Lecture 20 
$$4/12/2024$$
  
From last time:  $J'' + R_{y}J = 0 \iff \begin{cases} J' = SJ \\ S' + S^{2} + R_{y} = 0 \end{cases} (S = \nabla V)$   
Thus,  $Ld R_{y}, R_{z}: R \rightarrow Sym^{2}E$  be smooth curves with  $R_{y}(t) \Rightarrow R_{y}(t), \forall t$   
Let  $S_{1}: [t_{0}, t_{1}) \rightarrow Sym^{2}E$  be the waxional solutions to  $S_{1}' + S_{1}^{2} + R_{1} = 0$   
H  $S_{1}(t_{0}) \leqslant S_{2}(t_{0})$ , then  $t_{0} \leq t_{z}$  and  $S_{4}(t) \leqslant S_{2}(t)$  for all  $t \in [t_{1}t_{1})$ .  
Next, we apply the above to get a composion of longth of Isobe fields:  
Thus, Let  $S_{y}, S_{2}: (t_{0}, t') \rightarrow Sym^{2}E$  be smooth curves with  $S_{1}(t) \leqslant S_{2}(t)$ .  
Let  $J_{1}: (t_{0}, t') \rightarrow E$  be nonzero set to  $J'_{1} = S_{1}J_{1}$ . Then  $t_{1} \rightarrow \frac{15H01}{|J_{2}(0)|}$   
is nonivereasing. Moreover, if find  $||J_{2}(t)|| = 4$ , then  $||J_{1}(t)|| \leqslant |J_{2}(t)||$   
for all  $te(t_{0}, t')$ . Equality helds for some the  $(t_{0}, t')$  if and only if  
 $J_{1} = J_{1}$  vi on  $[t_{0}, t']$  for some viet  $u \in (t_{0}, t')$  if and only if  
 $J_{1} = J_{1}$  vi on  $[t_{0}, t']$  for some viet  $S_{1} = \frac{S_{1}J_{1}}{||J_{1}||^{2}} = \frac{S_{1}J_{1}}{||J_{1}||^{2}}$   
Thus  $(t_{0} \parallel ||J_{1}||)' = \frac{||J_{1}|'|}{||J_{1}||} \leq \lambda_{max}(S_{1}) \leq \lambda_{uin}(S_{2}) \leq \frac{|J_{1}|'|}{||J_{1}||} = (t_{0} \parallel ||J_{2}||)'$   
Thus  $(t_{0} \parallel ||J_{1}||)' = \frac{||J_{1}|'|}{||J_{1}||} \leq \lambda_{max}(S_{1}) \leq \lambda_{uin}(S_{2}) \leq \frac{|J_{1}|'|}{||J_{1}||} = (t_{0} \parallel ||J_{2}||)'$   
i.e.  $(t_{0} \parallel \frac{||J_{1}||}{||J_{2}||})' \leq 0$  so  $\frac{|J_{1}||}{||J_{2}||}$  is non-increasing.

By monotonicity, if 
$$\|J\| = \|J\|$$
 at  $t = t_0$ , and  $t = t_a$ . Hen  
 $\|J_{i}\| = \|J_{i}\|$ ,  $\forall t \in (t_{0}, t_{a})$  and here  $J_{i}' = S_{i} J_{i} = \pi J_{i}$ , from which  
 $\|J_{i}\| = \|J_{i}\|$ ,  $\forall t \in (t_{0}, t_{a})$  and here  $J_{i}' = S_{i} J_{i} = \pi J_{i}$ , from which  
 $\|J_{i}\| = \|J_{i}\|$  The following conductors dre originally  
 $\|J_{i}\| = \|J_{i}\|$  The following conductors dresories  
 $\frac{T_{MM}(R_{ander} I)$ . Suppose  $J_{i}$  are set to  $J_{i}' + R_{i} J_{i} = 0$  and  $H_{i}$   
 $R_{1} \ge R_{2}$  and  $J_{i}(0) = 0$ ,  $\|J_{i}(0)\| = \|J_{i}(0)\|$ . Then  $\|J_{i}\| = \|J_{i}\|$   
up to the first zero of  $J_{1}$ .  
 $\frac{T_{MM}(R_{ander} I)$ . Suppose  $J_{i}$  are set to  $J_{i}' + R_{i} J_{i} = 0$  and  $H_{i}$   
 $R_{1} \ge R_{2}$  and  $J_{i}(0) = 0$ ,  $\|J_{i}(0)\| = \|J_{2}(0)\|$ . Then  $\|J_{i}\| = \|J_{2}\|\|$   
up to the first zero of  $J_{1}$ .  
Both Rauch I and I follow from comparison theorems dowe; noundy  
 $R_{i}(t) \ge R_{2}(t)$  and  $S_{i}(0) = S_{2}(0)$  give  $S_{i}(t) \le S_{2}(t)$  for all  $t \in (0, t_{i})$ . Then:  
 $J_{i}' = S_{i} J_{i} \implies J_{i}' \sim J_{i}' \approx t_{i} \implies J_{i} \approx t_{i} \otimes J_{i} \otimes 0$   
 $J_{i}' = S_{i} J_{i} \implies J_{i}' \sim J_{i}' \approx t_{i} \otimes t_{i} \otimes 0$   
 $J_{i}' = S_{i} J_{i} \implies J_{i}' \otimes J_{i} \otimes t_{i} \otimes 0$   
 $I_{i}' = S_{i} J_{i} \implies J_{i}' \otimes J_{i}' \otimes 0$   
 $I_{i}' = S_{i} J_{i} \implies J_{i}' \otimes 0$   
 $I_{i}' = S_{i} J_{i} \implies J_{i}' \otimes 0$   
 $I_{i}' = S_{i} J_{i} \implies J_{i}' \otimes 0$ .  
 $I_{i}' = S_{i} J_{i} \implies J_{i}' \otimes 0$   
 $I_{i}' = S_{i} J_{i} \implies 0$   
 $I_{i}' = S_{i}' = J_{i}' \otimes 0$   
 $I_{i}' = S_{i}' J_{i} \implies 0$   
 $I_{i}' = S_{i}' J_{i}$ 



For fixed t, 
$$s \mapsto y(s,t)$$
 is a geodesic, and  $J_{t}(s) = 2t y(s,t)$   
is a Jackin field along  $s \mapsto y(s,t)$ ; with  $J_{t}(o) = 0$  and  $J_{t}(1) = \dot{y}(t)$ .  
Since  $sec_{ph} < 0$ , by Rauch  $I_{r}$   
 $\| J_{t}(s) \| \ge s \| J_{t}'(o) \|$  so length,  $y(s) = \int_{0}^{1} \| \dot{y}(t) \| dt = \int_{0}^{1} \| J_{t}(s) \| dt$   
 $\theta \| ength of comparison  $s = 1$   
 $f = \int_{0}^{1} \| J_{t}'(o) \| dt = length pn (Jo exp^{-1} g)$   
Teacher field in  $\mathbb{R}^{n}$   
 $= \frac{1}{dt} \underbrace{g}_{s} exp s^{-1}(t) |_{s=0} = \frac{1}{ds} \underbrace{g}_{s} exp s^{-1}(t) |_{s=0}$   
 $= \frac{1}{dt} \underbrace{g}_{s} exp s^{-1}(t) |_{s=0} = \frac{1}{dt} \frac{d}{d(orp_{0})} \widehat{g}(t) = g'(t)$   
and so length  $p(J \circ exp^{-1} g) = \int_{0}^{1} \| \underbrace{g}_{s} I \circ exp^{-1}(g) \| dt = \int_{0}^{1} \| J_{t}'(o) \| dt$ .  
 $= In \mathbb{R}^{n}$ , the Jack equation  $J^{n} = 0$  has solutions  $J(s) = J(s) + sJ(s)$   
so Jackin fields with  $J(s) = 0$  are given by  $J(s) = sJ'(s)$ .  
 $f = J(s) = 0$  on manifolds with  $S(s) = sJ'(s) = sJ'(s)$ .  
 $f = J(s) = 0$  on manifolds with  $S(s) = sJ'(s) = sJ'(s)$ .  
 $f = J(s) = 0$  on manifolds with  $S(s) = sJ'(s) = sJ'(s)$ .  
 $f = J(s) = J(s) = 0$  on manifolds with  $S(s) = sJ'(s) = sJ'(s)$ .  
 $f = J(s) = 0$  on manifolds with  $S(s) = sJ'(s) = sJ'(s) = sJ'(s)$ .  
 $f = J(s) = J(s) = 0$  on manifolds with  $S(s) = sJ'(s) = sJ'$$ 

Cor: A geodesic triangle on a complete manifold with sec <0 satisfies  
(i) 
$$l(c)^2 > l(a|^2 + l(b)^2 - 2l(a)l(b) \cos \gamma$$
 ( $l = length)$   
(ii)  $\alpha + \beta + \gamma \leq \pi$  If sec <0, then get strict inequalities.  
Pl:  
TM  $o \neq \frac{1}{\alpha}$  (iii)  $\alpha + \beta + \gamma \leq \pi$  If sec <0, then get strict inequalities.  
Pl:  
TM  $o \neq \frac{1}{\alpha}$  (iv)  $\alpha = l(a) = l(b)$ . Let  $a, b = exp p = b$ ,  $c = exp = c$   
Mode that  $\overline{a}$  and  $\overline{b}$  are straight line sequents ( $exp = is vodial isometr)$ ,  
with  $l(\overline{a}) = l(a)$  and  $l(\overline{b}) = l(b)$ . Let  $c, be the straight line sequent
with some endpoints as  $\overline{c}$ , so  $l(\overline{c}) > l(c_1)$ . By the Application of Raude I,  
 $l(c) > l(c) > l(c_2) > l(c_4)$ . Thus, altogether:  
Los of cosino in  $TM \cong \mathbb{R}^n$   
 $l(c)^2 > l(c_4)^2 = l(\overline{a})^2 + l(\overline{b})^2 - 2l(\overline{a}) l(\overline{b}) \cos \gamma$ .  
To compare agles, since  $l(A)$ ,  $l(B)$ ,  $l(B)$  satisf the triangle inequalities  
(be every gederic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(c)$  actione distance)  
(be every gederic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(C)$  actione distance)  
(be every gederic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(C)$  actione distance)  
(be every gederic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(C)$  actione distance)  
(be every gederic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(C)$  actione distance)  
(be every gederic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(C)$  actione distance)  
(be every gederic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(C)$  actione distance)  
(be appenderic is minimizing in sec so, ce,  $l(A)$ ,  $l(B)$ ,  $l(C)$  actione distance)  
(b)  $l(A) = l(B)$   $l(B) = l(A) = l(B)$   $l(B) = l(A)^2 + l(B)^2 - 2l(A) l(B) ces  $\gamma = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = minimized A = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = minimized A = l(A)^2 + l(B)^2 - 2l(A) l(B) ces \overline{\gamma} = minimize$$$ 

Runk: If (M', g) is a complete Riem might with 
$$\pi_{1}M = \{i\}$$
 and  $\sec 0$   
then by Cartan-Hadamord  $\exp_{1}: T_{1}M \rightarrow M$  is a differ, so given any  
 $q \in M$  there is a jungue geodesic joining  $\beta$  and  $q$ , which is hence  
minimizing (b/c there exists some minimizing geodesic by the River).  
 $\int_{1}^{1} \pi_{1}^{1} q$  differ  
 $\int_{1}^{1} \pi_{1}^{1} q$  differ  

Prop. Given a deck transformation 
$$f: \widetilde{M} \rightarrow \widetilde{M}$$
, there exists a geodene  $\widetilde{\gamma}$  in  $\widetilde{M}$   
st.  $f$  is a translation along  $\widetilde{S}$ . for however, Then  
 $\widetilde{M} = \widetilde{f} \times \widetilde{p}$  for some  $\alpha \in Til(M, p)$ . Let  $\gamma \wedge \alpha$  be a cloud geoderic. Then  
 $\widetilde{M} = \widetilde{p} \times \widetilde{p}$  is a translation of  $\widetilde{S} = \widetilde{f} \times \widetilde{p}$  is construction.  
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} \in \operatorname{Aut}(\widetilde{M})$  is s.  $h(\widetilde{S}) = \widetilde{\gamma}$ ; by construction.  
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} \in \operatorname{Aut}(\widetilde{M})$  is s.  $h(\widetilde{S}) = \widetilde{\gamma}$ ; by construction.  
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} \in \operatorname{Aut}(\widetilde{M})$  is s.  $h(\widetilde{S}) = \widetilde{\gamma}$ ; by construction.  
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} = \widetilde{f} \times \widetilde{p}$ .  
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} = \widetilde{f} \times \widetilde{p} = \widetilde{f} \times \widetilde{p}$ .  
 $\widetilde{M} = \widetilde{p} \times \widetilde{p} = \widetilde{f} \times \widetilde{p}$ 

$$\begin{split} & \sum_{i=1}^{n} \Delta_{i} + \sum_{i=1}^{n} \Delta_{i} \geq 2\pi \\ & \text{int. anylos} \quad \text{int. anylos} \quad \text{int. anylos} \quad \text{form last} \\ & \text{So} \sum_{i=1}^{n} \Delta_{i} \geq \pi \quad \text{for } (i=1 \text{ or } 2; \quad \text{constructiving } \underline{Con.}, \quad \text{form last} \\ & \text{lectric} \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{D} \\ & \text{lectrice } \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{lectrice } \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{lectrice } \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{lectrice } \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{lectrice } \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{lectrice } \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{lectrice } \quad \text{that} \quad \sum_{i=1}^{n} \Delta_{i} < \pi \quad \text{g} \quad \text{sec} < 0. \\ & \text{lectrice } \quad \text{that} \quad \text{formulations we translations along \quad \text{the commuting geodesic.} \\ & \text{geodesic.} \\ & \text{geodesic.} \quad \text{formulations we translations along \quad \text{the fight} = \pi_{i} \quad \text{then} \\ & f_{i} (f_{i}^{*}(f_{i}^{*})) = f_{i}(f_{i}^{*}(f_{i}^{*})) = f_{i}(f_{i}^{*}) \quad \text{so } f_{i} \quad \text{foresonano } f_{i}(f_{i}^{*}) \quad \text{hence} \\ & f_{i}(f_{i}^{*}) = f_{i}^{*} \quad \text{so } \text{the inpresent } \text{above, } f_{i}^{*} = f_{i}^{*} \quad \square \\ \\ & \text{Then } \left( \text{Pressonano, 1943} \right). \quad \text{If } (M, g) \quad \text{is a closed } \text{Rem. milde with sec < 0} \\ & \text{and } H < \pi_{i} \text{M } \text{ is Abelian, } H \neq f_{i}^{*} f_{i}^{*}, \quad \text{then } H \equiv \mathbb{Z}. \\ \\ & \text{Plue } H < \pi_{i} \text{M } \text{ be thalson, } \text{and } f_{i} \text{ be must of unity } \text{sec < 0} \\ & \text{and } H < \pi_{i} \text{M } \text{ be thalson, } \text{and } f_{i} \text{ be must of using } \text{sec } f_{i} \text{ along } \text{sec } f_{i} \text{ along } \text{sec } f_{i} \text{ along } f_{i} \text{ be must of using } f_{i} \text{ box } f_{i} \text{ be must of using } f_{i} \text{ box } f_{i} \text{ be must of using } f_{i} \text{ box } f_{i}$$

with sec >0 and fundamental group Zz @Zz.

Pt: Apply ODE composison from Lectures 19-20:  
Thus Let 
$$R_1, R_2: \mathbb{R} \to Sym^2 E$$
 be smooth curves with  $R_1(t) \ge R_2(t)$ ,  $\forall t$   
Let  $S_i: [t_0, t_i) \to Sym^2 E$  be the maximul solutions to  $S_1' + S_1^2 + R_1 = 0$   
Let  $S_4(t_0) \le S_2(t_0)$ , then  $t_A \le t_2$  and  $S_4(t) \le S_2(t)$  for all  $t \in [t_0, t_4)$ .

Setting 
$$E=R$$
,  $R_1 = r$ ,  $R_2 = K$ ,  $\delta o$  (i)  $\Rightarrow r \geq K \Rightarrow P_1 \geq R_2$   
 $S'_1 + S^2_1 + R_1 = 0 \iff a' + a^2 + r = 0$   
 $S'_2 + S^2_2 + R_2 = 0 \iff a' + a^2 + K = 0$ .

$$\frac{R_{\rm m}K_{\rm s}}{S|t} \sim \frac{4}{t-t_0} \, {\rm Id} \, , \quad \overline{\alpha} = \frac{SN_{\rm K}'}{SN_{\rm K}} \quad {\rm where} \quad \begin{cases} SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}' + K_{\rm s}SN_{\rm K} = 0 \\ SN_{\rm K}'' + K_{\rm s}SN$$

Let 
$$J_{1}, ..., J_{n-1}$$
 be Jacobi fields along  $\gamma$   
that form a basis of solutions to  
 $J' = SJ$  ( $S: V^{\perp} = V^{\perp}$ )  
and set  $j=det(J_{1}, J_{2}, ..., J_{n-1})$ . all  
identified vie  
prollet transport

$$= +r \cdot S - 2 \operatorname{det} (0) \times r \cdot \gamma = 0 \quad \text{or:} \quad \mathcal{Q}(\det)_{I} \times = +r \cdot \chi \text{ where generatly, if}$$

$$A \text{ is invertible, } d(\det)_{A} \times = (\det A) + r (A^{-1} \times)$$

$$Let \quad \mathfrak{g}(t) = \det A(t), \quad \text{where } A(t) = (\mathfrak{I}_{1}(t), \dots, \mathfrak{I}_{n-1}(t)).$$

$$j'(t) = d(\det)_{A(t)} A'(t) = (\det A(t)) + r (A(t)^{-1} A^{2}(t))$$

$$= \mathfrak{g}(t) \cdot + r (A^{-1}(t) \cdot S(t) \cdot A(t)) = (\operatorname{tr} S) \cdot \mathfrak{g} \quad M$$

Since 
$$d(eqp)_{tv} c_{i} = \frac{1}{4} (d(eqp)_{tv} tc_{i}) = \frac{1}{4} J_{i}(t)$$
 is the Jacobi field  
along  $t_{1 \rightarrow 0}$  exp tv with  $J_{i}(0) = 0$  and  $J_{i}(0) = e_{i}$ ,  $tt$  follows that  
 $det(d(eqp)_{tv}) = \frac{1}{4^{tv-1}} det(J_{i}(t), ..., J_{n-1}(t))$  and hence:  
 $Ve(Br(q)) = \int_{S^{n-1}(1)} \int_{0}^{r(1)} \frac{det(J_{i}(t), ..., J_{n-1}(t))}{(j_{1}(t))} dt dv$  as  $j_{1}(t) = 0$  for  
 $J_{i}(t)$ .  
By previous result,  $J_{i}(t)/J_{i}(t)$  is maximereasing on  $[0, -]$ , where  
 $J(t) = det(\overline{J}_{i}, ..., \overline{J}_{n-1})$ , for corresponding Jacobi fields  $\overline{J}_{i}$  on  $\overline{M}$ .  
 $J(t) = det(\overline{J}_{i}, ..., \overline{J}_{n-1})$ , for corresponding Jacobi fields  $\overline{J}_{i}$  on  $\overline{M}$ .  
Set  $q(t) = \frac{1}{Vel(S^{n-1}(1))} \int_{S^{N-1}(1)} \frac{j_{i}(t)}{J_{i}(t)} dv_{1}$  which is also man-increasing  
(because  $it$  is an everage of maximereasing quantities). As before,  
 $Vel(Br(p)) = \int_{S^{N-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$   
 $Vel(Br(p)) = \int_{S^{N-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$   
 $Vel(Br(p)) = \int_{S^{N-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$   
 $J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$   
 $J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$   
 $J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$   
(because  $i$  this an everage of  $Nextivereasing quantities)$ . As before,  
 $Vel(Br(p)) = \int_{S^{N-1}(1)} \int_{0}^{r} J_{i}(t) dt dv = Vel(S^{n-1}) \int_{0}^{r} J_{i}(t) dt$   
 $J_{i}(t) dt$   
 $J_{i}(t) dt$   
 $J_{i}(t) dt$   
 $J_{i}(t) dt$   
 $Vel(Br(p)) = Vel(S^{n-1}(i)) \int_{0}^{r} J_{i}(t) dt dv$   
 $i$  the model increasing function  $q(t)$  over growing intervals.

the inequalities using Bidop We comp above are caulities. Thus,  
from rigidity in the equality case of Bisdop Ve course, we have  
$$B_r(p) \cong B_r$$
 and  $B_{\overline{T}, r}(q) \cong B_{\overline{T}, r}$ , thus  $M \cong S^n(Ver)$ .  
 $P(p) \cong B_r$  and  $B_{\overline{T}, r}(q) \cong B_{\overline{T}, r}$ , thus  $M \cong S^n(Ver)$ .  
 $P(p) \cong B_r$  and  $B_{\overline{T}, r}(q) \cong B_{\overline{T}, r}$ , thus  $M \cong S^n(Ver)$ .  
 $P(p) \cong S^n(Ver)$  Indeed, there is no room for  
only  $M \setminus (B_r(p) \cup B_{\overline{T}, r}(q))$  because  
that usual increase the diameter.  
 $Dpen Problem:$  If  $(M^n, g)$  has  $Ric \ge (n-4)K > 0$  and  
 $Vel(H, g) > \frac{4}{2}$  Vel $(S^n(L/Ver))$ , then  $M \cong S^n$ .  
 $Upper Problem:$  If  $(M^n, g)$  has  $Ric \ge (n-4)K > 0$  and  
 $Vel(H, g) > \frac{4}{2}$  Vel $(S^n(L/Ver))$ , then  $M \cong S^n$ .  
 $Upper Problem:$  If  $(M^n, g)$  as above is simply connected.  
Hint:  $(P \cap S \cap s is not scouply connected, take is universal covering.$   
Lecture  $\frac{4}{23} = 5/(1/2024)$   
A quick teste of Geometric Group Throop.  
 $M_K^n = # \{g \in \Gamma : g = g_1 \cdots g_K, with g: \in G \}$  To the own of the owner  
with eeg and G-2G. Then define growth function for  $\Gamma : F=(ab)$   
 $N_K^n = # \{g \in \Gamma : g = g_1 \cdots g_K, with g: \in G \}$  To the owner with the two the  
metric of product for a function of  $\Gamma$  is function the  
metric of product of K quicesto  
in the first function of  $G$ .  
 $M_K^n = M_{CK}^n$  and  $N_K^n \equiv N_{CK}^n$  for some constants  $C_1D > 0$ ,  
so can ignore choice of gen. set G for questions below

• 
$$\underline{G}$$
: Hav doe Nx grow with X? Polynowedle? Exponentiall?  
Then (Hilder '68). If (M'3) is complete and has  $Re \ge 0$ , then  
any finitely generated subgrop  $\Gamma < \tau_{5}M$  has  $N_{k} \le C \cdot K^{n}$ .  
R: Choose  $o \in M^{n}$ , and lat  $V(r) = Vol(Br(o))$ . By Bishop Volume Comp,  
 $V(r) \le Vol(B_{r(o)}^{(n)}) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+4)} r^{n}$ . Let  $G = \frac{1}{2}g_{1,\dots,g_{p}} S$  be the  
fixed generating set for  $\Gamma < \tau_{5}M$  and  $\mu = \max dist(0, g; o)$ .  
Then  $B_{\mu,\kappa}(\sigma)$  has at least  $N_{k}^{G}$  distinct points  
of the form  $g \cdot \sigma_{1}$  with  $g \in \Gamma$ . Choose  $E \ge 0$  s.t.  
 $g \cdot B_{E}(\theta) \cap B_{E}(\theta) = \phi$  if  $g \neq e$ . Then  $B_{\mu,\kappa_{12}}(\sigma)$  has at least  
 $N_{k}^{G}$  disjoint subjects of the form  $g \cdot B_{E}(\sigma)$ , so  
 $N_{K}^{G} \cdot V(\epsilon) = Vk(\Pi, g, B_{E}(\sigma)) \le V(\mu K + \epsilon)$   
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} \le \frac{C}{V(\mu K + \epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} \le \frac{C}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \ge \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Thus  $N_{k}^{G} \le \frac{V(\mu K + \epsilon)}{V(\epsilon)} = C \cdot K^{n}$ .  
Exc. Fundamental growth, thus, cannot be  $\pi_{1}$  of model and  $N_{k}^{G} \ge 0$ .  
 $G \cdot C \cdot C \cdot C^{n}$  is a sode  $T$  in the sode  $T$  is a sode  $T$ .  
Exc. Fundamental growth, thus, cannot be  $\pi_{1}$  of more  $\alpha > 1$ .  
Exc. Fundamental growth, thus, cannot

.

<

.

Lo



Let ViETOM be the unit vector tangent to the min. geod. from o to give. By the above, the distance (on the unit sphere on ToM) between  $V_i$  and  $V_j$  is  $\alpha_{ij} \ge \frac{\pi}{3}$ , so the balls of radius  $\frac{\pi}{6}$ centered at vi and vi must be disjoint. (This already proves i there can be only finitely many vi's, hence finitely many gis マちろ So  $\Gamma = \pi_1 M$  is finitely generated.) Moreover, as  $|g_i^{-1}| = |g_i|$ , we must also have that distance from  $-V_i$  to  $V_j$  is  $\exists \pi_3 v_j^{-1} i < j$ , therefore the number of  $V_i$ 's is: īζ ΤσÃ  $\# \{g_i\} = \# \{v_i\} \leq \frac{\operatorname{Vol}(\mathbb{RP}^{n-1}(1))}{\operatorname{Vol}(\mathbb{B}_{\pi/6}^{n-1}(v))} = \operatorname{Volume}_{\substack{t \in S^{n-1} \subset T_0 : H_i}}^{\operatorname{Volume}} disjoint}_{\substack{t \in S^{n-1} \\ ball around \pm v_i \in S^{n-1}}}$ 

Standard Computations give:  
When a spherical hold of radios 
$$\tau$$
 is  
Note  $(B_{2K}^{S^{-1}}(v)) \ge Vol (B_{Sin}^{R^{-1}}(o)) = \frac{\pi}{\Gamma(\frac{N+1}{2})} e^{N-1}$   $(\Gamma(\tau)) = Concerts of PT:$   
 $Vol (B_{2K}^{S^{-1}}(v)) \ge Vol (S_{in}^{R^{-1}}(o)) = \frac{\pi}{\Gamma(\frac{N+1}{2})} e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
 $Vol (RP^{n-1}(i)) = \frac{1}{2} Vol (S_{in}^{N-1}(i)) = \frac{\pi}{\Gamma(\frac{N}{2})} e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
So  $\# \{g_i\} = \# \{V_i\} \le \frac{\pi}{\Gamma(\frac{N+1}{2})} e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
So  $\# \{g_i\} = \# \{V_i\} \le \frac{\pi}{\Gamma(\frac{N}{2})} e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
So  $\# \{g_i\} = \# \{V_i\} \le \frac{\pi}{\Gamma(\frac{N+1}{2})} e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N}{2})) e^{N-1}$   $(\Gamma(\frac{N}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N}{2})) e^{N-1}$   $(\Gamma(\frac{N}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N+1}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N+1}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N-1}$   
F( $\frac{N}{2}$ )  $(\Gamma(\frac{N+1}{2})) e^{N-1}$   $(\Gamma(\frac{N+1}{2})) e^{N$ 

Thm. If G is a connected Lie gp, there is a variable simply  
connected Lie group 
$$\overline{G}$$
 and a Lie gp homomorphism  $\pi:\overline{G} \to \overline{G}$   
which is a covering map.  
E.g.,  $\mathbb{R}^{M} \to \overline{T}^{M}$ ,  $SU(2) \longrightarrow SO(3)$ ,  $SU(2) \times SU(2) \longrightarrow SO(4)$   
 $Sp(2) \longrightarrow SO(5)$ ,  $SU(4) \longrightarrow SO(6)$ 

Prop. A Lie gp honomorphism 
$$\pi: G_1 \rightarrow G_2$$
 between convicted  
groups is a overng wap if  $d\pi_e: q_1 \rightarrow q_2$  is an isomorphism.  
Pl. A covering map is a local diffeo, so  $\Rightarrow$  is clear.  
Conversely, if  $d\pi_e$  is an isour, by Inv. Fund. Thun,  $\exists U \subset G_1$  and  
 $V \subset G_2$  neighborhoods of the identity, s.t  $\pi(v: U \rightarrow V)$  is  
a diffeo. By Lemma, given  $h \in G_2$ ,  $h = h_1^{\pm 1} \cdots h_n^{\pm 1} = h$ , so  
and  $\exists g_i \in V$  s.t.  $\pi(g_i) = h_i$  so  $\pi(g_i^{\pm 1} - g_n^{\pm 1}) = h_i^{\pm 1} \cdots h_n^{\pm 1} = h$ , so  
 $\pi$  is a surjective homomorphism. One then correly checks it  
is a covering map with deck transf.  $gp$ . Ker  $\pi$ .  $\Box$   
Lemma. If  $\varphi_i \, \varphi_i = G_2$  are lie  $gp$  homomorphisms,  $G_i$  connected  
and  $\Theta: q_i \rightarrow q_2$  a Lie algebra homomorphism,  $d\varrho = dVe=0$ , the  
 $\varphi = \varphi^2$ .  
Pl. Consider the graph of  $\Theta$ ,  $h := \xi(X, \Theta(K)) : X \in g_i$ , which  
is a Lie subalgebra of  $g_i \oplus g_2$ . By a Theorem drave, there exists a  
anyor convected Lie subgroup H of  $G_i \times G_2$  with Lie algebra h.

$$\begin{cases} G_{2} & \text{Then } \mathcal{T}: G_{1} \rightarrow G_{1} \times G_{2} \\ g \mapsto (g, \varphi(s)) \\ \text{is a Lie } g_{2} \cdot homon, with  $d\sigma(X) = (X, \theta(s)) \\ f \sigma & \text{is a Lie } ag_{2} \cdot homon, and  $\sigma(G_{1}) \subset G_{1} \times G_{2} \\ \text{Lie above a sith Lie algebra } h. By uniquenos,  $\sigma(G_{1}) = H. \\ So veplacing & \phi \text{ with } \mathcal{T}, \text{ if } dg_{2} = d\mathcal{F}_{2} = 0, we would obtain \\ \text{the source subgroup of } G_{1} \times G_{2}, which is the graph of the homomorphism } g = \mathcal{F}. \\ \hline \\ \hline \\ Imm \cdot J_{4} \Theta: g_{1} \rightarrow g_{2} \quad \text{is a Lie algebra homomorphism, and } G_{1} \\ \text{the proph of and simply connected, then } \exists f: G_{1} \rightarrow G_{2} \text{ unique } f \\ \text{the group homomorphism } u & df_{2} = 0. \\ \hline \\ f_{1} & \text{to unprove homomorphism } u & df_{2} = 0. \\ \hline \\ f_{2} & \text{the momomorphism } u \\ f_{1} & \text{to unprove homomorphism } f \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ f_{1} & \text{to unprove homomorphism } u \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{1} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} & \text{to unprove homomorphism } u \\ \hline \\ f_{2} &$$$$$

Since 
$$d(\pi, oi)$$
 is an isom,  $(\pi, oi): H \longrightarrow G$ , is a covering  
Map. As G, is simply connected,  $\pi, oi : = differences plusen
so can be globally inverted, here  $f: G_1 \longrightarrow G_2$  can be  
globally defined a  $f=\pi_2 \circ (\pi_1 \circ i)^{-1}$ . Unqueues fillows for Lema  
 $f=\pi_2 \circ (\pi_1 \circ i)^{-1}$ . Unqueues fillows for Lema  
 $f=\pi_2 \circ (\pi_1 \circ i)^{-1}$ . Unqueues fillows for Lema  
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$ . Unqueues for lier for Lie groups  
 $G_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$ . Unqueues fillows for Lier of the fillows  
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$ . Unqueues for lier of the fillows  
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$ . Unqueues for lier of the fillows  
 $f=\pi_1 \circ (G_1 \circ G_2 \circ (\pi_1 \circ i))^{-1}$ . Unqueues fillows  
 $f=\pi_1 \circ (G_1 \circ G_1 \circ G_1 \circ (\pi_1 \circ i))^{-1}$ . Unqueues for lier of the fillows  
 $G_1 \circ (G_1 \circ G_1 \circ G_1 \circ (\pi_1 \circ G_1 \circ G_1 \circ G_1))^{-1}$ . Use of the groups  
 $G_1 \circ (G_1 \circ G_1 \circ G_1 \circ (G_1 \circ G_1))^{-1}$ . The Lie algebra homomorphism  $f:R \to f$ ,  
 $f(1) = fX$  (for some fixed  $X \in f$ ) "integrates" to a unique  
 $1 - proven.$  subgroup  $\lambda_X: R \to G : \lambda_X(0) = X$ , which is also  
the integral curve through  $e \in G$  of the lift-invoriant  
Nector field  $X:$   
 $\lambda'_X(t) = \frac{d}{ds} \lambda_X(t+s)|_{S=0} = dL_{\lambda_X(t)} \lambda_X^{-1}(0) = dL_{\lambda_X(t)} X = X_{\lambda_X(t)}$   
 $\frac{d}{ds}$ . The (Lie) exponential of the Lie group  $G$  is  
 $e \times f: g \longrightarrow G$ ,  $e \exp(X) = \lambda_X(d)$   
 $\frac{d}{ds}$ . The (Lie) exponential of the Lie group  $f$  is  
 $e \times f: g \longrightarrow G$ ,  $e \exp(X) = \lambda_X(d)$ .$ 

Lecture 25 
$$5/8/2024$$
  
Recap last lecture.  
Resp: exp:g-=> G stables the following properties  
(i) exp(tX) =  $\lambda_X(t)$   
(ii)  $exp(t,X + t_X) = exp t_X \cdot exp t_X$   
(iii)  $exp(t,X + t_X) = exp t_X \cdot exp t_X$   
(iv)  $exp: T_G \rightarrow G$  is smooth and  $d(exp)_0 = id$ , hence  $exp \Rightarrow a$ -local  
differs from neighborhood of  $O \in T_G G$  to merghborhood of  $e \in G$ .  
R: Let  $\lambda(s) = \lambda_X(st)$ . Differentiating at  $s=0$ , we have  
 $\lambda'(o) = \frac{d}{ds} \lambda_X(st)|_{s=0} = \lambda_X'(o) t = t_X$ .  
Thus, by uniqueness of the 1-parameter subgroup with initial  
value  $d_X(st)|_{s=0} = \lambda_X(s) + \frac{d}{ds} \lambda_X(st)|_{s=0} = \frac{d}{ds} \lambda_X(st) = \frac{d}{ds} \lambda_X(st)$ 

So, setting 
$$b=1$$
,  $exp(Ad(g)X) = g \cdot exp X \cdot g^{-1}$   
Differentiating equation, we have:  $ad(X) : g \rightarrow g$ ,  $ad(X) Y = dAd_e(X) Y$   
which is a lie algebra representation  $ad: g \rightarrow End(g)$ .  
By the Chown Rule,  
 $ad(X)Y = \frac{d}{dt} Ad(exp tX)Y|_{t=0}$   
State exp and he gp/ag, homomorphisms commute,  
 $Ad(exp(tX)) = exp(tod(X))$   
BD, setting  $t=1$ , we see that the fillowing diagram commutes  
 $q \xrightarrow{ad} End(g)$  inder  $Aut(g) \xrightarrow{barden} given by isomorphisms$   
 $exp[] = exp(tod(X))$   
 $BD, setting  $t=4$ , we see that the fillowing diagram commutes  
 $q \xrightarrow{ad} End(g)$  inder  $Aut(g) \xrightarrow{barden} given by isomorphisms$   
 $exp[] = exp(tx),$   
 $exp(] = Ad \rightarrow Aut(g) \xrightarrow{barden} given by isomorphisms$   
 $g \xrightarrow{ad} Aut(g) \xrightarrow{barden} given by isomorphisms$   
 $exp[] = g \xrightarrow{c} p(tX) exp(tY) exp(-tX) = exp(tY + t^2(X,Y] + 0)t^2),$   
 $g \xrightarrow{barden} given by isomorphisms$   
 $exp(Ad(g) tY) = g \cdot exp(tY) \cdot g^{-1} = exp(tY + t^2(X,Y] + 0)t^2),$   
 $g \xrightarrow{barden} given by isomorphisms$   
 $ad(X)Y = tY + t^2[X,Y] + 0(t^2)$   
so dividing by t and differentiating at  $t=0$ , we have  
 $ad(X)Y = \frac{d}{dt} Ad(exp(X)Y|_{t=0} - \frac{d}{dt} Y + t[X,Y] + 0(t^2)|_{t=0} - [X,Y].$$ 

Def. The cuter of a Lie of G is 
$$Z(G) = \{g \in G: ghg^{-1} = h, the G\}$$
  
and the cuter of a Lie of g is  $Z(g) = \{X \in g : [X, Y] = 0 \forall \forall \notin g\}$ .  
Prog: If G is connected, then  $Z(G) = Ker$  Ad is a  
mormal Lie subgroup of G, with Lie algebra  $Z(g) = Ker$  ad.  
Pf. If  $g \in Z(G)$ , then  $ag = id$  so  $Ad(g) = rd$ . Conversely, if  
getter Ad, then  $g(\exp tX)g^{-1} = \exp(tX)$  for all  $X \in g$ ,  
so g commutes with all elements in a meighterhood  
of  $e \in G$ , hence with all elements in G = G. Since  
 $Z(G) \neq G$  is alored, it is an embedded Lie subgroup. Since  
 $dAd|_{g} = ad$ , it follows that its Lie algebra is Ker od. []  
Runk: If  $\pi: G = G$  is a covering of connected Lie gps,  
then Ker  $\pi$  is a discrete subgroup of  $Z(G)$ .  
Ledvice  $dG = S/so(2024)$   
Def. A Recun metric (:,?) on a Lie group G is left -invorcent  
 $(d(L_{g})_{h}X, d(L_{g})_{h}Y)_{gh} = \langle X_{i}Y \rangle_{h}$   
Similarly, it is right - invariant if  $R_{2}: G = G$  is an isometry by  $G$ .  
Note that an inner groudoct (:,?) on TeG defines a unique  
left invariant metric on G:  $(X,Y)_{g} = (d(L_{g})_{g}X, d(L_{g})_{g}Y)_{g}$ 

A metric on G is bi-invariant if H is lift and right-invariant.  
Prop. Compart Lie groups advant bi-invariant metrics.  
Prop. Compart Lie groups advant bi-invariant metrics.  
Prop. Let westing when 
$$R_{1}^{+}$$
 we a right-invariant volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is inverse metrics is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we is it. The signs is a given volume form we give the second of the signs is a given inverse for the second of the second

(onversely, the geodesic 
$$\chi: (-\xi, \xi) \rightarrow G$$
 with  $\chi(b) = e$ ,  $\chi(b) = \chi$  is  
 $\chi(H) = \exp(i\chi)$ , so can be extended to  $\chi: R \rightarrow G$ . Thus,  
exp and  $\exp_{e}$  connect Lie  $\chi_{P}$ , then it has a bi-invariant  
 $\Pi_{P}$  G is a compact Lie  $\chi_{P}$ , then it has a bi-invariant  
matric, and  $\exp_{e} = \exp_{P}$ , so  $\exp_{e}: TeG \rightarrow G$  is globally defined  
matric, and  $\exp_{e} = \exp_{P}$ , so  $\exp_{e}: TeG \rightarrow G$  is globally defined  
 $M_{e} \exp_{P}: \chi \rightarrow G$  is, hence G is complete by Hapf-Rimon.  
 $Thus, \exp_{e}: TeG \rightarrow G$  is surjective, so  $\exp_{P}: \chi \rightarrow G$  is sorjective.  
 $Thus, \exp_{e}: \chi = G$  is surjective, so  $\exp_{P}: \chi \rightarrow G$  is sorjective.  
 $Thus, \exp_{e}: \xi(2, \mathbb{R}) \rightarrow SL(2, \mathbb{R})$  is met sorjective, so  $SL(2, \mathbb{R})$   
 $\frac{1}{dvo}$  and admit a bi-invariant metric.  
 $\frac{1}{dv}$  The Villing form of  $g'$  is  $B: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$  given by  
 $B(\chi, Y) = tr (al(\chi) - al(Y))$ . Symmetric be trades that  
 $The Lie group is called semissimple if B is mondegenerate
 $\frac{1}{M}$   $\Pi(\mathcal{P}; \mathcal{A} \rightarrow \mathcal{A} \text{ is a Lie algebra automorphism, then
 $ad(p(x), \varphi(Y)) = (p(X), \varphi(Y)] = \varphi([\Sigma, Y]) = (\varphi \circ al(\chi))(Y)$   
so  $ad(p(X)) = \varphi \circ al(X) \circ \varphi^{-4}$  Thus,  
 $B(\chi, Y) = -2\pi \operatorname{Retr}(XY^{*})$   
 $= tr (\varphi al \chi \varphi^{-1} \varphi al Y \varphi^{-1})$   
 $= tr (\alpha d \chi ad Y) = B(X,Y).$   
 $Apply, the dose to  $\varphi = \operatorname{Ad}(\chi)$ .  $\square$   
 $37$$$$ 

Rink. I is semisimple iff 
$$\mathcal{Y} = \mathcal{Y}_{4} \oplus \cdots \oplus \mathcal{Y}_{k}$$
, where  $\mathcal{Y}_{i} \bigtriangleup \mathcal{Y}_{i}$  ore  
Simple Lie elgebros, i.e., non commutative simple ideals of  $\mathcal{Y}_{i}$ .  
Thun. If  $\mathcal{Y}_{i}$  has a bi-invariant metric  $Q$ , then  $\mathcal{Y} = \mathcal{Y}_{4} \oplus \cdots \oplus \mathcal{Y}_{k}$  is  
the orthogonal direct sum of simple ideals (some may be thelian).  
The connected simply-connected Lie  $\mathcal{Y}_{p} \oplus with$  Lie algebre  $\mathcal{Y}_{i}$   
is the product of normal Lie subgroups  $\widetilde{G} = G_{1} \times \cdots \times G_{k}$ , s.t.  
 $G_{i} = \mathbb{R}$  if  $\mathcal{Y}_{i}$  is Abalian, and  $G_{i}$  is compact if  $\mathcal{Y}_{i}$  is mot Abalian.  
PL Sie back.  
 $\mathcal{Or}$ : If  $\mathcal{Y}_{i}$  has a bi-invariant metric, then  $\mathcal{Y} \cong Z(\mathcal{Y}) \oplus [\mathcal{Y}_{i} \mathcal{Y}]$ .  
 $\mathcal{Or}(Weyl)$ . If  $G$  is a compact Lie  $\mathcal{P}_{i}$  with functe center, then  
 $\pi_{i}G$  is finite and hence every Lie  $\mathcal{P}_{i}$  with Lie algebre  $\mathcal{Y}_{i}$  is  
Compact.

Pl. 6 compact 
$$\Rightarrow$$
 4 has bi-inv. matrix.  
 $|Z(G)| < \infty \Rightarrow Z(q) = 20$   $\Rightarrow 2(q) = 20$   $\Rightarrow q$  is semisimple.  
 $(G_1-B)$  is Einstein  $w/R_{ic} \ge \frac{1}{4}$ , so  $|\pi_1G| < +\infty$  by Myers.  
Thus, G is compact, and any Lie gp. with Lie algebra  
Q is a quotient of G, hence also compact.  
 $g$  is a quotient of G, hence also compact.  
by the above, the classification of compact Lie groups reduces  
to the classification of simple Lie groups. Killing +  
the classification of simple Lie groups. Simple 39

Lecture 27 
$$5/15/2024$$
  
From last time: if G is a compact Lie gp, if admits a bi-inv metric  
Q and (G,Q) has  $R \ge 0$ ; in particular sec  $\ge 0$ .  
Homogeneous Space  
Def: (M<sup>n</sup>,g) is a homogeneous space if  $R$  has a transitive ection  
by isometrico:  $\exists G < Isom(Mn,g) = t$ .  $G(p)=M$ .  
If  $H = G_p = \{g \in G : g, p = p\}$ , then  $M = G(p) = G/H$ .  
Ex:  $S^n = \frac{O(n+1)}{O(n)} = \frac{SO(n+3)}{SO(n)}$ ,  $RP^n = \frac{SO(n+1)}{SO(n)O(1)} = \{A : \{A = 1\}\}, A = O(n)\}$   
 $P$  O(n+1)  $\land S^n \subset R^{n+2}$   
 $\Rightarrow SO(n) Ale$ .  
 $P^n = \frac{U(n+1)}{U(n)U(1)} = \frac{SU(n+1)}{SU(n)U(1)}$   
 $(M^n) \cap A \subseteq S^n = O(n)$   
 $P^n = \frac{U(n+1)}{U(n)U(1)} = \frac{SU(n+1)}{SU(n)U(1)}$   
 $(M^n) \cap A \subseteq S^{n+1} \subset C^{n+4}$   
 $isotrop at p \in S^n = O(n)$   
 $P^n = \frac{U(n+1)}{U(n)U(1)} = \frac{SU(n+1)}{SU(n)U(1)}$   
 $(M^n) \cap A \subseteq S^{n+1} \subset C^{n+4}$   
 $(M^n) \cap A \in S^n = O(n)$   
 $(M^n) \cap A \subseteq S^n = O$ 

Cor. In the doore situation: 
$$\begin{cases} G-inv. metrics \ (i) \ (indices on M) \\ Mathematical Mathematical (indices on G) \\ Mathematic$$

Spring 2019 #3  
Prove that area of hyperbolic polygon w/ n peodenic  

$$\beta_{i}$$
  $\beta_{i}$   
 $\beta_{i} = 1$   $\beta_{i}$ 

Fall CUCL 442.  
Prove that 
$$\Sigma_{1}^{2} \subset \mathbb{R}^{3}$$
 will genus  $g \neq \mathbb{Z}$  has an open set with  $Sec < 0$ .  
 $Prove that  $\Sigma_{1}^{2} \subset \mathbb{R}^{3}$  is closed embedded so  $\exists p \in \Sigma_{1}^{2}$   
at maximal distance from  $O \in \mathbb{R}^{3}$ , and  
 $frus sec_{p} > 0$ . (bring possible planes from informly)  
 $\mathbb{B}_{1}$  contravity,  $Sec_{p} > 0$  on  $\mathbb{B}_{\mathbb{E}}(p)$ .  
 $\mathbb{E} \int_{\Sigma_{1}^{2}} sec = 2\pi \chi(\Sigma_{1}^{2}) = 2\pi(2-2g) < 0$  so  $\exists V \subset \Sigma_{q}^{2}$  will Area(U) > 0 st.  $\int sec < 0$ .  
Rink:  $\exists f(M^{2},g)$  is complete, monicompact, and  $\int sec < +\infty$ , then  $\int_{M} sec \leq 2\pi \chi(M)$ .  
(e.g., on  $M = \mathbb{R}^{2}$  flat.  $0 < 2\pi$ .)  
Some computational questions:  
 $fall 2022 \pm 1$ . Compute sec of  $(\mathbb{R}^{2}, e^{2\ell}(dx^{2}+dy^{2}))$  where  $f: \mathbb{R}^{2} \to \mathbb{R}$  is someth.  
 $\chi = e^{\frac{1}{2}} \frac{2}{2\pi} (e^{-\frac{1}{2}}\frac{2}{2\pi}) - e^{-\frac{1}{2}} \frac{e^{-\frac{1}{2}}\frac{2}{2\pi}}{2\pi}$   
 $= e^{\frac{1}{2}} \left(e^{-\frac{1}{2}}(e^{-\frac{1}{2}}\frac{2}{2\pi}) - e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}}(e^{-\frac{1}{2}}\frac{2}{2\pi}) - e^{-\frac{1}{2}}\frac{2}{2\pi}\frac{e^{\frac{1}{2}}\frac{2}{2\pi}}{2\pi}$$ 

$$= e^{-2t} \left( \frac{\vartheta}{\vartheta_{1}} \frac{\vartheta}{\vartheta_{x}} - \frac{\vartheta}{\vartheta_{x}} \frac{\vartheta}{\vartheta_{1}} \right) \phi = e^{t} \left( \frac{\vartheta}{\vartheta_{1}} \times - \frac{\vartheta}{\vartheta_{x}} \times \right) \phi$$
  
So  $[\chi, \gamma] = e^{-t} \left( \frac{\vartheta}{\vartheta_{1}} \times - \frac{\vartheta}{\vartheta_{x}} \times \right)$ .
  
Nual
  
Sec  $(\chi \land \gamma) = \frac{\langle \mathcal{R}(\chi, \gamma) \gamma, \chi \rangle}{|\chi t^{2}||\gamma||^{2} - \langle \chi \gamma \rangle^{2}} = \frac{\langle \nabla_{\chi} \nabla_{\gamma} \gamma - \nabla_{\gamma} \nabla_{\chi} \gamma - \nabla_{(\chi, \gamma)} \gamma, \chi \rangle}{e^{-2t} e^{-2t}}$ 
  
By Kasol:  $(\nabla_{\gamma} \chi, z) = \frac{1}{2} \left( \chi \left( g(\gamma, z) \right) + \chi \left( g(z, \chi) \right) - Z \left( g(K\gamma) \right) \right)$ 
  
There vanch on an entermal frame?  $-g([\chi z], \gamma) - g([\chi, z], \chi) - g([\chi, \gamma], z))$ .
  
Before computing a lat---
  
 $g(\chi, \chi) = 1$  so  $0 = \chi g(\chi, \chi) = \vartheta g(\nabla_{\chi} \chi, \chi)$   $g(\nabla_{\chi} \chi, \chi) = \frac{2}{3} (\nabla_{\chi} \chi, \chi)$   $g(\nabla_{\chi} \chi, \gamma) = -\frac{2}{3} (\nabla_{\chi} \chi, \chi)$ 
  
 $g(\chi, \chi) = 4$  so  $0 = \chi g(\chi, \chi) = \vartheta g(\nabla_{\chi} \chi, \chi)$   $g(\nabla_{\chi} \chi, \chi) = -\frac{2}{3} (\nabla_{\chi} \chi, \chi)$ 
  
 $g(\chi, \chi) = 0$  so  $0 = \chi g(\chi, \gamma) = \vartheta g(\nabla_{\chi} \chi, \chi)$   $g(\nabla_{\chi} \chi, \chi) = -\frac{2}{3} (\nabla_{\chi} \chi, \chi)$ 
  
 $g(\chi, \chi) = 0$  so  $0 = \chi g(\chi, \gamma) = \vartheta g(\nabla_{\chi} \chi, \gamma) + g(\chi, \nabla\gamma)$   $\chi$   $dow + und$ 
  
 $g(\chi, \chi) = 0$  so  $0 = \chi g(\chi, \gamma) = g(\nabla_{\chi} \chi, \gamma) + g(\chi, \nabla\gamma)$ .  $\chi$ 
  
 $g(\chi, \chi) = 0$  so  $0 = \chi g(\chi, \gamma) = g(\nabla_{\chi} \chi, \gamma) + g(\chi, \nabla\gamma)$ .  $\chi$ 
  
 $g(\chi, \chi) = 0$  so  $0 = \chi g(\chi, \gamma) = g(\nabla_{\chi} \chi, \gamma) + g(\chi, \nabla\gamma)$ .  $\chi$ 
  
 $\chi = g(e^{-t} \left( \frac{\vartheta}{\vartheta_{1}} \chi - \frac{\vartheta}{\vartheta_{x}} \chi \right), \chi \right) \chi = -e^{-t} \frac{dt}{\vartheta_{x}} \chi$ .

$$\begin{split} \nabla_{\chi} \chi &= \langle \nabla_{\chi} \chi, Y \rangle Y = \frac{1}{2} \left( -g([\chi,Y], \chi) - g([\chi,Y], \chi) \right) Y \\ &= -g \left( e^{-f} \left( \frac{\partial f}{\partial \gamma} \chi - \frac{\partial f}{\partial \chi} Y \right), \chi \right) Y = -e^{-f} \frac{\partial f}{\partial \gamma} Y \\ \nabla_{\chi} Y &= \langle \nabla_{\chi} Y, \chi \rangle \chi = \frac{1}{2} \left( -g([\gamma,\chi], \chi) - g([\gamma,\chi], \chi) \right) X \\ &= g \left( e^{-f} \left( \frac{\partial f}{\partial \gamma} \chi - \frac{\partial f}{\partial \chi} Y \right), \chi \right) \chi = e^{-f} \frac{\partial f}{\partial \gamma} \chi. \\ \nabla_{\chi} \chi &= \nabla_{\chi} Y + [\gamma,\chi] = e^{-f} \frac{\partial f}{\partial \gamma} \chi - e^{-f} \left( \frac{\partial f}{\partial \gamma} \chi - \frac{\partial f}{\partial \chi} \chi \right) = e^{-f} \frac{\partial f}{\partial \chi} \chi. \end{split}$$

$$Sec(X \land Y) = \frac{\langle R(X,Y)Y,X \rangle}{\|X\|^{2} \|Y\|^{2} - \langle X,Y \rangle^{2}} = \frac{\langle \nabla_{X} \nabla_{Y} Y - \nabla_{Y} \nabla_{X} Y - \nabla_{[X,Y]} Y,X \rangle}{e^{-2f} \cdot e^{-2f}}$$
$$= e^{4f} \langle \nabla_{X} \left( -e^{-f} \frac{\partial f}{\partial x} X \right) - \nabla_{Y} \left( e^{-f} \frac{\partial f}{\partial y} X \right) - \nabla_{e^{-f}} \frac{\partial f}{\partial y} X - e^{-f} \frac{\partial f}{\partial x} Y,X \rangle$$

$$= e^{4\ell} \left( \left( -\chi \left( e^{-\frac{\ell}{2}} \frac{2\ell}{\partial x} \right) \chi - e^{-\frac{\ell}{2}} \frac{2\ell}{\partial x} \nabla_{\chi} \chi - \chi \left( e^{-\frac{\ell}{2}} \frac{2\ell}{\partial \gamma} \right) \chi - e^{-\frac{\ell}{2}} \frac{2\ell}{\partial \gamma} \nabla_{\chi} \chi \right) \right)^{-\frac{\ell}{2}} = e^{-\frac{\ell}{2}} \frac{2\ell}{\partial \gamma} \nabla_{\chi} \chi + e^{-\frac{\ell}{2}} \frac{2\ell}{\partial x} \nabla_{\chi} \chi , \chi \right)$$

$$= e^{4\ell} \left( -e^{-\frac{\ell}{2}} \frac{2\ell}{\partial x} \left( e^{-\frac{\ell}{2}} \frac{2\ell}{\partial x} \right) - e^{-\frac{\ell}{2}} \frac{2\ell}{\partial \gamma} \left( e^{-\frac{\ell}{2}} \frac{2\ell}{\partial \gamma} \right) - \left( e^{-\frac{\ell}{2}} \frac{2\ell}{\partial \gamma} \right)^{2} - \left( e^{-\frac{\ell}{2}} \frac{2\ell}{\partial \chi} \right)^{2} \right)$$

$$= e^{34} \left( e^{-\frac{1}{2}} \left( \frac{2t}{2x} \right)^2 - e^{-\frac{1}{2}} \frac{2t}{2x^2} + e^{-\frac{1}{2}} \left( \frac{2t}{2y} \right)^2 - e^{-\frac{1}{2}} \frac{2t}{2y^2} - e^{-\frac{1}{2}} \frac{2t}{2y^2} + \frac{2t}{2y^2} \right)^2 = -e^{-\frac{1}{2}} \left( \frac{2t}{2y} \right)^2 + \frac{2t}{2y^2} + \frac{2t}{2y^2}$$