is the diameter of < , g).

From basic topology ,
diam (Mig) < & #> M is compact.

Later
on , we will show that a weaker curvature bound (Ric>> 0) is enough

L

Ihm (Myers 1941) . If (MYg) is a complete manifold with se, >0 ,
then in

I

has diam(M, g) [ · In particular, it is compact and ↑M is finite.

: Let p .>M and let v: [0,23-M be a unit speed minimizing geodesic
with 210)= U/L = 8 .

Since J is minimizing, for all variations &s of U with

fixed endpoints, ENs) /= 0
·

Let eTM with 111-1 and <810) ,v) = 0
,

set

~paralle transport VETM

V(H) = sin() .Po along U, so IIPAV/=1 and

g(P+ V, ((t) = 0
.

Clearly, V10 = 0
,
VILI = 0

,
and V (H) = cos(#) PE v"(t) =- sin() Pr

Then USH) = EXPSV) is a variation ofJ with fixed endpoints, hence :

· (e(s) =g) +8(· !
-gEvo , v) + g(R(V ,cu . V) o

=- sin(KUsin(g(R (Pr, ( ,PV) a

= S
o
sin(( - ) d

- K

= ( - 4) S sind
This, O

,
ce

,L . It follows that d(p ,) for all pif

hence diam (M,g) * and Hence M is compact . If I:M-M is the universel

7

covering, then by the same argument (g) is compact ,
so &M is finate L

7



Lecture14 3/20/2024

Riccicurvature : Let VeTM and See
,

-- , en-1] be an o .b
. of ut

,

so thatSee ,
-env is an a.

nb
. of TPM .

Then

1 J

I
er- Ric(Vin) = * <R(e , v(v .ei) if I = 1

,

then this<
·

I-Te
, --

-
i = 1 is sec(vnei)

The above quadratic form defines, via polarization ,
a bilinear symmetric form--
-

Ris(
, wh = <R(ei , 1) w

, ei) = tr (x+ R(x ,)w)
i = 1

which is represented by a symmetric endomorphism Ric:TpM-TPM ,
s .

t.
--

-

Ric (v , w) =

g (Ric (v) , w) C
All of the above are referred to as

"Ricci curvature. "
For us , usually I mean( Ric : TMXTM-)

Scalarcurvature : scal = to Ric = Riclei , ei) for Seiz 0
. n .

b
. ofM.

i = 1

- (R(ei
, egle;,ei) = 2 to (R : ATM -+M)d

scal : M-IR is a funcion i, j= 1 L
Both (Reine) , einej) and

<rejned) , ejnei) appear
in

Lef: The metric
g

is celled Einstein ,
with scal

;
but only one appears

-

Einstein constant & if Ric = A .

g.
in toR

.

Note: If g
is Einstein ,

then Scolg = to Ric = tr .

g = X. m.

If (M ,g) has see , then Ric = k(-1) .

g ,
so it is Einstein

,
Scal = u(n-2) .

ften write Ab to mean A b .
Id where BEIR.O

↓

Note: Inequality between symmetric tensors A B means g(Av,r)<, g(Bv, r) , Ar,

e . g.
Ric/ g , often written Ric1,

means Ric(r glv,v) for all v.

This hypothesis
is weaker then

Clearly, See => Ric>-19 => scel>, n(u-1) . X
,

same for how The was

~
stated earlier!

Ihm (Myers , 1941) . f (Mg) is a complete manifold with Ric, (U-1) .

g ,
then

it has diam(M, g) [ · In particular, it is compact and ↑M is finite.

g



: Let p .>M and let v: [0,23-M be a unit speed minimizing geodesic
with 210)= U/L = 8 .

Since J is minimizing, for all variations &s of U with

fixed endpoints, E(s) /s=
00 .

Let Seil be an o . nb
. of U10) Tro M ,

set

-paralle transport eipioM
V: (H) = sin() .Pe along U , so g(Pfei , PtTj)=Sij

&

and g(P-ei,U (t) = 0
.t

Clearly, V(0) = 0
,
/LI = 0

,
and V(H) = cos(#) Pre, v"(t) =- sin()p

Then UH = exp is a variation ofJ with fixed endpoints, hence :

O ↓ != el(s) =

g,du tO

=- sin(eitsin(g(R(P) ,Pee)) a

= S
o sin( ( ~ See(i) a

Add over i= 1
,

, ...,
n -1 to get:

· Elt(iv) sin(seeing a
= sin(-1) se(peeing e

-

-t
= (n-1)(E-)Jsindt .

=Ric (8 .8) (M- 1)

This, O
,

ce
,L . It follows that d(p ,) for all pif

hence diam (M .g) * and Hence M is compact . If I:M-M is the universel

covering, then by the same argument (g) is compact ,
so &M is finate I

Ex SxSt does not admit a metric with Rico.
-

(If it did
,
then it would have Rick/>O by compactness , contradicting (2)=+ 4)

:



Note: SxSt admits metrics with scal> 0
.
Indeed

, for a product metric,

(MaxM2 ,2) has scolgog = scolgtscolgn ,

so
the product metric Igno

has scal = scalgsn = n(n-1).

~

Upsho↓ ↑1 = + x detects non existence of metrics with Ric > O and
-- I

can be used to distinguish the classes of closed manifolds that admit

metrics with scal> 0 and Ric>0. However
,

we have the following :

OpenProblem
: Does there exist a closed simply connected manifold M that

admits metrics with scol> O but does not admit metrics with Rico ?

re : Lack of known topological obstructions to Ric>0 besides (g)= + 0.

On the other hand
, using haprinciple techniques, it is known that there are

no topological obstructions toRic 20:

Thm Lohemp ,
Annuls of Moth 1994). Every manifoldMradmitacomple

a
-

metric with Ric <O <

L
Even more: for
a metric g'on ManymetronH,and Lo,Eo

these in

In particular, also scal<O is topologically unobstructed .
In fact, using PDE one

cal show that every manifold
admits a complete metric with scal=-1 .

However
,
scal> O is topologically obstructed (this is a very

active research crea
!)

#m (Lichnerowicz
,
1963)

.
If (Mg) is a closed Riem . spin infed with scallo,

then (M)=0.

Ex: M4 : = <[xoix , :x2 : x3] > P3/x+**+** +X** =0 is a smooth closed spin 4-mete

with (M)O, therefore it does not admit Riem
.

metrics with scal > o.

The results above are best suited for a second course in Riem
.geometry...

Lecture15 3/22/2024

Back to the (relatively classical) world of sectional curvature :

Lemma If P : Mr-
*
- RN1 is a lineer isometry ,

it. PEO(n-1)
,

and det P = A),
--

then 1 is an eigenvalve of
P
, so VER"- * O

,
PV = V.

Pf If M is even ,
then the characteristic polynomial det (P-XI) has odd degree n-1, and

-

real coef., so has some real eigenvalues .

Since P is orthogonal they are IA
.

The product of complex
10



eigenvales is >0 since they come in conjugate pairs : (+)(x-pi)= +2,

and det P=
1,

so at least one of the real eigenvalues is + 1.

If n is odd, then detP= -1
,

and as the product of aplx eigenvalues is >0,

there's a positive even number of real eigenvalues, so at least one is +1
. I

. By the Mex .

Tons Thm
, PEO(n-1)

,
UEO(n-1) S.

t
. UPU=

...

IRotation ..A
2x2 blocks ↑

Leigenvolves [i0) eigenvalvest1
-

Ihm . (Weinstein) .

Let (Mg) be an oriented closed Riem . unfed with sect o
,
and

:M-M an isometry that preserves orientation if i is even
,

reverses if his odd.

Then 4 has a fixed point.

If. Suppose 4(X) * X
,

XXEM and let PEM be S.
t

. dist(p, 4/p) =Min Edisty(x, Y (x)e
Let 8 : (0 . 2) - M be a minimizing good from p = 8 (0) to Y(P)= U/L) .

Let

P = PEOdY(p) : TpM-TpM where Pt" is the porelled transp. along

from 4(p) =U(L) back to p = /10).

-
j(o)-- 7--N
- j Y(P) Claim . (4 (2) (0) = 2 (L)·

L
PE-

L
p

TypM
TM de(p) Consider 4 : [0 . 2) -M ,

which is

-Op
a geodesic from 4(P) to Y(Y(p). Given te (0 ,7)

,

Possible picture? J
r(t>dist((),(()dist(( , () +dir(,Yof

I

Pi
O

These vectors
Y(U(H) is ison. dist(y() , <(P1) + dist(p , (7)

flo
mustactuae Pog

~Usizing dist(p , Y(P) -

So the actual picture is : e(e(p))-

(p)=(1)
As p was chosen to mmmize displacement by 4,

p=2(0) ->((L)
=(30)' d

O I O

-I O Y(HI)o - Yie(p) dist(( , Y(0()</ distg(p , Y (p)UHI
Y

hance equality holds
.

From equality in ,

it follows that & ((0 .L]) UG(([0 ,L]) is

a minimizing
curve (i . e

,
distances are achieved along that curvel , so it

is a geodenc .

This it is smooth at 4(0)
, proving the

claim.
11



Thus PJ(0 = P+ dY(p) ((d) = PE" (YoU)'(0) = Pz + j(L) = j(0) ; so

M .
Moreover

,

P :=((graf : Flo+ -j(0)
+

is an isometry of
j(0 M

,

and since j(0) = jlo) ,
we have det P = det F = det (P= 04 (0) = ( 1)

↑
A

Preserves det de(p) = 77)orientation !

I

By the Lemma, lo, Vo ,
s

.

t. PV = v. by hypothesis.

Let VI) = PTV be the parallel transport of vTpM along 2: [0 .23-M
,
note

that gN() , ((h) = 0 and dY(p) V(0)= V (L), V(L)= dYpV()

Then Us/) = expit)
SUI) is a venation by a postin ↑ ↑-YuciODE

geodesis sit. uniqueness
Co(L)

↓
Us(L) = expy(p)

sV(L) = Y(Us(0)

since Sts4(s(01) is a good with (2010)= Y (P)EY(Us(0)) = d(pV(0)=V(L).

and
, PE( /50 =+ E-g(NCUNA o

;
-

O O >o blc sec > o

contradicting the choice of p ,

which yields 5 = 0 is a minimum for St disty(Us(0) , Y(s(01).
As a corollary ,

we recover: I

Ihm(Syuge , 1936) . Let (M ! g) be a closed manifold with see > o.

(1) Ifi is even and M is orientable
,
then M = &13,

M is non-orientable
,
then ME2.

(ii) Ifn is odd
,
then M is orientable. Note: M can be arbitrarily large,

e . g.,
lens space Sp has sec o

.

If. Since Mr is closed, see, 30
· Let :M"-M"be the universal cover,

and = g.
Then (M51 also has seec, 30.

U

(i) Assume M is orientable
,
and endowFr with a compatible orientation :

~
n

~

Then
any deck transformation U : M -> Mr preserves

orientation and hence

has a fixed point by Weinstein's Thm,
Hence 4-id and this = M is

simply -connected . If M is non-orientable
, apply previous argument to its

12
.orientable double-cover to conclude it is M and Hence MET

12



(ii) If Mr is non-orientable
,
then 54 :Ms an orientation-reversing isometry

of the orientable double-cover -> M. By Weinstein's Theorem
, I has a fixed

point ,
Hence Gid , contradicting that I is orientation-reversing, [

Alternatively ,
the above can be proven with the second variation of energy

and the following result :

Prop of (MYg) is a closed tiem
. mod,

then every
nontrivial free↓

-

homotopy class in M is represented by a closed geoderic that has

least length among curves in its free homotopy class.

Pf of Synge->
Hi Suppose M is oriented

,

dimMiseventGiven a nontrivial element in M,
let

U
be a closed geodesic with least length Shorten*

geodesiength

that represents that free homotopy close .
The parallel transport

alongo gives an orientation-preserving lineer isometry ↓

Pt : U(0)-> j(L)
+ which (by Lemma) has a fixed vector vej(o)
I

M

TUM ETM
a&

M I
Then

,
as V= /s=E Pu ha⑭

a Usee

=O
,↑

r

/sto and CVEO,t
U(d =(L

we obtain a contradiction ;

is loc j(0)= j(L)
minimizing

↓ d
<O

U
~Eles() +SV)O E
ds --

> 0 / Sec > o

So M = 213
.

If M is non-orientable
, apply the above to its oriented

double-cover to conclude that is its universal cover Hence AMEz.

(ii) Exercise.
13



Lecture16 3/27/2024

SubmanifoldGeometry

Let i :M-> [M
,5) be an immersion

,
endow M with g=ig.

5 : Levi-Civita connection of (M , j) 3 Carey thereneed not be
te

a
D : Levi-Civita connection of (M , g) are not straight lines in +!

Henceforth ,
we often treat i as an inclusion MCM and write

& x
+ TpM

+

TPM = TPM TPM
+

I
a

+/
-aX = X

+

+ X
+ 7

** components of
!

XE TPM in each

Summand

Let Up be a
small neighborhood of &M .

Given Vector fields X/YEASH) , there

exist (many) extensions A
,
Y to rector fields on Up;

where CF is a

neighborhood of &M s . t. U =M. These is old-fashioned terminology that stock;

- the "first fundamental form" is just g = itg
L

Def. The second fundamental form of Mc M is / : TMXTM -> TM,given by
[I( , Y) = (Ex )
Note . It is well-defined ,

i
.

c
, independent of choice of extension of X,

Y,

tensorial , and symmetric .
Indeed

,

↓

II(x, Y) - 11 (
, x) = (5+ 5)

=

(
=
x)
L - -jt= (Exy-#X) = [XYI

but along MCM ,
the vector fields I, are tengent to M ,

have

so is their bracket ,
so the above vanishes (along M); ie.

11(X ,Y) = IIY, X) EXIYETM

Since (E)p only depends on p
= Xp ,
it is independent of the

extension chosen for X,
and CO(M) - lineor in X . By symmetry ,

some for %
14



Prop .(#) Im =

x
Y + II(X,Y)

,
for any

extenson X
.

* of X. Y
.

19.

Since #M =( *), it siffies to show DXY= (DXY)T

Both are torsion-free connections on M compatible with y ,
hence

agree by the uniquenes of
the Levi-Civite connection on (M.g) . It

Def: Given -TM
+

a normal vector field ,
the symmetric linear map

SiTM-TM S . t . j(SX, Y) = (II)
, ) for all XICTM is

called the Shope operator (or Weingarten operator) of M in direction i

Prop. S(X) = - (x)T
11. 0 = (g(n ,) = g(Di ,Y) + j(π , Dx Y)

- j((+ 5 ,
7) + j( ,

x Y + I(X ,Y)
FM Fr+

= j((π ,) +g( , I(X,Y)

= j(5x 5 ,y) + j(SX , Y)
T

for all YETM ,
so

, along M ,
we have( +Six=0

,
it

. SX = -(1)
I

Ihm . (Gar Equation) .

The difference between ambient and intrinsic curvature is :

g(E(x,Y)z,) -g(R(X,y)z , w) = g([(X,z)
, I(Y ,w) - g((X,w) , (Y,2)

: ((,z,) = j([y= E -

= y
z -

(,
=

,
w)

-

- > t= 5(Ex (Ez +It,)) - #( +I(,) [E,

w

=( - SIX -ESY-TE,w
15



Since WETM
,

we can get rid of any
normal components :

T

([z)= DXyZ , (E) = DaxyZ ,
etc

,
so :

... = g(xyz -DyZ-DZ , W) + (SIY, W) -g(I)X W
= g(R(x,Yz ,w) + g([(X,z)

, I (Y ,w) - g((X,w) , (Y,
2).

El

Cor : If X ,Y are orthonormal
,
then

sec (X-Y) - sec(ny) = 11 I(X,) /F- g([(X, x) ,
I (Y

,Y).

Def .
M-M is totallygeodesia if every geodes in M is geodesin in

M

.

Prop: McM is totally geoderic if and only of EO.

&S. If IIE0 ,
then Levi-Civita connections of M and M

agree
hence so do

P
their geodesics . Conversely, if

M is tot . good ,
then let &M

,
UETM

,
and

Vi(-9 ,3-M be the geodesic in M (ondM) S.
t. <10) = p, (10) = r. Then

H

=+,) ,
we have I =0 .

As is erbitery, =
Since D

-

=
O

Cor: If Mc F is totally geoderic ,
then ambient and intrinsic curvatures agree.

Ex : If MCM is a hypersurface ,
it dim = dim M + 1

,
and two-sided

(ie , transversely oriented) ,

it . TM
+

is trivial
,

then let ETM
+ be

a unit normal to M and note[I( = . ,so X
,Y) = h(XM).

scalar

Ex : Round Sphere i: S (r)->
***

of radius ~so
,
with (X) = - *. Then

S(X) = -E = #X so h() = <X ,Y) and we recover:

g(R(X,Y(z ,w) =
-g([(X,z)

, I (Y ,w) + g((X,w) , (Y,z)
= E (<X,W) (4 :z) - <X ,z)<Y

,W)) , in sect
ra 16



Ex : What are the totally geoderic submanfolds of
$ ? (this eace)

↓
K

IfEC Sh is tot. good ;
let pe[ and UETpS .

Then explue [,

for all ter ,
so I contains a

tot.

T geod. subsphere
-

expa S
&L ↑pSu

K
- (T+ E)C'

M

Ki There can't be
any
xe[7S

,

otherwise

the minimizing geodenny from p
to x

in [ would have (0) TpE so XeS
,

as such U is also a geodesia
in S

D

Exercise: Given 2 distinct points Xa
,
--

,
XE,

there is a unique

'

(up to congruence) totally geodesic $-CS"
with xjS**, j.

Note: Same is true on I" and HY.

By a Theorem of Certen , if (Mg) is such that &M
,
JCTPM 2-dim

5ECM tot. good with TE = 0
,

then (g) has sececonst .

On a

generic
Riem . mfld, the only tot good submenfolds

are 1-dimensional ...

we need those to begin our discussion

Lecture17 4/3/2024
- of minimal hypersurfaces,

since the relevant

second variation formula has As instead ofDe te
Some basic definitions in Geometric Analysis : if dim >1..

Let fiM-R be a
smooth function on a Riem . mfld (MYg).

· Gradientvector field :

DfE(E(M) is the only vector field such that g(Df(p) , v) = dpV,
FETIM

,
PEM.

·

Herrioni Sym(FM) is defined by (Hessf)(,) = g(x f , Y) for all XIY((M)

Some authors write
Note: Hess f is symmetric, since : (27 = Hess = (
(Hess 8)(Y ,X) - Hese f(x, Y) = g(yf . X) - g(DxDf . Y)

= Y g(f , X) - g(xf.yX) - X g(Df, Y) + g(D8 , DXY)

= Ydf(X) - Xdf() + df([X ,Y]) = Y X7 - XY + + [x,Y]f = 0
.

Note f:Mis exifo,aconcrefHefEfedentsis ite
(see HW4) 17



· lacian:

17E((M) is defined as the tree of the Hessian : 1f = tr (Hessf)
N

in Af(p) = [Hef(eiti) ,

where Seiz is an o. ub
. of TPM.

Note: If XE((M) ,

the divergence of X is divX = tr DXECO(M)
,

so at peM,

(dir X)(p)= (eiX , ei), where Seiz is an o. b . of TPM .

In particular, Af = div Df.

By Stokes Thm, if M is a Riem . mold whboundary &M
,
then SaivX = Syg(X ,)

M

where it is outword unit normal to 2M .
In particular, SMAf = Som Of ,

and

/
if M is closed (GM=) ,

then Sydiv = 0
; S17 = 0. (integrals of functions !(

are always wirt . voly

-

: Using the above
,
show that if M is closed

, then SMIF= -SMfAf . At ComputeinExercise
AHW4

↑ often called Laplasian (on functions)
Somefacts about 7A) : or Laplan -

Beltrami operator·

In what follows ,
we assume (Mg) is connected and closed ,

i
.

t ., compact and 2 M = %.
-

Since((-1) fa ,
2)=

=
-Suff = Sm8(f,f) = - S& +1 = < (A) 82,E1)

M

the operator (-1) : <O(M) - (O(M) is essentially self-adjoint in L(M) and

nonnegative .

We also denote by(-5) its self-adjoint extension to 2(M) which
;

Hold :
= Spec (A) or SpecIM, g) .

has compact resolvent
,
and hence the following-

1 .

The spectrum of -A consists of a sequence 0 = 10< 1
<

2
... ↑+

of eigenvalues ,
each with finite multiplicity, which accumulates only at + 0.

2. For each eigenvalve X, the corresponding eigenspec EK
= Ker (1+ Id) <WYM)

consists of smooth functions and is finite-dimensional: My = dimEx< + 0 .

3 . Eigenfunctions with different eigenvalues are -arthogonal, since E-Affif e

xiffifi = -(fisfi = -(t : 1 ; = j) tifj = (i-jff= 0
.

M M M M

①4
. The eigenfunctions of - A form a complete orthogonal set , so ((M) = EL

>,0

5 . Eigenvalves have a variational (min-max) characterization using Rayleigh quotients:

To = inf S1f2 /(HW4) A = inf sup
SAR

= inf
S IM L

M

&EWAR /M

Sa
= 0 , K VCWI(M) FeV10 J R eseinfreC -

-

f =W !< (M) 1903
dim V= 4+1 < f,h) = 0

,
UhEEj-j< W

18



6
. Weyl's Lew: N(x) = [ Mr = #(Spec (1) [0 ,1) Vol(M ,g).*),↑

E : Ex] I counting with

aso: the eigenvalea M,g) multiplicity volume of unit some foundational questions-

multiplicity bell in H about higher order asymptotics
7 .

Corrent's Nodal Domain Theorem : if fEEx ,
then W 1

,
so

remain unanswered in general,-

RAM
=

(4H(E+ 1) see e .

g., Polya's conjecture from 1954.

M158 = 03 has <+1 connected components.- How large/small can they be ? f. Yan's conjecture and Logunor's work.

Example : The Leplace spectrum on $ ground) consists of :

(5 , ground) = /+- 1)
,

with multiplicity My = (*) - +-2) ,
and the

corresponding eigenfunctions are the restriction to SCI
**

of Harmonic homogeneous polynomies
on Right of degree .

Since (Alag= (Ag) ,
the eigenvalues on S(r) are 2( + -1).

If (MY,3) is complete but not compact, then 7Ay) may have
continuous spectrum,

e.g. Spec (RY= (0 :
+ 0).

Spec(I/Y) =[,
+ x) .

Note: "Spectral Geometry" is an active research area
, investigating how Spec(-1) is related to the

puf!

geometry of (M, g)
,

see e.

g ., recent AMS Book by Levitin , Mangobi, Polterovich; the classic book by I.
Chevel

--

"involvesintenanGeometry" andKac'sen you hearthehope of actum?"
.

Back to submanifold geometry :

Recall The second fundamental form of a submflo McM is I(X. Y) = ExY-AXY
-i

= (Dx
Y)

+

Suppose fiM-R is smooth and CER is a reguvalve.
* ie -, dfp :TM-IR is

& Df(p)+O

Then f-7/) CM is a submanifoldof codimension 1
, two-sided, surjective; equivalently S

* "hypersurface" for all p = f-7(c).

/ Careful : Unless If/ =1
,!= M =<( ,

where
L this is not -Hesf

= u(X ,Y) =
- g(x)x , y) = - g(Dx **

Example : Suppose fiMeR is the distance function to a point ,
or submonifold ,

or

more generally ,
a solution to the Eikond equationIX8 = 1.

.

Then
, if <R is

a regular value of f ,
the hypersurface f(c) has unit normal i = If,

second fundamental form # (X,Y) = - (Hees8)(X,Y) , for all X, Y = Tp (
= (c) = n

+

and

shape operator SX = -(X)E-(DX7f), for all XTp(
+
(c). Note also #= Gg .

Exi fiR -> R
,
f(x) = # is the Endideen distance to x = 0

·

Then :

H = (- -
- ) = -

* satisfies (f) =

=
1

,
and all so are

f(x)
-

regular values , so f-t (v) =5 (r) has shope operator SuX=xH)= - x7=)= EX.
for all XTxSY(r) = x

+ R +↑ Cf .
last lecture! 19



In what follows ,
assume MCM is a two-sided

hypersurface,
with unit normali,we

I(X,Y) = h(X ,Y) .
↑ ThU - n+ 1- < M

Since h : TpMxTeM-> R is symmetric,
there is an o . n .

b
. Sei3 of eigenvectors with eigenvalues his that is,

;

h(ei , ej) = kiSij ,
or ,

in terms of the shape operator, Sli = Kili

MDefiorethepricaturesofMcM,and e are ea
i = 1

Pef .

MCM is a minimal hypersurface if it has HEO. Similarly,

-

n + 1

submanfold MCM of codimension > 1
,

is minimal if to SN = 0 for
a -

all normal vectors N
,

or
, equivalently , tr· Vectorvolveda Mt↑

Ex: Minimal hypersurface Mr in I"+F:

= 1 : affine subspaces (note H= 0 for a 1-dim submitte if it is a geodesic

=2 : this is very
dessical ; going

back to Legrange 1762 .
Besides office

subspace ,

lots of examples are now known (see e.g .,
minimalsurfaces . blog, by M

. Weber

Helicoid (Mesuier 1776)
Costa Surface (1982)

Catenoid (Euler 1744)

Obtained rotating a

catenary y= x cosh(E)

This A hypersurface MCR
***

is minimal it and only if its coordinate functions--

in RM*1 restrict to harmonic functions on M2
,

iie., AMCei , x ) = 0
,

i = 1, . . . +
1

.

&D : Given VER*
,
let FiR"

**

-> R be the function J(x) = <XIV)
,
and

let f = FIm : M-R. Then =V , so Df =(5)= v - <> ,

where

20



i is a unit normal for MCR"* The Leptacion of f on M is :

Af = div f = divi (v-<) = - (A) ,
) - <)dir.. M

M tangents O

and div = , ei Sneiei) =
- tr Su = - H

,

so it follows : 1 f = H(vin) On M
M

Setting v to be a
coordinate vector inR7 it follows that HEO

implies all coordinate functions restrict to harmonic functions on M.

Conversely , if all coordinate functions restrict to hormonic functions on M
,
then

OH < v ,n) for a linearly independent set of VERY,

so HEO. T

Cor Complete minimal hypersurfaces in R are either noncompact or have bondary.--

-

:

HW4 : if M closed
,

then out
Y(8 harmonic functions are constant. I

Some important research questions regarding minimal hypersurfaces inI :

&: How many
ends does it here? Does it have finite total curvature /S/ <+2?

M

Plane Catenoid Helicoid Costa of genus Riemann

Strong O I - 4π - L
-4π(x+2) -X

1 2 1 3 +
#ends

genus O
& O K

+ X

Classification results for embedded min. surface MCR3 with IS < 0 :

# ends = 1 => M2 is isometric to a plane
#ends = 2 => M2 is isometic to catenoid [Schoen, 1983)

genus (M) =
0 => Mr is isom. to plane or catenoid Lopez-Ros.

1991)

genu
(M)=1

,

ends =3 => M2 is isom.
to Costa surface (or Hoffman-

Meeks deformation) [losk, 1931]

Open questions :
· Are there embedded genus

1 minimal surfaces in
&w//S/*

and >3 ends? (Conjecturally NO by Hoffman-Mee) M

·

genu (M) #ends(M)-2
?

.... 11



Lecture18 4/5/2024

Firstvariation of Area .

Given MCM a submfle ,
consider a variation

W V

faiM- ,
ie
,
fo( = x

,
XM and f(MICM are nearby submfeds

L
fz(M) dfo(X) = id : TxM - TXM

M
= folM

↑# Area (ft(M) = Sin (D)↓

V(x) = fHx)( = 0 dx = vol
g

Recall from colutus : if At ESym(R") with AoFId, is the volume form
of MCM, g = fg

Str(Xdet (Az) (t = 0

= tr ( A+ ( + =0) · (eg, use det etX
= e

.)II

Soi
det(I + +X + ...)

Area (37/M1) /
=
0 Sm (b)1.

↓

=Su ↑ o det((d(+)
+

(b(+) 1 == 0

**

= Str (2)
+

(b7+) (10) dy

Let VI= & +o
be the corresponding variational field

,

so
,

in

normal coord . Exis around a point , df( =( i= 1
---

So

j= 1
,

- -

y
n

↓((da) d= een

= 2 ge DeV) = 2 dim V.
22



So: Area (87/M1)/
=
0 Su divy V dy

It is useful to decompose V= V + V
+

along M ,

to disregard tangential
variations

,
which are not geometric (just change coordinates on M ... )

divy V = div VT + dirm Ut

Stokes : divm VT = 0 blc Misclosed (g(V ,
n) if 2M ...)

M
Cam

diviVt glei , Deit = elev-g(ee), vt)=

=
- Eglie), = -g(ie , vt) = -g()
↑

[I(X,Y=( xY)
+

So; if
McM is closed

,
we obtain :

Area (87/M1) /
=0

= - MG(FT , v) dx -

Thus
,
minimal submonfolds are critical points of Area.

Note : If TO at M
,
then we can find V S .t

. g(EV)< 0 near P

and gIE ,U =0 away from p ,
so for E10 small

, we have

Area(f(M) < Area (f0(M) ·

Thus
, if MCM minimizes

Area
,
then it is minimal However

,

the converse does not hold !
-

II

Area-minimizing submenfold" v.

"Minimal submanifold"
23



Note : A 1-dim , submenfold is minimal iff it is geodesia :

·
i

Fi = tr I = #(0 . 8) = ( )
+

u
C jj) = 0 if I has constant speed)recall

SecondVaration of Area : Assume FT = 0 and
, for simplicity ,

VT=O.

Area (6(M) / =0

=S (e) ve) -I
-

-~ [ (eiej) ,V)(PeiN
If MCM is a two-sided hypersurface ,

let it be a unit normal,

and piM - R be s.

t. V = 0 .

5
,
variational field of ft(x) = expx(0() x),

Grea( (M) /
= 0

=

y

NO - Ric)-Ihp dx

= Sm()-1g)p - (Rc(n) +1h(R) p) b b
also called

= <J , P) M ↓
"stability operator"

where J := <A - (RicI) + 11) is the Jacobi operator

Def. The two-sided minimal hypersurface MCM is stable if for all

normal variations ft(M) ,
we have tren(f(M)/ 0 ; equivalently , XPEC(M),

S&P SM (Ric + 141)02 , equivalently ,
J is a nonnegativeoperator.

Spec(5) < (0 ,
+8) 24



Note : Area-minimizing /minimal) hypersurfaces are stable
-

Ihm (Simons' 68) . If M has Ricco
,
then it has no two-sided stable

minimal hypersurfaces. If M Las Ric, 0 and MCM is a two-sided stable

minimal hypersurface ,
then M is totally geoder and Ric( = O.

P1 .

Set $=1 on the stability inequality : 0 ) Ric() + 1411?
M

Prop.
(Schoen-Yan 79). Suppose (M3,5) has scol> O and M=M is a

connected closed two-sided stable min . hypersurface .
Then MS?

1. Choose & ,e23 that diagonalize h ,
so 14/= U( ,el+ h(ez ,e)+ .

Using the Gauss equation; as Ge , e2] is o . u .
b

. of TXM , setting e=#
,

seleinen) = seemleiren) + Kleie - Kleeihlezen)

= seleinen) - Like

so: Rich = Sec (e) + sec-(ez)
- M
M

3

= setein) - seleinen

= Escalm-secule , 1er) + k ,
k2

Ris() + IhF = Escal-secm + K ,z + F + 2

H = k ,+ kz = 0

so : + = = -2,2
↳ Iscam-secm +El, Escola-seem

k,kz = -

h+ =3
2

Set =1 in the stability inequality and use Garss-Bonnet :

O, SRIC)+ > EfocOM-2AXIM) = X(M)
Morient, zo connected -> MES? I 25-



Ihm (Federer
, Fleming ,

De Giorgi, Almgren, Allord) . If (MYj) is a

closedoriented Riem . mfld ,
17

,
and -Hn-1(M,),

there exist (embedded) two-sided stable minimal hypersurfaces
M
, ...,
M so

that x = [M .) + - .. + [Mx]
S
obtained by

also Gromov-Lawson 83 ,
for all 2

S wh

minimizing area in < spinors instead of minimal surfaces
.

-

hm.

(Schoen-Yan 79)
.

T
,

"

27
,
does not admit metrics with scallo.

18. (n =3) · Suppose (T3, 5) has scolco
,

and let EH2(T) be

the cless x = [EX3 =03] ,

so that any representative M-2 has

S w = 1 where w = d
,
12 /M ,R) .

Minimize area in a

dR

to
M

find M
, . . .,

Mr stable min . hyp . s .

t. < = (Mi + . . . + [M]
.

Then

Sm , w = 1 So SM wo for some 1 jak .

This implies

[xim
;
] [em

;)
HR(M ;, It) are monzero .

Indeed
, if Xim

;
is

exact in Mj ,

then let fiMj- be st . df = x11m
;,
end compute:

of dx
,
ndx = fd(fdxy- SAL = Mich is

-3
II

Mj of - Mj connected 2-sided

= 0 byStokes Stable min. surf
bl &Mj = 0 . ~ in mfld w/scal > o.

--

so (xim
;
]O in HER(Mj , ) .

This contradicts MjS? I

For 37
,
there is a dimension-reduction scheme that reduces the

problem to the cas n =3. The above proved a conjecture of Geroch.

26



Row The above proof isadopted from notes of Otis Chodosh.-
-

--

The original Proof by Schoen-Yan uses a different area -

minimization

technique , showing that if Ng < (3) is a subgroup isom.

there
to the find ,

group of a surface of genus g>d,
then

-

is a two-sided stable min . curface MCM3 of genus g.
For the

case MP = T3
,

take Tz=1(T) = 12 and get a
contradiction

.

Lecture19 4/10/2024

mprisontheory-forJacobifeels

op: If U : [0 .L] ->M is a geodesic with y(0) = p , j(0)=V,

WE TVTPM has 11W/l=1 and J() is the Jacobi field along (H)
With 5(0) = 0 and 510) = W

,
i
.

e., JH)= d(expp)Er tw
,

then :

115(t)(z = +2- b < R(v , w)w, v) +4 + 0(5)

Pf: (5
, J)(0) = 0

↳

(5 , 5)'(0) = 2(J
,
J(((0) = 0

"

(5
, 5)"(0) = 2(5 , 5')(0) + 2 < J"

,
J> (0) = 2

- %
IWIF= 1

Also, 5"(0) = - R(5 , j)) (0) = 0 So

!

(5 ,5)"(0) = 6 >J !, J," (0)
+ 2LJ"

, 5 (0)=
1)

131+ (2) (8)+ B) O

27



Moreover
, for any Vector field W along 2,

↳ R(JC, (UH,W)= N)- <R(50) ,Wi
= < R(W , , 5)

= (R(w ,j , 5)+ ,

So at + = 0: - [R(58)J ,Wi "R(J ,8) W)

R(5 ,) = R(J'
, u)) Call other terms are zeno

at+=
0bkc J(0) = 0 ·

Thus (1)+4) (
/

(2)+ (2)
21 II(5

,5)""(0) = 8 (5 !, J " < (0) + 6 < J"
,
J" ( (0) + 2 (5"

;J) (0)

Y j

= - 8 (5'
, R(5, 8 (U) (0) =

- 8 <R(w, v)v, w)
J" = -R(5 ,j)jr

= - 8 (R(v ,w)w,v) .

so J" = - R(5 ,8) [

The goal is to extend the above comparison result beyond just two,
and up to OET where ULT) is the first conjugate point
to 810 along y (Rauch comparison thm)

.

Setup: Let ECM be a two-sided hypersurface,

and consider unit speed geodesis

V : E X (- c
, c) - M

Y I
O

U(s , d) = s
, Us ,/+=

ETE
,

Use E
,

E
&

WeEdelst( tangent field to genen
↑ GAA (so VIETE and I/V/1=1)

+ E J = dy(s ,H(w) , weTsE Jacobi field .

In other words
, y(sit = exps & s ,

where is unit normal to 2 . 20



We can choose E30 suff.small so that [+= Ey/sit) : SECM are smooth

hypersurfaces for each + - (2, 2)
; <f. "focal radius" of So

.

Let S = XV ie . Si(M) -H (M) and RV:SE /M- <A(M)
a

S

This is the shape operator X +-> DxV X +-> R(X, V)V
of 5

,
with opposite sign ,

i
.
e.,

with the opposite unit normal-i.

newDressei(2nd order ODE) Ru J E
Indeedi

↑
"Riccati equation"

(AS) X = D(SX) - S(X)

= MrDxV- S(xV + [V , x])
= R(V ,X)V + x+Dev,

V - Prev
=O

== Rv() - S(S(XD
,

X

ie. S + 5 +R = 0
.

(this equation can be solved independently !)

Note S is self-adjoint for each ,
is

.,
< SX ,Y) = <X

, SY7,

XXIYETE ,
since it is

---

(the opposite of) the shope operator of the hypersurfer [
= 2U/sit) : S = 2·

Eigenvalues of S are principalratures (with normal-it
and HEAtrs)

Example: If sea ,
then Rv = Kid

,
and the Riccati equation

becomes a sudler equation for umbilical surfaces (with S= X . Id) .

s+ 5 + Ry =0 X + x2 + x = 0
a

!
· It >0 ,

the solutions are X( = U cot( (t-to))+t

corresponding to [+= Ep > S"(1/) : dist <P,PO) = It - to /3 ,
.

se

which are concentric spheres (latitude circles)· 29



· If = 0
,
the solutions are X/ =# , corresponding

Et
P.

to concentric spr &=pet : dist(p, po) = 17-tol ,
-

a x(t)
and 7= 0

, corresponding to potted hyperplanes L-

[ =R : dist(p. pot = 17-201
p

E +

Es+
· If <O ,

the solutions are

x (t) = FK 20th (FX (7-to))
,

,

LL&
-K

corresponding to Ex being concentric spheres, ↑
~

#-O- tX /H = FK tanh (FL (7-to)), ~-
corresponding to being horospheres,

Poo
Et
- L- -

III

end X/ = IFX
, corresponding to Ex being

O

hypersurfaces parallel to "(YE CAM (YD . (
Note: The above are all the umbilic hypersurfaces of space forms ! Their

principal curvatures are given by XI) ,

and mean curvature by H = (-1)/X(H) .

To facilitate comparison , identify TM TM via parallel transport along J;
so that S : TUM -> TU M can

be written as St :E-E
,
where

t

E-Trak ,
i

.

e
.,
St E SymE is a curve of self-adjoint operators on a

fixed vector space .

We prove the following ODE comparison
recuets:

Im.

Let R,Rzi-SymE be smooth curves with R , (H) Bul)
.

Xt

Let Si : [to . ti) -> Syne be the maximal solutions
to Si + Si + Ri =0

If Selto) Sulto)
,

then tyste and SES2() for all [to .1) .

30



18. Let U = S2-Se
,

so Ult, 0
.

I 2U1= Si - Su = S3 + R
,
- ReS -

-

↳

Define +R-R2 and X = -2/S ,
+S

.2) ,
so
that

-XU + UX = - E(S , + Sz) (S2 - Sc) - E(S2- S1)(s ,
+S) = S

2- S
2

I ZL

so U = XU + UX +C
,

an inhomogeneous linear ODE we can solve by
" variation of constants" Namely ,

let gi(tot) -> SymE be the solution

I

to the homogeneous linear ODE g
= X
gi

where t = minEt, 23.. Then

U = gVgT is the desired solution
,

where V satisfies V=g* (g)T.

Indeed : U = jVg + gV'gT + gU(gT)'

- XgVg + gg
+

(g) (gt + gVg XT& &
(Xe= X)

= XU + 4 + UX
.

Since -RiR0 ,
we have v' = g

+

O(g
+

)
+
o

.

Since Ultol = g(to) V(to)g(to)
T

= Sz(ts) - S , (b) >O ,
We have VHs)30.

This VI0 for all telto . 1) and hence also

Sz(t-S
, () = U() =g()VIgA0 for all teltost); it

Silt)Sc()

for testost) .

Since St is bounded from More (S = -S& -Ri =- R. )
the only singularity possible is - a

,
so S

,
S2 implies =t

,
Eth
.

[
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a
-

Rmk The above still holds if S1 ,
Sa are singler

-

:

at to
,

but U =S-S ,
has a continuous extensionit-

↑

to to
,

with UH, 0. first singulantet= ta .

- IImerpretation:"Principalcurvatureof equidistee hypersurface

grow -

I
TheCopposite of) principal curratures

s Ex: In the umbilic case
are eigenvalues of S=DV

(shope operator) (es above)
with Sec>O :

-S B= 0 SSER
I

- 0 (v,
< rz => t > E

if i is inword-pointing

I
l dist(which is outword pointing , and -

.... ----

->t
Icould also just replace wh-n, => xinwould flip S = Dr and S--it

to
---- = --- ↑

T
VI

Mi
2 I

r
,

2

sec = H for actual principal
curvatures,sec =

1

2 (flop ,
ie

, change sign ! (
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