Lecture 20 $4 / 12 / 2024$
From loot time: $J^{\prime \prime}+R_{v} J=0 \Longleftrightarrow\left\{\begin{array}{l}J^{\prime}=s J \\ s^{\prime}+s^{2}+R_{v}=0\end{array} \quad(s=\nabla V)\right.$
Thu. Let $R_{1}, R_{2}: \mathbb{R} \rightarrow$ Sym $^{2} E$ be smooth curves with $R_{1}(t) \geqslant R_{2}(t), \forall t$ Let $S_{i}:\left[t_{0}, t_{i}\right) \rightarrow S_{y_{m}}{ }^{2} E$ be the maximal solutions to $S_{i}^{\prime}+S_{i}^{2}+R_{i}=0$ If $S_{1}\left(t_{0}\right) \leqslant S_{2}\left(t_{0}\right)$, then $t_{1} \leqslant t_{2}$ and $S_{1}(t) \leqslant S_{2}(t)$ for all $t \in\left[t_{0}, t_{1}\right)$.

Next, we apply the above to get a comparison of lengths of Jacobi fields:
Thu Let $S_{1}, S_{2}:\left(t_{0}, t^{\prime}\right) \rightarrow$ Sym $^{2} E$ be smooth cares with $S_{1}(t) \leqq S_{2}(t)$. Let $J_{i}:\left(t_{0}, t^{\prime}\right) \rightarrow E$ be nonzero sol. to $J_{i}^{\prime}=S_{i} J_{i}$. Then $t \mapsto \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}$ is monincreasing. Moreover, if $\lim _{t \rightarrow t_{0}} \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}=1$, then $\left\|J_{1}(t)\right\| \leq\left\|J_{2}(t)\right\|$ for all $t \in\left(t_{0}, t^{\prime}\right)$. Equality holds for some $t_{\pi} \in\left(t_{0}, t^{\prime}\right)$ if and only if $J_{i}=j \cdot v_{i}$ on $\left[t_{0}, t^{\prime}\right]$ for some $v_{i} \in E$ with $S_{i} v_{i}=\lambda v_{i}, j^{\prime}=\lambda j$, and $S_{1} \curvearrowleft \lambda I_{d} \leqslant S_{2}$.

Pf: Since $\left\|J_{i}(t)\right\|$ is smooth, we can differentiate:

$$
\begin{array}{r}
\frac{\left\|J_{i}\right\|^{\prime}}{\left\|J_{i}\right\|}=\frac{1}{\left\|J_{i}\right\|} \frac{1}{2 \sqrt{\left\langle J_{i}, J_{i}\right\rangle}} 2\left\langle J_{i}^{\prime}, J_{i}\right\rangle=
\end{array} \begin{array}{r}
\left\langle J_{i}^{\prime}, J_{i}\right\rangle \\
\left\|J_{i}\right\|^{2}
\end{array}=\frac{\left\langle S_{i} J_{i}, J_{i}\right\rangle}{\left\|J_{i}\right\|^{2}}
$$

eigenvalues of $S_{1} \in S_{\text {yin }}{ }^{2} E$,
This $\left(\log \left\|J_{1}\right\|\right)^{\prime}=\frac{\left\|J_{1}\right\|^{\prime}}{\left\|J_{1}\right\|^{\prime}} \leq \lambda_{\operatorname{mex}}\left(S_{1}\right) \leq \lambda_{\min }\left(S_{2}\right) \leq \frac{\left\|J_{2}\right\|^{\prime}}{\left\|J_{2}\right\|}=\left(\log \left\|S_{2}\right\|\right)^{\prime}$
i.e. $\left(\log \frac{\left\|J_{1}\right\|}{\left\|J_{2}\right\|}\right)^{\prime} \leq 0$ so $\frac{\left\|J_{1}\right\|}{\left\|J_{2}\right\|}$ is non-increaing.

By monotonicity, if $\left\|J_{1}\right\|=\left\|J_{2}\right\|$ at $t=t_{0}$, and $t=t_{*}$. then $\left\|J_{1}\right\|=\left\|J_{2}\right\|, \forall t \in\left(t_{0}, t_{*}\right)$ and hence $J_{i}^{\prime}=S_{i} J_{i}=\lambda J_{i}$, from which the stated conclusions follas.

The following corollaries are originally due to Berger and Ravch:

Thy (Ranch I). Suppose J_{i} are sol to $J_{i}^{\prime \prime}+R_{i} J_{i}=0$ with $R_{1} \geqslant R_{2}$ and $J_{i}(0)=0, \quad\left\|J_{1}^{\prime}(0)\right\|=\left\|J_{2}^{\prime}(0)\right\|$. Then $\left\|J_{1}\right\| s\left\|J_{2}\right\|$ up to the first zero of J_{1}.

Thu (Ranch II). Suppose J_{i} are sol to $J_{i}^{\prime \prime}+R_{i} J_{i}=0$ with $R_{1} \geqslant R_{2}$ and $J_{i}^{\prime}(0)=0, \quad\left\|J_{1}(0)\right\|=\left\|J_{2}(0)\right\|$. Then $\left\|J_{1}\right\| s\left\|J_{2}\right\|$ up to the first zero of J_{1}.

Both Ranch I and II follow from comparison theorems dove; namely $R_{1}(t) \geqslant R_{2}(t)$ and $S_{1}(0)=S_{2}(0)$ give $S_{1}(t) \leqslant S_{2}(t)$ for all $t \in\left(0, t_{1}\right)$. Then:

Ranch I: use singular initial condition " $S_{i}(0)=\infty$ ", ie., $S_{i}(t) \sim \frac{1}{t}$ Id as $t \geqslant 0$

$$
\begin{aligned}
& J_{i}^{\prime}=S_{i} J_{i} \Rightarrow t J_{i}^{\prime} \sim J_{i} \text { as } t \downarrow 0 \rightarrow J_{i}(0)=0 \\
& \left\|J_{1}^{\prime}(0)\right\|=\left\|J_{2}^{\prime}(0)\right\| \Rightarrow \lim _{t \rightarrow 0} \frac{\left\|J_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}=\lim _{t \geqslant 0} \frac{t\left\|J_{1}^{\prime}(t)\right\|}{t\left\|J_{2}^{\prime}(t)\right\|}=1 . \quad \text { Apply Tum. }
\end{aligned}
$$

Rand If: use initial condition $S_{i}(0)=0$

$$
\begin{aligned}
& J_{i}^{\prime}=S_{i} \cdot J_{i} \Rightarrow J_{i}^{\prime}(0)=0 . \\
& \left\|J_{1}(0)\right\|=\left\|J_{2}(0)\right\| \Rightarrow \lim _{t 00} \frac{\left\|S_{1}(t)\right\|}{\left\|J_{2}(t)\right\|}=1 . \quad \text { Apply Tum. }
\end{aligned}
$$

Picture to have in mind from Rauch I:

(We knew this for $t \approx 0$ from Tagher Series expansion of $\|J(t)\|^{2}$ at $t=0$, now this is known for $0 \leq t \leq t_{1}$ where t_{1} is the frost convivate time.)
Application of Ranch I:
Cor: Let $\left(M^{n}, g\right)$ be a complete Rem. mfld with $\sec \leqslant 0$, and $r>0$ s.t. $\exp _{p}: B_{r}(0) \rightarrow M$ is a diffeam. onto its image. Fix a linear isometry $I: T_{p} M \rightarrow \mathbb{R}^{n}$. Given $\gamma_{i}[0,1] \rightarrow \exp (\operatorname{Br}(0))$, we hove $\operatorname{leugth}_{g}(\gamma) \geqslant$ length $_{\mathbb{R}^{n}}\left(I \circ \exp _{p}^{-1}(\gamma)\right)$.

Pf: Let $\tilde{\gamma}=\exp _{p}^{-1} \gamma$, and consider
the "rectangle" $\gamma(s, t)=\exp _{p} s \tilde{\gamma}(t)$

For fixed $t, s \longmapsto \gamma(s, t)$ is a geodesic, and $U_{t}(s)=\frac{\partial}{\partial t} \gamma(s, t)$ is a Jacobi field along $\delta \mapsto \gamma(s, t)$; with $J_{t}(0)=0$ and $J_{t}(1)=\dot{\gamma}(t)$. Since $\sec _{\mu} \leq 0$, by Rauch I,

$$
\begin{aligned}
&\left\|J_{t}(s)\right\| \geqslant \underbrace{s\left\|J_{t}^{\prime}(0)\right\|}_{\begin{array}{c}
\text { Length of comparison } \\
\text { Jacobi field in } \mathbb{R}^{n}
\end{array}} \underbrace{\text { so lenghg }(\gamma)}_{0}\left\|\int_{0}^{1}\right\| J_{t}^{\prime}(0) \| d t=\text { length }(t)\left\|d t=\int_{0}^{1}\right\| J_{t}(1) \| d t \\
&\left(I_{0} \exp _{p}^{-1} \gamma\right)
\end{aligned}
$$

Indeed, $\quad J_{t}^{\prime}(0)=\left.\frac{D}{d s} J_{t}(s)\right|_{s=0}=\left.\frac{D}{d s} \frac{\partial}{\partial t} \exp \operatorname{er}_{p} \tilde{\gamma}^{\prime}(t)\right|_{s=0}$

$$
=\left.\frac{D}{d t} \frac{\partial}{\partial s} \exp _{p} \vec{\gamma}^{\prime}(t)\right|_{s=0}=\frac{D}{d t} \underbrace{d\left(\exp _{p}\right)_{0}}_{i d} \tilde{\gamma}(t)=\tilde{\gamma}^{\prime}(t)
$$

and so length $\mathbb{R}^{n}\left(I \circ \exp _{p}^{-1} \gamma\right)=\int_{0}^{1}\|\frac{\partial}{\partial t} \underbrace{I 0 \operatorname{expp}_{p}^{-1}(\gamma)}_{\tilde{\gamma}}\| d t=\int_{0}^{1}\left\|J_{t}^{\prime}(0)\right\| d t$.
(®) In \mathbb{R}^{n}, the Jeanie equation $J^{\prime \prime}=0$ has solutions $J(s)=J(0)+s J^{\prime}(0)$;
so Jacobi fields with $J(0)=0$ are given by $J(s)=s J^{\prime}(0)$.
Rok: Reasoning as above, Rauch I gives a more refined estimate

$$
\|J(t)\| \geqslant t\left\|J^{\prime}(0)\right\|>0
$$

for Jacobi fields with $J(0)=0$ on manifolds with sec $\leqslant 0$, compared to our earlier observation (a crucial step in the proof of Cortan-Hodamard Tum) that $J(t) \neq 0, \forall t>0 ; c f$. Remark in p. 2 of Lectures 3. pdf.
Def. A genseric triangle is a triple of Minimizing geodesics with endpoints that ore match pairwise (as in a triangle).

Cor: A geodesic triangle on a complete manifold with $\sec \leq 0$ satisfies

(i) $l(c)^{2} \geqslant l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma \quad(l=l$ length $)$ (ii) $\alpha+\beta+\gamma \leq \pi$

If $\sec <0$, then get strict inequalities.
Pf:

Let $\bar{a}, \bar{b}, \bar{c}$ in $T_{p} M$ be such that $a=\exp _{p} \bar{a}, \quad b=\exp _{p} \bar{b}, \quad c=\exp _{p} \bar{c}$

Note that \bar{a} and \bar{b} are straight lime segments ($\exp _{p}$ is vodial isometry); with $l(\bar{a})=l(a)$ and $l(\bar{b})=l(b)$. Let c_{*} be the straight lime segment with same endpoints as \bar{c}, so $l(\bar{c}) \geqslant l\left(c_{*}\right)$. By the Application of Ranch I, $l(c) \geqslant l(\bar{c}) \geqslant l\left(c_{*}\right)$. Thus, altoget her:

Lew of cosines in $T_{p} M \cong \mathbb{R}^{n}$

$$
\begin{aligned}
l(c)^{2} \geqslant l\left(c_{*}\right)^{2} & \stackrel{\downarrow}{=} l(\bar{a})^{2}+l(b)^{2}-2 l(\bar{a}) l(\bar{b}) \cos \gamma \\
G \text { Gus } L_{\text {emma }} & \stackrel{N}{=} l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma .
\end{aligned}
$$

To compose angles, since $l(a), l(b), l(c)$ satisfy the triangle inequalities (b / c every, geodesic is minimizing in $\sec s 0$, ie., $l(a), \rho(b), l(c)$ achieve distances) we can build a comparison triangle in \mathbb{R}^{2}, with same side angles, but possibly different angles, sey $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$. Then, from the above:

in M

in \mathbb{R}^{2}

$$
\begin{aligned}
l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma & \leq l(c)^{2} \\
& =l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \bar{\gamma} \\
\Rightarrow \cos \gamma & \geqslant \cos \bar{\gamma} \Rightarrow \gamma \leqslant \bar{\gamma}
\end{aligned}
$$

Same for α, β and get $\alpha+\beta+\gamma \leq \bar{\alpha}+\bar{\beta}+\bar{\gamma}=\pi$.

Rok: If $\left(M^{M}, g\right)$ is a complete Diem. meld with $\pi_{1} M=\{1\}$ and $\sec \leq 0$, then by Cortan-Hedomord $\exp _{p}: T_{p} M \rightarrow M$ is a differ, so given any $q \in M$ there is a vinique geodesic joining p and q, which is hence minimizing (b/c there exists some minimizing geodeoic by Hopf-Rinow).

Thu, if M is complete, $\pi_{1} M=\{1\}$, and $\sec \leq 0$, then the above facts abort geodesic triangles hold for any triangles with geodesic sides (b/c the sides are automatically minimizing.)

Lecture $21 \quad$ 4/17/2024
Def: (M, g) closed Rem. mfled, (\tilde{M}, \tilde{g}) universal covering. A deck transformation $f: \tilde{M} \rightarrow \tilde{M}$ is a translation along the geodesic $\tilde{\gamma}$ in \tilde{M} if $f(\tilde{\gamma})=\tilde{\gamma}$. Note: If $f \neq i d$, then $f(\tilde{\gamma}(t))=\tilde{\gamma}(t+a)$.
From basic topology: $\pi_{1}(M) \cong$ Au $(\tilde{M})=\{f: \tilde{M} \rightarrow \tilde{M}:$ deck transformation $\}$

$$
\begin{align*}
& f \alpha, p(\vec{q})=\text { endpoint of lift of } \\
& \sigma^{-1} \propto \sigma \text { to } \vec{M} \text {, starting at } \tilde{q} \text {. } \tag{array}
\end{align*}
$$

$M P \underset{\beta}{2 \alpha}$
Recall: curves in M are homstopic \Leftrightarrow lifts to \tilde{M} have same endpoint so the dave is well-defined.

Prop. Given a deck transformation $f: \tilde{M} \rightarrow \tilde{M}$, there exists a geodesic $\tilde{\gamma}$ in \tilde{M} s.t. f is a translation along $\widetilde{\gamma}$.

Pf. $f=f_{\alpha, p}$ for some $\alpha \in \pi_{1}(M, p)$. Let $\gamma \sim \alpha$ be a closed geodesic. Then $\sim \quad \sim \quad \sim(\tilde{q}) \sim \tilde{\gamma} \quad h=f_{\gamma, q} \in \operatorname{Aut}(\tilde{M})$ is s.t. $h(\tilde{\gamma})=\tilde{\gamma}$; by construction. $\tilde{M} \ni \stackrel{\sim}{p}$.

Claim: $f=h$.
Since h, f are deck transformations, suffices to show $h(\vec{q})=f(\vec{q})$.
As α, γ ore freely homotopic, it follows $\sigma^{-1} \propto \sigma$ is homotopic to γ rel. q. (as elements of $\pi_{1}(M, q)$) So the endpoints of their lifts are the some, re., $h(\tilde{q})=f(\tilde{q})$ so $h=f$ hance $f(\tilde{\gamma})=\vec{\gamma}$. Lemme. If (M, y) is a closed mild with sec <0, then a deck trourformation $f: \tilde{M} \rightarrow \tilde{M}, \quad f \neq i d$ is a translation along a unique geodesic $\tilde{\gamma}$ in \tilde{M}.
19. Suppose $\tilde{\gamma}_{1}$ and $\tilde{\gamma}_{2}$ are geodesics in \tilde{M} st. f is a translation along $\tilde{\gamma}_{i}$. Then, if $\tilde{p} \in \tilde{\gamma}_{1} \cap \tilde{\gamma}_{2}$, we have $\tilde{p} \neq f(\tilde{p}) \in \tilde{\gamma}_{1} \cap \tilde{\gamma}_{2}$, but this contradicts injectivity of $\exp _{\tilde{p}}$. $\binom{f \neq i d}{\Rightarrow f$ hos no fixed pts. } Thus $\tilde{\gamma}_{1} \cap \tilde{\gamma}_{2}=\phi$.

by corton-Hodomord, exp $\tilde{\tilde{p}}: T_{\tilde{F}} \tilde{M} \rightarrow \tilde{M}$ is a differ

Let $\tilde{p}_{i} \in \tilde{\gamma}_{i}$ and $\tilde{\gamma}_{3}$ be a minimizing geodesic from \tilde{p}_{1} to \tilde{p}_{2}. As f is an isometry of \tilde{M}, the angles $\alpha_{1} \beta$ In the diagram ore the same. Subdividing this quadrangle into two triangles Δ_{1}, Δ_{2} it follows that

$$
\sum_{\text {int. angles }} \Delta_{1}+\sum_{\text {int-angles }} \Delta_{2} \geqslant 2 \pi
$$

So $\sum_{\text {int }} \Delta_{i} \geqslant \pi$ for $i=1$ or 2 ; contradicting Con. from last
Lecture that $\sum_{\substack{\text { int. } \\ \text { ing } \\ \text { angles }}}^{\substack{\text { ins }}} \leq<\pi$ if $\sec <0$.
Lemme. If (M, g) is a closed molal with sec <0, then commuting deck transformations are translations along the sane geodesic.

Pf. If $f_{1}, f_{2}: \tilde{M} \rightarrow \tilde{M}$ are es above, with $f_{i}\left(\tilde{\gamma}_{i}\right)=\tilde{\gamma}_{i}$, then $f_{2}\left(f_{1}\left(\tilde{\gamma}_{2}\right)\right)=f_{1}\left(f_{2}\left(\tilde{\gamma}_{2}\right)\right)=f_{1}\left(\tilde{\gamma}_{2}\right)$ so f_{2} preserves $f_{1}\left(\tilde{\gamma}_{2}\right)$ hence $f_{1}\left(\tilde{\gamma}_{2}\right)=\tilde{\gamma}_{2}$. By, Uniqueness proved above, $\tilde{\gamma}_{1}=\tilde{\gamma}_{2}$.

Thu (Pressman, 1943). If $\left(M_{1}^{n}, g\right)$ is a closed Rem. mild with sec <0 and $H<\pi_{1} M$ is Abelion, $H \neq\{1\}$, then $H \cong \mathbb{Z}$.

Pf. Let $H<\pi_{1} M$ be Abalion, and $\tilde{\gamma}$ be the geoderic in \tilde{M} along which every $h \in H$ is a translation. Recall (see Remark at end of last lecture) that given two points in M there is a unique geoderic (hence minimizing) joining them. $F_{i x} \tilde{p} \in \tilde{\gamma}$ and define $\varphi: H \rightarrow \mathbb{R}, \varphi(h)= \pm \operatorname{dist}(\tilde{p}, h(\tilde{p}))$; accoraling to $h(\tilde{p})$ being before/efter \tilde{p} along $\tilde{\gamma}$. Then φ is a group homomorphism and infective, so

Cor. If M_{1}, M_{2} are closed manifolds, then $M_{1} \times M_{2}$ does not admit any metric with $\sec <0$.
Pf. Suppose $\left(M_{1} \times M_{2}, g\right)$ hos sec <0; in particular, by Cortan-Hedamerd, $\widetilde{M_{1} \times M_{2}} \cong \tilde{M}_{1} \times \vec{M}_{2} \cong \mathbb{R}^{n}$ so $\pi_{1} M_{i} \neq\{1\}$ for $i=1,2$. Indeed, if, say $\pi_{1} M_{1}=\{1\}$, then $\tilde{M}_{1} \times \widetilde{M}_{2} \cong M_{1} \times \vec{M}_{2} \not \equiv \mathbb{R}^{n}$ because M_{1} is closed. Let $h_{i} \in \pi_{1} M_{i}$ be nontrivial elements end $\left\langle h_{i}\right\rangle$ the corresponding cyclic subgroups. Then $H=\left\langle h_{1}\right\rangle \oplus\left\langle h_{2}\right\rangle$ is an Abelion subgroup of $\pi_{1} M$ that is not isomorphic to \mathbb{Z}.
E.g., T^{n} does not hove any metric with $\left.\sec <0\right\} \begin{aligned} & \text { Bot they hove } \\ & \text { metrics }\end{aligned}$ $\sum_{j}^{2} \times S^{1}$ does not hove any metric with $\left.\sec <0\right\} \sec \leq 0$! egg.,
closed,
closed
surface Rok. Byers showed that if a closed manifold (M, g) with
of genus $\geqslant 2$.
 $\pi_{1} M$ does not admit fimite-index cyclic subgroups.
Rank. It is unknown if any $M_{1} \times M_{2}$ where M_{i} ore closed, $\pi_{1} M_{i}=\{1\}$, can admit metrics with $\sec >0$. The case $M_{1}=M_{2}=S^{2}$ is Known as the Hopf Question.

Rok. The andogors question for $\mathrm{sec}>0$ was proposed by chern in 1965: If (M, g) is a closed Rem. unfed $w / \sec >0$, and $H<\pi_{1} M$ is Abelian, then is H cyclic? By Synge, the answer is affirmative in even dimensions. Revi Shankar (1998) found infinitely many counter-exangles in dimension 7, as there are homogenerow spaces M^{7} with see >0 and a free action by $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ which is isometric. Tuns, $M^{7} / \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ is a closed mounfold with $\sec >0$ and fundamental group $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

Lecture $22 \quad 4 / 19 / 2024$
Comparison theorems for sec: Ranch I, II, m Preissmann, Cortan-Hodamard, Myers, Synge,...
maybe later?
Toponogar us Granov's bounds on generators of π_{1}, total Betti,. Alexaddrov geometry
Comparison theorem for Ric: Bishop Volume Comparison (today) \rightarrow Mill nor (π_{1} hes palyomid granth) Rigidity in Myers, (todech) Gnomon's compactness theorem,...
Recall Riccati equation: and $S \in S y_{n}{ }^{2} V^{\perp}$. Let $a=\frac{t_{0} S}{n-1}$, and note that

$$
S=a I_{d}+S_{0} \text {, where } \quad t_{r} S_{0}=0 \text { " }
$$

"trees free pert"

So $\left\langle S_{0}, I\right\rangle=0$ recall $\langle A, B\rangle=\operatorname{tr} A B$
Then $\operatorname{tr}\left(s^{2}\right)=\|S\|^{2}=a^{2}\|I d\|^{2}+\left\|S_{0}\right\|^{2}=(n-1) a^{2}+\left\|S_{0}\right\|^{2}$ so
gives $a^{\prime}+a^{2}+r=0$, where $r=\frac{1}{n-1}\left(\left\|S_{0}\right\|^{2}+\operatorname{Ric}(v)\right) \geqslant \frac{R_{i c}(V)}{n-1}$
Rok: Geometrically, $a(t)=\frac{H}{n-1}$ where $H=t r S$ is the mean curvature of S_{t}.
Thu. Suppose $S:\left[t_{0}, t_{1}\right) \rightarrow S_{y m}{ }^{2} V^{\perp}$ is the maximal solution to $S^{\prime}+S^{2}+R=0$, where $R: \mathbb{R} \rightarrow$ Sym $^{2} V^{\perp}$ is given. Suppose $\exists k \in \mathbb{R}$ s.t.
(i) $\operatorname{tr} R \geqslant(n-1) k$
(ii) \quad tr $S\left(t_{0}\right) \leq(n-1) \bar{a}\left(t_{0}\right)$
where $\bar{a}:\left[t_{0}, t_{2}\right] \rightarrow \mathbb{R}$ is the maximal solution to $\bar{a}^{\prime}+\bar{a}^{2}+k=0$. Let $a=\frac{\operatorname{tr} S}{n-1}$ Then $t_{1} \leq t_{2}$ and $a(t) \leq \bar{a}(t)$ for all $t \in\left[t_{0}, t_{1}\right)$.

Pf: Apply ODE comparison from Lectives 19-20:
Thu. Let $R_{1}, R_{2}: \mathbb{R} \rightarrow S_{y_{m}}{ }^{2} E$ be smooth curves with $R_{1}(t) \geqslant R_{2}(t), \forall t$ Let $S_{i}:\left[t_{0}, t_{i}\right] \rightarrow S_{y_{m}^{2}}^{2} E$ be the maximal solutions to $S_{i}^{\prime}+S_{i}^{2}+R_{i}=0$ If $S_{1}\left(t_{0}\right) \leqslant S_{2}\left(t_{0}\right)$, then $t_{1} \leqslant t_{2}$ and $S_{1}(t) \leqslant S_{2}(t)$ for all $t \in\left[t_{0}, t_{1}\right)$.
setting $E=\mathbb{R}, \quad R_{1}=r, R_{2}=k$, so (i) $\Rightarrow r \geqslant k \Rightarrow R_{1} \geqslant R_{2}$

$$
\begin{aligned}
& S_{1}^{\prime}+S_{1}^{2}+R_{1}=0 \Leftrightarrow a^{\prime}+a^{2}+r=0 \\
& S_{2}^{\prime}+S_{2}^{2}+R_{2}=0 \Leftrightarrow \bar{a}^{\prime}+\bar{a}^{2}+k=0 .
\end{aligned}
$$

Run: Above result remains true if \bar{a} has a pole at to; namely $S(t) \sim \frac{1}{t-t_{0}} I_{d}, \quad \bar{a}=\frac{S n_{k}^{\prime}}{s n_{k}}$ where $\left\{\begin{array}{l}s n_{k}^{\prime \prime}+K s n_{k}=0 \\ s n_{k}\left(t_{0}\right)=0 \\ s n_{k}^{\prime}\left(t_{0}\right)=1 .\end{array}\right.$

Let J_{1}, \ldots, J_{n-1} be Jacobi fields along γ that form a bass of solutions to

$$
J^{\prime}=S J
$$

and set $j=\operatorname{det}\left(J_{1}, J_{2}, \ldots, J_{n-1}\right)$.
 identified vie parole trompport

$$
\begin{aligned}
S^{\prime} & =\operatorname{det}\left(J_{1}^{\prime}, J_{2}, \ldots, J_{n-1}\right)+\operatorname{det}\left(J_{1}, J_{2}^{\prime}, J_{3}, \ldots, J_{n-1}\right)+\ldots+\operatorname{det}\left(J_{1}, \ldots, J_{n-1}^{\prime}\right) \\
& =\operatorname{det}\left(S J_{1}, J_{2}, \ldots, J_{n-1}\right)+\operatorname{det}\left(J_{1}, S J_{2}, J_{3}, \ldots, J_{n-1}\right)+\ldots+\operatorname{det}\left(J_{1}, \ldots, S J_{n-1}\right) \\
& =\operatorname{tr} S \cdot \operatorname{det}\left(J_{1}, \ldots, J_{n-1}\right)=\operatorname{tr} S \cdot j \quad \text { or: } \operatorname{det}(\operatorname{det})_{I} X=\operatorname{tr} X \text {; mare generally, if }
\end{aligned}
$$

A is invertible, $d(\operatorname{det})_{A} X=(\operatorname{det} A)+\left(A^{-1} X\right)$
so we hove $j^{\prime}=(n-4)$ a j Let $j(t)=\operatorname{det} A(t)$, where $A(t)=\left(J_{1}(t), \ldots, J_{n-1}(t)\right)$.

$$
\begin{aligned}
j^{\prime}(t) & \left.=d(\operatorname{det})_{A(t)} A^{\prime}(t)=(\operatorname{det} A(t))\right) \operatorname{tr}\left(A(t)^{-1} A^{\prime}(t)\right) \\
& =j(t) \cdot \operatorname{tr}\left(A^{-1}(t) \cdot S(t) \cdot A(t)\right)=(\operatorname{tr} S) \cdot j 11
\end{aligned}
$$

Than. Let $S:\left[t_{0}, t_{1}\right) \rightarrow$ Sym $^{2} V^{\perp}$ and $a=\frac{1}{x-1}$ tr S be st. $a \leq \bar{a}$, and $j^{\prime}=(n-1) a_{j}$. Choose \bar{j} s.t. $\bar{J}^{\prime}=(n-1) \bar{a} \bar{j}$. Then j / \bar{j} is nonincreesing.
P1: Once again, apply ODE comparison from before! $(n-1) a \leq(n-1) \bar{a} \Rightarrow\left(\log \frac{j}{\bar{j}}\right)^{\prime} \leq 0 \Rightarrow j / \bar{j}$ nonincreesing $\underset{t_{0}}{\underset{t}{j}}$

Thin (Bistlop Volume Comparison). Let $\left(M^{n}, \mathcal{S}\right)$ be a Riem. mild with Tic $\geqslant(n-1) k$ and \bar{M} be the simply -connected Rem. meld with $\sec _{\bar{M}} \equiv K$. Then $\forall p \in M$, $\operatorname{Vol}(\operatorname{Br}(p)) \leq \operatorname{Vol}_{0}\left(\overline{B_{r}}\right)$, where $\operatorname{Br}(p) \subset M$ and $\overline{B_{r}} \subset \bar{M}$ are bulls of radius r. Moreover, equality holds if and only if $B_{r}(p) \cong \overline{B_{r}}$.

Pf: We will show that $r \mapsto \frac{\operatorname{Vol}\left(B_{r}(p)\right)}{\operatorname{Vol}\left(\overline{B_{r}}\right)}$ is non increasing; the conclusion follows since $\lim _{\mathrm{rim}_{0}} \frac{V_{O l}\left(B_{r}(p)\right)}{V_{o l}\left(\overline{B_{r}}\right)}=1$ because both approach Euclidean balls as $r \downarrow 0$. Let $\operatorname{cut}(v)=\max \left\{t_{*}>0: \operatorname{expp} t v\right.$ is min. geod. on $\left.\left[0, t_{*}\right]\right\}$ and $C_{p}=\{t v: t \leq \operatorname{cut}(v),\|v\|=q\} \subset T_{p} M$. Then $\exp _{p}: C_{p} \rightarrow M$ is a diffeom. onto its image, so:

$$
\begin{aligned}
& \operatorname{Vd}\left(\operatorname{Br}_{r}(p)\right)=\int_{\operatorname{Br}_{r}(p)} 1 d \operatorname{dvd}=\int_{\exp }\left(B_{r}(0) \cap c_{p}\right) 1 d v o l \\
& \left.\begin{array}{c}
\text { Change \& } \\
\text { Variables } \\
\text { formula }
\end{array}\right) \int_{B_{r}(0) \cap C_{p}} \operatorname{det}\left(d\left(\operatorname{expp}_{p}\right)_{\mu}\right) d u \\
& \stackrel{\text { color }}{\text { board. }} \stackrel{\sum}{=} \int_{S^{n-1}(1)} \int_{0}^{r(v)} \operatorname{det}\left(d\left(\exp _{p}\right)_{t v}\right) t^{n-1} d t d v
\end{aligned}
$$

Recall:

$$
\operatorname{Br}(p)=\exp _{p}(\operatorname{Br}(0))=\exp _{p}\left(\operatorname{Br}(0) \cap C_{p}\right)
$$

where $r(v)=\min \{r, \operatorname{cut}(v)\}$ for $v \in T_{p} M,\|v\|=1$; le. $v \in S^{n-1}(1) \subset T_{p} M$.

Since $d\left(\exp _{p}\right)_{t v} e_{i}=\frac{1}{t}\left(d\left(\exp _{p}\right)_{t v} t_{e i}\right)=\frac{1}{t} J_{i}(t)$ is the Jacobi field along $t \mapsto \exp _{p} t v$ with $J_{i}(0)=0$ and $J_{i}^{\prime}(0)=e_{i}$, it follows that $\operatorname{det}\left(e\left(\operatorname{expp}_{t v}\right)=\frac{1}{t^{n-1}} \operatorname{det}\left(J_{1}(t), \ldots, J_{n-1}(t)\right)\right.$ and hence:

$$
\operatorname{Vol}\left(B_{r}(p)\right)=\int_{S^{n-1}(1)} \int_{0}^{r(v)} \underbrace{\operatorname{det}\left(J_{1}(t), \ldots, J_{n-1}(t)\right)}_{j_{v}(t)} d t d v \begin{aligned}
& \text { extend jv }(t) \\
& \text { as } j_{v}(t)=0 \text { for } \\
& t>\operatorname{cut}(v)
\end{aligned}
$$

By previous result, $j_{V}(t) / \bar{j}(t)$ is non increasing on $[0, r]$, where $\bar{J}(t)=\operatorname{det}\left(\bar{J}_{1}, \ldots, \bar{J}_{n-1}\right)$, for corresponding Jacobi fields $\overline{J_{i}}$ on \bar{M}. Set $q(t)=\frac{1}{v_{0}\left(\left(S^{n-1}(1)\right)\right.} \int_{S^{n-1}(1)} \frac{j_{v}(t)}{\bar{J}(t)} d v$, which is also non-increasing (because it is an average of nonincreaseng quantities). As before,

$$
\operatorname{Vol}\left(\overline{B_{r}}\right)=\int_{S^{n-1}(i)} \int_{0}^{r} \bar{J}(t) d t d v \stackrel{(\text { Space } w / \text { sec } s=k)}{=} V_{0} l\left(S^{n-1}\right) \int_{0}^{r} J(t) d t
$$

Thus,

$$
\begin{aligned}
& \text { Gus, } \\
& \frac{\operatorname{Vd}\left(B_{r}(p)\right)}{\operatorname{Vol}\left(\overline{B_{r}}\right)}=\frac{\int_{S^{n-1}(1)} \int_{0}^{r} j(t) d t d v}{\operatorname{V} l\left(\left(S^{n-1}(1)\right) \cdot \int_{0}^{r} \bar{J}(t) d t\right.} \stackrel{\int_{0}^{r} q(t) \cdot j(t) d t}{=}
\end{aligned}
$$

is monincreesing, because RHS is the (J-weighted) average ${ }^{\text {(a) }}$ of the mouincreasing function $q(t)$ over growing intervals.
(*) More explicitly: if $\phi, \psi>0$, and $t \mapsto \frac{\phi(t)}{\psi(t)}$ is now increasing, then $r \mapsto \frac{\int_{0}^{r} \phi(t) d t}{\int_{0}^{r} \psi(t) d t}=\frac{\int_{0}^{\bar{r}} \frac{\phi(s)}{\psi(s)} d s}{\int_{0}^{\bar{r}} d s}$ is non increasing, where $\left\{\begin{array}{l}d s=\psi(t) d t \\ \bar{r}=s(r) .\end{array}\right.$
Rigidity statement follows from rigidity statements in ODE comparison: if $\forall v \in S^{n-1}(1), \forall 0 \leq t \leq r, \dot{J}_{v}(t)=J(t)$, then $a(t)=\bar{a}(t)$, for all $0 \leq t \leq r$; so $R(t)=\bar{R}(t)=k I d$. Thus $B_{r}(p)$ has constant curvature sec $\equiv k$ and is hence isometric to $\overline{B_{r}}$.
Remark: Similarly, one can prove $r \mapsto \frac{V_{0}\left(\partial B_{r}(p)\right)}{V_{\theta} l\left(\partial \overline{B_{r}}\right)}$ is nonincreacing. Geometrically:

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{r}(p)\right) \leq \operatorname{Vol}\left(\overline{B_{r}}\right) \\
&= \\
& \bar{\pi} \\
& B_{r}(p) \cong \overline{B_{\text {som }}}
\end{aligned}
$$

With stronger control on curvature $\sec \geqslant k$ we know that:
 so "integrating" get the above.

But
$R_{i c} \geqslant K(n-1)$ is enough for this "integral" control.

Rigidity in Myers Theorem
(Originally by Shiv-Yuen ching, with different proof) L student of sss. chem

Tum. Let $\left(M_{1}^{n}, g\right)$ be a complete Riem. mold with $R_{i c} \geqslant K \cdot(n-1)>0$ and $\operatorname{diam}\left(M^{n}, g\right)=\operatorname{diam}\left(S^{n}(1 / \sqrt{k})\right)=\frac{\pi}{\sqrt{k}}$. Then $\left(M^{n}, g\right) \underset{\text { som. }}{\cong} S^{n}(1 / \sqrt{k})$.

Pf: Let $p, q \in M$ be points at maximal distance, ie. $\operatorname{dist}(p, q)=\frac{\pi}{\sqrt{k}}$ Then, for all $r>0$, the balls $B_{r}(p)$ and $B_{\frac{\pi}{\sqrt{k}}-r}(q)$ are disjoint: if $d(p, x)<r$ and $d(x, q)<\frac{\pi}{\sqrt{k}}-r$, then

$$
\frac{\pi}{\sqrt{k}}=d(p, q) \leq d(p, x)+d(x, q)<\frac{\pi}{\sqrt{k}}
$$

so no such x can exist. Thus,

$$
M \supseteq B_{r}(p) \dot{\cup} B_{\frac{\pi}{\sqrt{k}}-r}(q) \text { (disjoint union) }
$$

hence $\operatorname{Val}(M) \geqslant \operatorname{Val}(\operatorname{Br}(p))+\operatorname{Vol}\left(B_{\frac{\pi}{\sqrt{k}}-r}(q)\right)$. From Bishop Val. Comp., $r \longmapsto \frac{\operatorname{Vol}\left(\operatorname{Br}_{r}(x)\right)}{\operatorname{Vol}\left(\overline{B_{r}}\right)}$ is now increasing; in particular,

$$
\frac{V_{\theta}\left(B_{r}(x)\right)}{\operatorname{Vol}\left(\overline{B_{r}}\right)} \geqslant \frac{V_{\theta}\left(B_{\frac{\pi}{\sqrt{k}}}(x)\right)}{V_{\theta l}\left(\overline{B_{\frac{\pi}{\sqrt{k}}}^{\sqrt{k}}}\right)}=\frac{V_{\theta}(M)}{V_{\theta l}\left(S^{n}(1 / \sqrt{k})\right)} b / c\left\{\begin{array}{l}
\overline{B_{\sqrt{k}}}=S^{n}(1 / \sqrt{k}) \\
B_{\frac{\pi}{\sqrt{k}}}(x)=M
\end{array}\right.
$$

ie. $\operatorname{Val}\left(B_{r}(x)\right) \geqslant \frac{\operatorname{Vol}(M)}{\operatorname{Vol}\left(S^{n}(1 / \sqrt{k})\right)} \operatorname{Vol}\left(\overline{B_{r}}\right)$. Thus, applying this in $\#$:

$$
V_{r} l(M) \geqslant \frac{V_{\theta} l(M)}{V_{\theta} l\left(S^{n}(1 / \sqrt{k})\right)}(\underbrace{V_{\theta} l\left(\overline{B_{r}}\right)+V_{\theta}\left(\overline{B_{\frac{\pi}{k}}-r}\right)}_{V_{\theta} l\left(S^{n}(1 / \sqrt{k})\right)})=V_{\theta l}(M) \text {; so all }
$$

the inequalities using Bishop Vol. Comp. above are equalities. Thus, from rigidity in the equality case of Bishop Vol. Comp., we hove $B_{r}(p) \cong \overline{B_{\text {som }}}$ and $B_{\frac{\pi}{\sqrt{k}}-r}(q) \cong \overline{B_{\text {som }}} \cong \overline{\frac{\pi}{\sqrt{k}}-r}$, thus $M \cong S^{n}(y / \sqrt{k})$.
 Indeed, there is no room for any $M \backslash \overline{\left(B_{r}(p) \cup B_{\frac{\pi}{\sqrt{k}}-r}(q)\right)}$ because that would increase the diameter.

Open problem: If $\left(M^{n}, g\right)$ has Vic $\geqslant(n-1) k>0$ and $\operatorname{Vol}(M, g)>\frac{1}{2} \operatorname{Vgl}\left(S^{n}(1 / \sqrt{k})\right)$, then $M \underset{\substack{\text { howe o? } \\ \text { differ? }}}{\cong} S^{n}$.
Exercise: a) Find counter-example with $V_{\theta}(M, g)=\frac{1}{2} \operatorname{Vol}\left(S^{n}(1 / \sqrt{k})\right)$.
$T_{\text {HUS }}$ b) Prove that $\left(M^{n}, g\right)$ as above is simply-connected. Hint: if M is not simply connected, take its universal covering.
Lecture 23 5/1/2024
A quick taste of Geometric Group Theory:

- If Γ is finitely generated, $f i x$ a finite generating set G,
 with $e \in G$ and $G^{-1} G$. Thencley graph of解 $=G$. Then define growth function for $F: F=\langle a, b\rangle$

$$
\begin{aligned}
& N_{k}^{G}=\#\left\{g \in \Gamma: g=g_{1} \ldots g_{k} \text {, with } g_{i} \in G\right\} \leftarrow \text { In terms of the Cooley } \\
& \text { growly with the word } \\
& \begin{array}{l}
\text { metric, luis is the } \\
\text { cordiality of the does ball }
\end{array} \\
& \text { \# of drop elexsents that con } \\
& \text { be written as product of } k \text { genenetors } \\
& \text { of radius } K \text { around e } \in \Gamma \\
& \text { in the fixed generating set } G \text {. }
\end{aligned}
$$

- If G^{\prime} is another clusice of generating set for Γ as above, then $N_{K}^{G^{\prime}} \geqslant N_{C K}^{G}$ and $N_{K}^{G} \geqslant N_{D_{k}}^{G^{\prime}}$ for some constants $C_{1} D>0$, So can ignore choice of gen. set G fer questions below.
- Q: How does N_{k} grow with k ? Polynomially? Exponentially?

Tum (Miller '68). If (M, g) is complete and has $R_{i c} \geqslant 0$, then any finitely generated subgroup $\Gamma<\pi_{1} M$ has $N_{k} \leqslant C \cdot K^{n}$.

Pf: Chase $\theta \in \tilde{M}^{n}$, and let $V(r)=V_{t e}\left(B_{r}(\theta)\right)$. By Bishop Volume Comp, $V(r) \leqslant \operatorname{Vol}\left(\mathcal{B}_{r}^{\mathbb{R}^{n}(0)}\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} r^{n}$. Let $G=\left\{g_{1}, \ldots, g_{p}\right\}$ be the fixed generating set for $\Gamma<\pi_{1} M$ and $\mu=\operatorname{mex} \operatorname{dist}(\sigma, g ; \theta)$.
Then $B_{\mu \cdot k}(\sigma)$ has at least N_{k}^{G} distinct points of the form $g \cdot \sigma$, with $g \in \Gamma$. Choose $\varepsilon>0$ s.t. $g \cdot B_{\varepsilon}(\theta) \cap B_{\varepsilon}(\theta)=\phi$ if $g \neq e$. Then $B_{\mu \cdot k+\varepsilon}(\theta)$ hos at least N_{k}^{G} disjoint subsets of the form $g \cdot B_{\varepsilon}(\sigma)$, so

$$
\begin{equation*}
\left.N_{k}^{G} \cdot V(\varepsilon)=V \underset{ }{V=g_{1} \ldots g_{k}} \underset{\varepsilon}{\Perp} \cdot B_{\varepsilon}(\theta)\right) \leq V(\mu k+\varepsilon) \tag{r}
\end{equation*}
$$

Thus $\quad N_{k}^{G} \leq \frac{V(\mu k+\varepsilon)}{V(\varepsilon)} \stackrel{d}{\widetilde{C}(\mu k+\varepsilon)^{n}} \frac{V(\varepsilon)}{c} \leq C \cdot k^{n}$.
The (Miluor '68). If (Mig) is a closed Riel. meld with Sec <0, and $\pi_{1} M=\langle G\rangle,|G|<\infty$, then $N_{k}^{G} \geqslant a^{k}$ for some $\left.a\right\rangle 1$.

Ex: Fundamental group of hyperbolic maufold Σ^{n} hos exponential growth; thus, cannot be π_{1} of mold $w / R_{i c} \geqslant 0$. So, cannot "improve" the octave Them to sal >0, as $\sum^{2} \times \mathbb{S}^{n-2}(\varepsilon)$ hos sal >0 for $n \geqslant 4$ and $\varepsilon>0$ supt. small, if Σ^{2} is a hyperbdix surface.

Conjecture (Miler. 1968). If $\left(M^{\prime \prime}, g\right)$ is complete and has Rec $\geqslant 0$, then $\pi_{1} M$ is finitely generated.

- For $n=3$, it was proven by $[\operatorname{Lim}, 2013]$ and index. $[P a n, 2017]$.
\uparrow Inventions popes,
${ }^{\wedge}$ crelle paper, uses minimal surfaces
uses Cheger-Colding
theory and Riccio
limit spaces
- In November 2023, a counter-exomple ($\left.M^{7}, g\right)$ with $R_{i c} \geqslant 0$ and $\pi_{1} M^{7}=\mathbb{Q} / \mathbb{Z}$ was announced by Brué-Naber - Semola, using a sophisticated gluing method to produce a "smooth fractal structure".
One of the founding achievements of Geometric Group Theory is:
Thu (Gromov'81) A finitely generated group Γ has polynomial growth if and only if Γ is virtually milpotent ($\exists N \triangleleft \Gamma$ milpotent with $[\Gamma: N]<\infty$.)
So, if $\Gamma<\pi_{1} M$ is fin. gen. and M hos $R_{i c} \geqslant 0$, then Γ is virtually milpatat. Conversely, is Γ is fin. gen. and virtually milpotent, then $\Gamma=\pi_{1} M$ for some
 M to Minor's conjecture exists, then it has covering puce $\hat{M} \rightarrow M$ with $T_{1} \hat{M}$ abelian and not fin. gen. (egg., $\pi_{1} \hat{M}=\mathbb{Q} / \bar{z}$.)
Stronger resets about $\pi_{1} M$ can be proven with stronger curvature assumptions:
-Toponogor Triangle Comparison
Here and throughout: if $k>0$, then

Triangle Version
If $\left(M_{1}^{4} q\right)$ has sec $\geqslant k, \quad \sigma_{1} p_{0}, p_{0} \in M$,
$\gamma:[0,1] \rightarrow M$ geod form p_{0} to p_{1},
β_{i} min. geod from θ to p_{i},
then $d=\operatorname{dist}_{g}(\sigma, \gamma(t)) \geqslant \tilde{d}=\operatorname{dist}_{\tilde{\gamma}}(\tilde{\gamma}, \tilde{\gamma}(t))$

Hinge Version
If $\left(M^{\prime}, 8\right)$ has $\sec \geqslant k, \theta, p_{0}, p \in M$,
β_{i} min. geod. fran θ to β_{i}, Then $l(\gamma) \leq l(\tilde{\gamma})$; where $\gamma, \tilde{\gamma}$ are the min. geod. that

origins triage

$\sec \geqslant k$

Comp. triangle w/ same hinge: $l\left(\beta_{i}\right)=l\left(\overrightarrow{\beta_{i}}\right), \alpha=\tilde{\alpha}$

$\mathrm{sec} \equiv k$

Corollary: A geodesic triangle on a manifold with $\sec \geqslant 0$ satisfies

(i) $l(c)^{2} \leq l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma$
$l=$ length
(ii) $\alpha+\beta+\gamma \geqslant \pi \quad$ If $\sec >0$, then get strict inequalities.

Pt: (i) is immediate:
Gauss Lemma

where $a=\exp _{p} \bar{a}, b=\exp _{p} b, c=\exp _{p} \bar{c}$.

(ii) Follows from (i) as in the sec ≤ 0 case: build companion triangle in \mathbb{R}^{2} with side luyths $l(a), l(b), l(c)$, and angles $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$. Then $l(a)^{2}+l(b)^{2}-2 l(a) l(b) \cos \gamma \geqslant l(c)^{2}$

So $\cos \gamma \leq \cos \bar{\gamma}$ hence

$$
=l(a)^{2}+e(b)^{2}-2 e l(e)(b) \cos \bar{x}
$$

$\gamma \geqslant \bar{\gamma}$. Similarly for $\alpha \cdot \beta$ and get

$$
\alpha+\beta+\gamma \geqslant \bar{\alpha}+\bar{\beta}+\bar{\gamma}=\pi .
$$

Combining above w/
(Corkier work on sec ≤ 0
Cor: $\left(M^{n}, \delta\right)$ has $\sec \geqslant 0(\leq 0)$ of $\forall p \in M$, $\exp _{p}: C_{p}^{C} \subset T_{p} M \stackrel{\rightharpoonup}{\underline{D}} M$ is distance nou-increasing (nou-decreasing).

Thu (Gromov 1978). If $\left(M^{\prime \prime}, g\right)$ has $\sec \geqslant 0$, then $\pi_{1} M$ can be generated by $\leqslant \sqrt{2 n \pi} \cdot 2^{n-2}$ elements. If $\left(M^{n}, g\right)$ has $\sec \geqslant-K^{2}$ and $\operatorname{diam}(M) \leqslant D$, then $\pi_{1} M$ can be generated by $\leq \frac{1}{2} \sqrt{2 n \pi}(2+2 \cosh (2 k D))^{\frac{n-1}{2}}$ Note: If $k \rightarrow 0$, then

Pf: (Case $k=0$). Fix $\theta \in \widetilde{M}$ and consider the isometric action of $\Gamma=\pi_{1} M$, by deck transformations. Define displacement of $g \in \Gamma:|g|=\operatorname{dist}(\theta, g \cdot \theta)$.

Clearly, a min. geod. from θ to g.o in \widetilde{M} projects
 to geodesic loop based at $p(\theta) \in M$, which has minimal length in its homotory class. For any given $R>0$, there ore only finitely many $g \in \Gamma$ with $|g| \leq R$, because otherwise an infinite seq. $g_{i} \in \Gamma$ with $\left|g_{i}\right| \leq R$ would produce an infinite sea. gi. θ of points in $B_{R}(\theta)$, which has a limit and contradicts the covering property.

Thus, we can define $g_{1} \in \Gamma$ s.t. $\left|g_{1}\right|=\min _{g \in \Gamma}|g|$, and $g_{2} \in \Gamma$ with $\left|g_{2}\right|=\min _{g_{\in} \in \backslash\left(g_{1}\right)}|g|$; inductively, define a sequence $g_{1}, g_{2}, \ldots \in \Gamma$ of generators $g \in \Gamma \backslash\left(g_{1}\right) \quad\left|g_{1}\right| \leq\left|g_{2}\right| \leq \ldots$ and $\left|g_{i+1}\right|=\min |g|$. (Keep adding elements g_{i} until a with $\left|g_{1}\right| \leq\left|g_{2}\right| \leq \ldots$ and $\left|g_{i+1}\right|=\operatorname{g} \in \Gamma \backslash\left(g_{1}, \ldots, g_{i}\right)$ set of generators is achieved!)
Set $l_{i j}=\operatorname{dist}\left(g_{i} \cdot \theta, g_{j} \cdot \theta\right)$ for all $i<j$. Then $l_{i j} \geqslant\left|g_{j}\right|$,
for otherwise $\bar{g}=g_{i}^{-1} \cdot g_{j}$ would have

$$
|\bar{g}|=l_{i j}\langle | g_{j} \mid \quad \text { and } \quad\left\langle g_{1},--g_{i}, \ldots, g_{j}\right\rangle=\left\langle g_{1}, \ldots, g_{i}, \ldots, \bar{g}\right\rangle
$$

hence contradict the min. choice of g_{j} above.
Note that all sides of the triangles $\theta_{1} g_{i} \cdot \theta, g j \cdot \theta$ are min geodesics.

By Toponogov, applied to the triangle $g_{i} \cdot \theta, g_{j} \cdot \theta, \theta$, wise have that $\alpha_{i j} \geqslant \widetilde{\alpha_{i j}}$.
Law of cosines in \mathbb{R}^{2} :

$$
\begin{aligned}
& l_{i j}^{2}=\left|g_{i}\right|^{2}+\left|g_{j}\right|^{2}-2\left|g_{i}\right|\left|g_{j}\right| \cos \widetilde{\alpha_{i j}} \\
& \Rightarrow \cos \left(\widetilde{\alpha_{i j}}\right)=\frac{\left|g_{i}\right|^{2}+\left|g_{j}\right|^{2}-l_{i j}^{2}}{2\left|g_{i}\right| \cdot\left|g_{j}\right|} \\
& \\
& \leqslant \frac{\left|g_{i}\right| \leq\left|g_{j}\right| \leq\left. l_{i j}\right|^{2}+\left|\left|g_{j}\right|^{2}-\left|g_{j}\right|^{2}\right)}{2 \cdot\left|g_{i}\right|^{2}}=\frac{1}{2} \\
& \Rightarrow \alpha_{i j} \geqslant \widetilde{\alpha}_{i j} \geqslant \frac{\pi}{3} .
\end{aligned}
$$

$\sec \geqslant 0$

Let $v_{i} \in T_{\theta} \tilde{M}$ be the unit vector tangent to the min. geod. from θ to $g_{i} \cdot \sigma$. By the above, the distance (on the unit sphere in $T_{\theta} \widetilde{M}$) between v_{i} and v_{j} is $\alpha_{i j} \geqslant \frac{\pi}{3}$, so the balls of radius $\frac{\pi}{6}$ centered at v_{i} and v_{j} must be disjoint. (This already proves there can be only finitely many v_{i} 's, hence finitely many g_{i} 's so $\Gamma=\pi_{1} M$ is finitely generated.) Moreover, as $\left|g_{i}^{-1}\right|=\left|g_{i}\right|$, we must also have that distance from $-v_{i}$ to v_{j} is $\geqslant \frac{\pi}{3}$ if $i<j$, Therefore the number of v_{i} 's is:

Standard computations give:
Volume of spherical bell of radius r is

For case $\sec \geqslant-k^{2}$, see Eschenlurg's notes.
Using Bishop Volume Comparison, Toponogov Triangle Comparison, Critical point theory for distance functions and topological constructions, Gromor proved the following:
Thu (Gromov' 1981).
i) If $\left(M^{n}, g\right)$ is a complete med with $\sec \geqslant 0$, then $\sum_{k=0}^{n} b_{k}(M) \leq C(n)$
ii) If $\left(M^{n}, g\right)$ is a closed meld with $\sec \geqslant-k^{2}$ and diam $\leqslant D$, then $\sum_{k=0}^{n} b_{k}(M) \leq C(n)^{1+K D}$.

Cannot replace the hypothesis $\sec \geqslant 0$ to $R_{i c}>0$ because:

Thm.(Perelman' 97). $\forall l \in \mathbb{N}$, $\#^{l} \mathbb{C}^{2}$ has a metric with $R_{i c}>0$, diam $=1$ and $V_{l} l \geqslant V>0$.
Thus, since $b_{2}\left(\#^{l} \mathbb{S}^{2} \times s^{2}\right)=2 l$ and $b_{2}\left(\#^{k} \mathbb{P}^{2} \#^{l} \overline{\mathbb{P}}^{2}\right)=k+l$, only Note: seal >0 is preserved by \#; finitely many of these manifolds can have $s e c \geqslant 0$. Currently, indeed by surgenes - only S^{4} and $\mathbb{C P}^{2}$ are known to hove $\sec >0$ and $\mathbb{1}$ Related open question is -only $\mathbb{S}^{2} \mathbb{S}^{2}$ and $\mathbb{C P}^{2}+\mathbb{P}^{2}$ are know to have $\mathbb{0} \geqslant 0$ meld that admins
 Conjecturally, the dove is the complete list of simply-connected 4 -melds with $\sec >0$ and $\sec \geqslant 0$.

Note: A s $l^{7}+\infty$, Perelman's $\#^{l} C_{P}^{2}$ converges to $B^{4} \cup B^{4}$ flat

