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1. On a Riemannian manifold (M, g), let x : U ⊂ M → x(U) ⊂ Rn be a local chart
which determines metric components gij = g

(
∂
∂xi
, ∂
∂xj

)
and Christoffel symbols Γkij ,

i.e., such that the Levi–Civita connection satisfies ∇ ∂
∂xi

∂
∂xj

=
∑
k

Γkij
∂
∂xk

. Prove that

R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z satisfies R( ∂
∂xi
, ∂
∂xj

) ∂
∂xk

=
∑̀
Rijk

` ∂
∂x`

where

Rijk
` =

∂Γ`jk
∂xi

−
∂Γ`ik
∂xj

+
∑
m

ΓmjkΓ
`
im − ΓmikΓ

`
jm.

We have that
[
∂
∂xi
, ∂
∂xj

]
= 0 since these are coordinate vector fields, so

R( ∂
∂xi
, ∂
∂xj

) ∂
∂xk

= ∇ ∂
∂xi

∇ ∂
∂xj

∂
∂xk
−∇ ∂

∂xj

∇ ∂
∂xi

∂
∂xk

= ∇ ∂
∂xi

(∑
m

Γmjk
∂

∂xm

)
−∇ ∂

∂xj

(∑
m

Γmik
∂

∂xm

)

=
∑
m

(
∂Γm

jk

∂xi
∂

∂xm
+ Γmjk∇ ∂

∂xi

∂
∂xm

)
−

(
∂Γm

ik
∂xj

∂
∂xm

+ Γmik∇ ∂
∂xj

∂
∂xm

)

=
∑
m

(
∂Γm

jk

∂xi
∂

∂xm
+ Γmjk

∑
`

Γ`im
∂
∂x`

)
−

(
∂Γm
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∂xj

∂
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+ Γmik
∑
`

Γ`jm
∂
∂x`

)

=
∑
`

(
∂Γ`
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+
∑
m

ΓmjkΓ
`
im

)
∂
∂x`
−
∑
`

(
∂Γ`

ik
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+
∑
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`
jm

)
∂
∂x`

=
∑
`

(
∂Γ`
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∂xi
+
∑
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ΓmjkΓ
`
im −

∂Γ`
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∂xj
−
∑
m

ΓmikΓ
`
jm

)
︸ ︷︷ ︸

Rijk
`

∂
∂x`

2. Let (N, dy2) be a 1-dimensional Riemannian manifold. Endow M = (a, b)×N with the
metric g = dr2 + f(r)2dy2, where f : (a, b) → R is positive and smooth. Consider the
vector fields X = ∂

∂r tangent to meridians in M and Y = ∂
∂y tangent to parallels in M .

a) Compute g(R(X,Y )Y,X). Here, you may use the formula for R in Problem 1 and
the answer to Problem 6a) in HW2.

b) Show that secg(X ∧ Y ) = −f
′′(r)

f(r)
.

c) Compute the volume form volg of g.



For the remaining items, assume (N, dy2) = (S1,dθ2) is the unit circle (of length 2π).

d) If g extends smoothly to r = a but f(a) = 0, what prevents secg(X ∧ Y ) from
blowing up? Compute the sectional curvature at r = a in terms of f .

e) Compute
∫
M secg(X ∧ Y ) volg. What happens to this quantity when the metric

extends smoothly to both r = a and r = b with f(a) = f(b) = 0? Explain.

a) We use a chart x : (a, b)×N → (a, b)×R with coordinate fields ∂
∂x1

= ∂
∂r = X and

∂
∂x2

= ∂
∂y = Y . From HW2 Problem 6a), we have that the only nonzero Christoffel

symbols are

Γ2
12 = Γ2

21 =
f ′(r)

f(r)
, Γ1

22 = −f(r)f ′(r).

Thus, by the formula for R in Problem 1, since g(X,X) = 1 and g(X,Y ) = 0,

g(R(X,Y )Y,X) = g(R122
1X +R122

2Y,X)

= R122
1

=
∂Γ1

22

∂x1
− ∂Γ1

12

∂x2
+
∑
m

Γm22Γ1
1m − Γm12Γ1

2m

=
∂Γ1

22

∂r
+ (Γ1

22Γ1
11 − Γ1

12Γ1
21) + (Γ2

22Γ1
12 − Γ2

12Γ1
22)

= −f ′(r)2 − f(r)f ′′(r)− f ′(r)

f(r)
(−f(r)f ′(r))

= −f(r)f ′′(r).

b) From the previous item, since g(X,X) = 1, g(X,Y ) = 0, and g(Y, Y ) = f(r)2, it
follows that

secg(X ∧ Y ) =
−f(r)f ′′(r)

f(r)2
= −f

′′(r)

f(r)
.

Note that secg depends only on r and not on y ∈ N , in accordance with Y = ∂
∂y

being a Killing vector field.

c) volg =
√

det g dr dy = f dr dy

d) If (N, dy2) = (S1,dθ2) is the unit circle (of length 2π) and the metric extends
smoothly to r = a and f(a) = 0, then f ′(a) = 1 and f (2k)(0) = 0 for all k ∈ N,
i.e., all derivatives of even order vanish at r = a. In particular, f ′′(a) = 0,
which prevents secg from blowing up at r = a. Moreover, by the L’Hospital rule,

secg(X ∧ Y ) = −f ′′′(a)
f ′(a) = −f ′′′(a).

e) By the items above, and the Fundamental Theorem of Calculus,∫
M

secg(X ∧ Y ) volg =

∫ 2π

0

∫ b

a
−f
′′(r)

f(r)
f(r) drdθ = 2π(f ′(a)− f ′(b)).
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If the metric g extends smoothly to both r = a and r = b with f(a) = f(b) = 0,
then the manifold (M, g) is isometric to the open and dense subset of a Riemannian
sphere (S2, g) obtained by puncturing it twice (at r = a and r = b), where the
Riemannian metric g is smooth on S2 and restricts to g on M . A consequence of
smoothness of g at r = a and r = b is that f ′(a) = 1 and f ′(b) = −1. This recovers
the Gauss–Bonnet formula for the integral of the Gauss curvature Kg on (S2, g),∫

S2
Kg volg =

∫
M

secg(X ∧ Y ) volg = 4π = 2πχ(S2).

3. Consider the metric g = 1
x2

dx2 +x2 dy2 on M = (0,∞)×R. Replace x by an arclength
parameter r = r(x) to recognize that g is isometric to a warped product dr2 +f(r)2 dy2.
Compute its curvature and use the outcome to show that given p, q ∈ M , and given
an orthonormal basis {e1, e2} of TpM and an orthonormal basis {e1, e2} of TqM , there
exists an isometry ϕ of (M, g) such that ϕ(p) = q and dϕ(p)ei = ei for i = 1, 2.

The arclength parameter in the x direction is r = r(x) such that dr = r′(x) dx = 1
x dx,

hence r = log x. It follows that x = er, hence ψ∗g = dr2 + e2rdy2, where ψ : R2 → M ,
ψ(r, y) = (er, y). Thus, g is isometric to the warped product metric dr2 + f(r)2dy2 on
(−∞,∞)×R with f(r) = er. From the Problem 2), its sectional curvature is

sec = −f
′′(r)

f(r)
= −e

r

er
= −1,

so it is locally isometric to the hyperbolic plane H2, by Cartan’s theorem. In particular,
given p, q ∈ M , and the linear isometry I : TpM → TqM defined by the prescribed
orthonormal bases, that is, Iei = ei, i = 1, 2, the hypothesis of Cartan’s theorem are
satisfied since the curvature tensor R of (M, g) is R(X,Y )Z = g(X,Z)Y − g(Y,Z)X at
all points. As (M, g) is simply-connected and complete, by the Cartan–Ambrose–Hicks
theorem, there exists a global isometry ϕ : M →M such that ϕ(p) = q and dϕ(p) = I.

4. For n ≥ 2, does there exist a Riemannian metric g on Rn whose distance function is
distg(p, q) = max

1≤i≤n
|pi − qi|, for all p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ Rn? Explain.

No. Suppose there exists such a Riemannian metric g on Rn, n ≥ 2, and consider the
points p = (0, 0, . . . , 0), q = (ε, 0, . . . , 0), r1 = (ε/2, 0, . . . , 0), r2 = (ε/2, ε/2, . . . , 0), so

distg(p, q) = ε, distg(p, ri) = ε/2, distg(ri, q) = ε/2,

for i = 1, 2. Let ε > 0 be sufficiently small so that there exists a unique minimizing
geodesic γxy between each pair of points x and y among {p, q, r1, r2}. (It follows from
the Gauss Lemma that within any sufficiently small ball on (M, g) there is a unique
minimizing geodesic between any pair of points.) As these geodesics are minimizing,

Lg(γpri) = ε/2 and Lg(γriq) = ε/2.
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Concatenating γpr1 and γr1q we obtain a curve γ1 of length ε that joins p to q; similarly,
concatenating γpr2 and γr2q we obtain a curve γ2 of length ε that joins p to q. Both
γ1 and γ2 are minimizing geodesics from p to q, but they are not the same curve since
r1 6= r2. This contradicts the uniqueness of the minimizing geodesic γpq from p to q.

r1

r2

p q
γpr1

γpr2

γr1q

γr2q

5. Can a complete manifold (Mn, g) with secg ≤ −1 admit a complete metric with sec ≥ 1?
Explain.

No. If (Mn, g) is complete and secg ≤ −1, then (by the Cartan–Hadamard Theorem) its
universal cover is diffeomorphic to Rn. If Mn also supported a complete Riemannian
metric with sec ≥ 1, in particular Ric ≥ (n − 1), then its universal cover would be
compact (by Myers’ Theorem), so no such metric can exist.

6. Let (M, g) be a complete manifold and fix p ∈M .

a) Prove that M is noncompact if and only if there exists a unit speed geodesic
γ : R→ M such that γ(0) = p and distg(γ(t), p) = t for all t ≥ 0; in particular, γ
is such that distg(γ(t), γ(s)) = |t− s| if t, s ≥ 0.

b) Can one arrange for γ to be such that distg(γ(t), γ(s)) = |t− s| for all t, s ∈ R?

a) If M is compact, then f(t) = dist(p, γ(t)) is continuous and hence bounded for
any curve γ(t). Thus, existence of a unit speed geodesic γ : R → M such that
γ(0) = p and distg(γ(t), p) = t for all t ≥ 0 implies that M is noncompact.

Conversely, if (M, g) is complete and noncompact, there exists a sequence qn ∈M
such that distg(p, qn) = Ln ↗ +∞ as n ↗ +∞ by the Hopf–Rinow Theorem.
Also by the Hopf–Rinow Theorem, there exist minimizing unit speed geodesics
γn : [0, Ln]→ M such that γn(0) = p and γn(Ln) = qn. The corresponding initial
velocities vn := γ̇n(0) form a sequence on the unit sphere in TpM which hence
admits a convergent subsequence. Up to reindexing, let us assume that vn → v
itself converges to a unit vector v ∈ TpM . Let γ : R→M , γ(t) = expp tv.

We claim that distg(p, γ(t)) = t for all t ≥ 0. If not, there exists t∗ > 0 with
distg(p, γ(t∗)) < t∗. Note that t∗ < Ln for n sufficiently large, as Ln ↗ +∞.
By construction, we have that γn(t∗) = expp(t∗vn) → γ(t∗) as n ↗ +∞. Thus,
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distg(γn(t∗), γ(t∗)) < t∗ − distg(p, γ(t∗)) for all n sufficiently large. Since the
geodesic γn : [0, Ln]→M is minimizing, by the triangle inequality, for n large,

t∗ = distg(p, γn(t∗)) ≤ distg(p, γ(t∗)) + distg(γ(t∗), γn(t∗))

< distg(p, γ(t∗)) +
(
t∗ − distg(p, γ(t∗))

)
= t∗,

a contradiction, which proves the claim. Moreover, for any t, s ≥ 0, we have

s = distg(p, γ(s)) ≤ distg(p, γ(t)) + distg(γ(t), γ(s)) = t+ distg(γ(t), γ(s))

t = distg(p, γ(t)) ≤ distg(p, γ(s)) + distg(γ(t), γ(s)) = s+ distg(γ(t), γ(s))

hence
|t− s| = max{t− s, s− t} ≤ distg(γ(t), γ(s))

and distg(γ(t), γ(s)) ≤ |t− s| as γ is a curve of length |t− s| joining γ(t) and γ(s).

b) Even though the above geodesic γ is a ray, i.e., satisfies distg(γ(t), γ(s)) = |t− s|
for all t, s ≥ 0, it is not always possible to arrange for it to be a line, i.e., satisfy
distg(γ(t), γ(s)) = |t− s| for all t, s ∈ R. For example, if (M, g) is the paraboloid
(R2, g) and p is the origin, then unit speed geodesics γ : R→M with γ(0) = p are
meridians. All of them are rays, none of them are lines. Indeed, if t > 0 is large
enough, then distg(γ(−t), γ(t)) < 2t since one one can use a parallel as shortcut.

γ(t)

p = γ(0)

γ(−t)

It can be shown that if M has at least two ends, i.e., M is disconnected at infinity,
e.g., M diffeomorphic to Sn−1 ×R, then it has lines.
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