Midterm Exam

Due: Mar 29, 2024

1. On a Riemannian manifold $(M, \mathrm{~g})$, let $x: U \subset M \rightarrow x(U) \subset \mathbb{R}^{n}$ be a local chart which determines metric components $\mathrm{g}_{i j}=\mathrm{g}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)$ and Christoffel symbols $\Gamma_{i j}^{k}$, i.e., such that the Levi-Civita connection satisfies $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=\sum_{k} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}$. Prove that $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ satisfies $R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}=\sum_{\ell} R_{i j k} \frac{\partial}{\partial x_{\ell}}$ where

$$
R_{i j k}^{\ell}=\frac{\partial \Gamma_{j k}^{\ell}}{\partial x_{i}}-\frac{\partial \Gamma_{i k}^{\ell}}{\partial x_{j}}+\sum_{m} \Gamma_{j k}^{m} \Gamma_{i m}^{\ell}-\Gamma_{i k}^{m} \Gamma_{j m}^{\ell}
$$

We have that $\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]=0$ since these are coordinate vector fields, so

$$
\begin{aligned}
R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}} & =\nabla_{\frac{\partial}{\partial x_{i}}} \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{k}}-\nabla_{\frac{\partial}{\partial x_{j}}} \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{k}} \\
& =\nabla_{\frac{\partial}{\partial x_{i}}}\left(\sum_{m} \Gamma_{j k}^{m} \frac{\partial}{\partial x_{m}}\right)-\nabla \frac{\partial}{\partial x_{j}}\left(\sum_{m} \Gamma_{i k}^{m} \frac{\partial}{\partial x_{m}}\right) \\
& =\sum_{m}\left(\frac{\partial \Gamma_{j k}^{m}}{\partial x_{i}} \frac{\partial}{\partial x_{m}}+\Gamma_{j k}^{m} \nabla \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{m}}\right)-\left(\frac{\partial \Gamma_{i k}^{m}}{\partial x_{j}} \frac{\partial}{\partial x_{m}}+\Gamma_{i k}^{m} \nabla \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{m}}\right) \\
& =\sum_{m}\left(\frac{\partial \Gamma_{j k}^{m}}{\partial x_{i}} \frac{\partial}{\partial x_{m}}+\Gamma_{j k}^{m} \sum_{\ell} \Gamma_{i m}^{\ell} \frac{\partial}{\partial x_{\ell}}\right)-\left(\frac{\partial \Gamma_{i k}^{m}}{\partial x_{j}} \frac{\partial}{\partial x_{m}}+\Gamma_{i k}^{m} \sum_{\ell} \Gamma_{j m}^{\ell} \frac{\partial}{\partial x_{\ell}}\right) \\
& =\sum_{\ell}\left(\frac{\partial \Gamma_{j k}^{\ell}}{\partial x_{i}}+\sum_{m} \Gamma_{j k}^{m} \Gamma_{i m}^{\ell}\right) \frac{\partial}{\partial x_{\ell}}-\sum_{\ell}\left(\frac{\partial \Gamma_{i k}^{\ell}}{\partial x_{j}}+\sum_{m} \Gamma_{i k}^{m} \Gamma_{j m}^{\ell}\right) \frac{\partial}{\partial x_{\ell}} \\
& =\sum_{\ell} \underbrace{\left(\frac{\partial \Gamma_{j k}^{\ell}}{\partial x_{i}}+\sum_{m} \Gamma_{j k}^{m} \Gamma_{i m}^{\ell}-\frac{\partial \Gamma_{i k}^{\ell}}{\partial x_{j}}-\sum_{m} \Gamma_{i k}^{m} \Gamma_{j m}^{\ell}\right)}_{R_{i j k}^{\ell}} \frac{\partial}{\partial x_{\ell}}
\end{aligned}
$$

2. Let $\left(N, \mathrm{~d} y^{2}\right)$ be a 1-dimensional Riemannian manifold. Endow $M=(a, b) \times N$ with the metric $\mathrm{g}=\mathrm{d} r^{2}+f(r)^{2} \mathrm{~d} y^{2}$, where $f:(a, b) \rightarrow \mathbb{R}$ is positive and smooth. Consider the vector fields $X=\frac{\partial}{\partial r}$ tangent to meridians in M and $Y=\frac{\partial}{\partial y}$ tangent to parallels in M.
a) Compute $\mathrm{g}(R(X, Y) Y, X)$. Here, you may use the formula for R in Problem 1 and the answer to Problem 6a) in HW2.
b) Show that $\sec _{\mathrm{g}}(X \wedge Y)=-\frac{f^{\prime \prime}(r)}{f(r)}$.
c) Compute the volume form vol $_{\mathrm{g}}$ of g .

For the remaining items, assume $\left(N, \mathrm{~d} y^{2}\right)=\left(\mathbb{S}^{1}, \mathrm{~d} \theta^{2}\right)$ is the unit circle (of length $\left.2 \pi\right)$.
d) If g extends smoothly to $r=a$ but $f(a)=0$, what prevents $\sec _{\mathrm{g}}(X \wedge Y)$ from blowing up? Compute the sectional curvature at $r=a$ in terms of f.
e) Compute $\int_{M} \sec _{g}(X \wedge Y)$ volg. What happens to this quantity when the metric extends smoothly to both $r=a$ and $r=b$ with $f(a)=f(b)=0$? Explain.
a) We use a chart $x:(a, b) \times N \rightarrow(a, b) \times \mathbb{R}$ with coordinate fields $\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial r}=X$ and $\frac{\partial}{\partial x_{2}}=\frac{\partial}{\partial y}=Y$. From HW2 Problem 6a), we have that the only nonzero Christoffel symbols are

$$
\Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{f^{\prime}(r)}{f(r)}, \quad \Gamma_{22}^{1}=-f(r) f^{\prime}(r)
$$

Thus, by the formula for R in Problem 1, since $\mathrm{g}(X, X)=1$ and $\mathrm{g}(X, Y)=0$,

$$
\begin{aligned}
\mathrm{g}(R(X, Y) Y, X) & =\mathrm{g}\left(R_{122}{ }^{1} X+R_{122}^{2} Y, X\right) \\
& =R_{122}{ }^{2} \\
& =\frac{\partial \Gamma_{22}^{1}}{\partial x_{1}}-\frac{\partial \Gamma_{12}^{1}}{\partial x_{2}}+\sum_{m} \Gamma_{22}^{m} \Gamma_{1 m}^{1}-\Gamma_{12}^{m} \Gamma_{2 m}^{1} \\
& =\frac{\partial \Gamma_{22}^{1}}{\partial r}+\left(\Gamma_{22}^{1} \Gamma_{11}^{1}-\Gamma_{12}^{1} \Gamma_{21}^{1}\right)+\left(\Gamma_{22}^{2} \Gamma_{12}^{1}-\Gamma_{12}^{2} \Gamma_{22}^{1}\right) \\
& =-f^{\prime}(r)^{2}-f(r) f^{\prime \prime}(r)-\frac{f^{\prime}(r)}{f(r)}\left(-f(r) f^{\prime}(r)\right) \\
& =-f(r) f^{\prime \prime}(r) .
\end{aligned}
$$

b) From the previous item, since $\mathrm{g}(X, X)=1, \mathrm{~g}(X, Y)=0$, and $\mathrm{g}(Y, Y)=f(r)^{2}$, it follows that

$$
\sec _{\mathrm{g}}(X \wedge Y)=\frac{-f(r) f^{\prime \prime}(r)}{f(r)^{2}}=-\frac{f^{\prime \prime}(r)}{f(r)} .
$$

Note that $\sec _{g}$ depends only on r and not on $y \in N$, in accordance with $Y=\frac{\partial}{\partial y}$ being a Killing vector field.
c) $\operatorname{vol}_{\mathrm{g}}=\sqrt{\operatorname{det} \mathrm{g}} \mathrm{d} r \mathrm{~d} y=f \mathrm{~d} r \mathrm{~d} y$
d) If $\left(N, \mathrm{~d} y^{2}\right)=\left(\mathbb{S}^{1}, \mathrm{~d} \theta^{2}\right)$ is the unit circle (of length 2π) and the metric extends smoothly to $r=a$ and $f(a)=0$, then $f^{\prime}(a)=1$ and $f^{(2 k)}(0)=0$ for all $k \in \mathbb{N}$, i.e., all derivatives of even order vanish at $r=a$. In particular, $f^{\prime \prime}(a)=0$, which prevents $\sec _{\mathrm{g}}$ from blowing up at $r=a$. Moreover, by the L'Hospital rule, $\sec _{\mathrm{g}}(X \wedge Y)=-\frac{f^{\prime \prime \prime}(a)}{f^{\prime}(a)}=-f^{\prime \prime \prime}(a)$.
e) By the items above, and the Fundamental Theorem of Calculus,

$$
\int_{M} \sec _{\mathrm{g}}(X \wedge Y) \operatorname{vol}_{\mathrm{g}}=\int_{0}^{2 \pi} \int_{a}^{b}-\frac{f^{\prime \prime}(r)}{f(r)} f(r) \mathrm{d} r \mathrm{~d} \theta=2 \pi\left(f^{\prime}(a)-f^{\prime}(b)\right) .
$$

If the metric g extends smoothly to both $r=a$ and $r=b$ with $f(a)=f(b)=0$, then the manifold $(M, \mathrm{~g})$ is isometric to the open and dense subset of a Riemannian sphere (\mathbb{S}^{2}, \bar{g}) obtained by puncturing it twice (at $r=a$ and $r=b$), where the Riemannian metric $\overline{\mathrm{g}}$ is smooth on \mathbb{S}^{2} and restricts to g on M. A consequence of smoothness of g at $r=a$ and $r=b$ is that $f^{\prime}(a)=1$ and $f^{\prime}(b)=-1$. This recovers the Gauss-Bonnet formula for the integral of the Gauss curvature $K_{\overline{\mathrm{g}}}$ on $\left(\mathbb{S}^{2}, \overline{\mathrm{~g}}\right)$,

$$
\int_{\mathbb{S}^{2}} K_{\overline{\mathrm{g}}} \operatorname{vol}_{\overline{\mathrm{g}}}=\int_{M} \sec _{\mathrm{g}}(X \wedge Y) \operatorname{vol}_{\mathrm{g}}=4 \pi=2 \pi \chi\left(\mathbb{S}^{2}\right) .
$$

3. Consider the metric $\mathrm{g}=\frac{1}{x^{2}} \mathrm{~d} x^{2}+x^{2} \mathrm{~d} y^{2}$ on $M=(0, \infty) \times \mathbb{R}$. Replace x by an arclength parameter $r=r(x)$ to recognize that g is isometric to a warped product $\mathrm{d} r^{2}+f(r)^{2} \mathrm{~d} y^{2}$. Compute its curvature and use the outcome to show that given $p, q \in M$, and given an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{\overline{e_{1}}, \overline{e_{2}}\right\}$ of $T_{q} M$, there exists an isometry φ of $(M, \mathrm{~g})$ such that $\varphi(p)=q$ and $\mathrm{d} \varphi(p) e_{i}=\overline{e_{i}}$ for $i=1,2$.
The arclength parameter in the x direction is $r=r(x)$ such that $\mathrm{d} r=r^{\prime}(x) \mathrm{d} x=\frac{1}{x} \mathrm{~d} x$, hence $r=\log x$. It follows that $x=e^{r}$, hence $\psi^{*} \mathrm{~g}=\mathrm{d} r^{2}+e^{2 r} \mathrm{~d} y^{2}$, where $\psi: \mathbb{R}^{2} \rightarrow M$, $\psi(r, y)=\left(e^{r}, y\right)$. Thus, g is isometric to the warped product metric $\mathrm{d} r^{2}+f(r)^{2} \mathrm{~d} y^{2}$ on $(-\infty, \infty) \times \mathbb{R}$ with $f(r)=e^{r}$. From the Problem 2), its sectional curvature is

$$
\sec =-\frac{f^{\prime \prime}(r)}{f(r)}=-\frac{e^{r}}{e^{r}}=-1
$$

so it is locally isometric to the hyperbolic plane \mathbb{H}^{2}, by Cartan's theorem. In particular, given $p, q \in M$, and the linear isometry $I: T_{p} M \rightarrow T_{q} M$ defined by the prescribed orthonormal bases, that is, $I e_{i}=\overline{e_{i}}, i=1,2$, the hypothesis of Cartan's theorem are satisfied since the curvature tensor R of $(M, \mathrm{~g})$ is $R(X, Y) Z=\mathrm{g}(X, Z) Y-\mathrm{g}(Y, Z) X$ at all points. As $(M, \mathrm{~g})$ is simply-connected and complete, by the Cartan-Ambrose-Hicks theorem, there exists a global isometry $\varphi: M \rightarrow M$ such that $\varphi(p)=q$ and $\mathrm{d} \varphi(p)=I$.
4. For $n \geq 2$, does there exist a Riemannian metric g on \mathbb{R}^{n} whose distance function is $\operatorname{dist}(p, q)=\max _{1 \leq i \leq n}\left|p_{i}-q_{i}\right|$, for all $p=\left(p_{1}, \ldots, p_{n}\right), q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n}$? Explain.
No. Suppose there exists such a Riemannian metric g on $\mathbb{R}^{n}, n \geq 2$, and consider the points $p=(0,0, \ldots, 0), q=(\varepsilon, 0, \ldots, 0), r_{1}=(\varepsilon / 2,0, \ldots, 0), r_{2}=(\varepsilon / 2, \varepsilon / 2, \ldots, 0)$, so

$$
\operatorname{dist}_{\mathrm{g}}(p, q)=\varepsilon, \quad \operatorname{dist}_{\mathrm{g}}\left(p, r_{i}\right)=\varepsilon / 2, \quad \operatorname{dist}_{\mathrm{g}}\left(r_{i}, q\right)=\varepsilon / 2
$$

for $i=1,2$. Let $\varepsilon>0$ be sufficiently small so that there exists a unique minimizing geodesic $\gamma_{x y}$ between each pair of points x and y among $\left\{p, q, r_{1}, r_{2}\right\}$. (It follows from the Gauss Lemma that within any sufficiently small ball on $(M, \mathrm{~g})$ there is a unique minimizing geodesic between any pair of points.) As these geodesics are minimizing,

$$
L_{\mathrm{g}}\left(\gamma_{p r_{i}}\right)=\varepsilon / 2 \quad \text { and } \quad L_{\mathrm{g}}\left(\gamma_{r_{i} q}\right)=\varepsilon / 2
$$

Concatenating $\gamma_{p r_{1}}$ and $\gamma_{r_{1} q}$ we obtain a curve γ_{1} of length ε that joins p to q; similarly, concatenating $\gamma_{p r_{2}}$ and $\gamma_{r_{2} q}$ we obtain a curve γ_{2} of length ε that joins p to q. Both γ_{1} and γ_{2} are minimizing geodesics from p to q, but they are not the same curve since $r_{1} \neq r_{2}$. This contradicts the uniqueness of the minimizing geodesic $\gamma_{p q}$ from p to q.

5. Can a complete manifold ($M^{n}, \mathrm{~g}$) with $\sec _{\mathrm{g}} \leq-1$ admit a complete metric with $\mathrm{sec} \geq 1$? Explain.

No. If $\left(M^{n}, \mathrm{~g}\right)$ is complete and $\sec _{\mathrm{g}} \leq-1$, then (by the Cartan-Hadamard Theorem) its universal cover is diffeomorphic to \mathbb{R}^{n}. If M^{n} also supported a complete Riemannian metric with sec ≥ 1, in particular Ric $\geq(n-1)$, then its universal cover would be compact (by Myers' Theorem), so no such metric can exist.
6. Let $(M, \mathrm{~g})$ be a complete manifold and fix $p \in M$.
a) Prove that M is noncompact if and only if there exists a unit speed geodesic $\gamma: \mathbb{R} \rightarrow M$ such that $\gamma(0)=p$ and $\operatorname{dist}_{\mathrm{g}}(\gamma(t), p)=t$ for all $t \geq 0$; in particular, γ is such that $\operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s))=|t-s|$ if $t, s \geq 0$.
b) Can one arrange for γ to be such that $\operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s))=|t-s|$ for all $t, s \in \mathbb{R}$?
a) If M is compact, then $f(t)=\operatorname{dist}(p, \gamma(t))$ is continuous and hence bounded for any curve $\gamma(t)$. Thus, existence of a unit speed geodesic $\gamma: \mathbb{R} \rightarrow M$ such that $\gamma(0)=p$ and $\operatorname{dist}_{\mathrm{g}}(\gamma(t), p)=t$ for all $t \geq 0$ implies that M is noncompact.
Conversely, if $(M, \mathrm{~g})$ is complete and noncompact, there exists a sequence $q_{n} \in M$ such that $\operatorname{dist}_{\mathrm{g}}\left(p, q_{n}\right)=L_{n} \nearrow+\infty$ as $n \nearrow+\infty$ by the Hopf-Rinow Theorem. Also by the Hopf-Rinow Theorem, there exist minimizing unit speed geodesics $\gamma_{n}:\left[0, L_{n}\right] \rightarrow M$ such that $\gamma_{n}(0)=p$ and $\gamma_{n}\left(L_{n}\right)=q_{n}$. The corresponding initial velocities $v_{n}:=\dot{\gamma}_{n}(0)$ form a sequence on the unit sphere in $T_{p} M$ which hence admits a convergent subsequence. Up to reindexing, let us assume that $v_{n} \rightarrow v$ itself converges to a unit vector $v \in T_{p} M$. Let $\gamma: \mathbb{R} \rightarrow M, \gamma(t)=\exp _{p} t v$.
We claim that $\operatorname{dist}_{\mathrm{g}}(p, \gamma(t))=t$ for all $t \geq 0$. If not, there exists $t_{*}>0$ with $\operatorname{dist}_{\mathrm{g}}\left(p, \gamma\left(t_{*}\right)\right)<t_{*}$. Note that $t_{*}<L_{n}$ for n sufficiently large, as $L_{n} \nearrow+\infty$. By construction, we have that $\gamma_{n}\left(t_{*}\right)=\exp _{p}\left(t_{*} v_{n}\right) \rightarrow \gamma\left(t_{*}\right)$ as $n \nearrow+\infty$. Thus,
$\operatorname{dist}_{\mathrm{g}}\left(\gamma_{n}\left(t_{*}\right), \gamma\left(t_{*}\right)\right)<t_{*}-\operatorname{dist}_{\mathrm{g}}\left(p, \gamma\left(t_{*}\right)\right)$ for all n sufficiently large. Since the geodesic $\gamma_{n}:\left[0, L_{n}\right] \rightarrow M$ is minimizing, by the triangle inequality, for n large,

$$
\begin{aligned}
& t_{*}=\operatorname{dist}_{\mathrm{g}}\left(p, \gamma_{n}\left(t_{*}\right)\right) \leq \operatorname{dist}_{\mathrm{g}}\left(p, \gamma\left(t_{*}\right)\right)+\operatorname{dist}_{\mathrm{g}}\left(\gamma\left(t_{*}\right), \gamma_{n}\left(t_{*}\right)\right) \\
&<\operatorname{dist}_{\mathrm{g}}\left(p, \gamma\left(t_{*}\right)\right)+\left(t_{*}-\operatorname{dist}_{\mathrm{g}}\left(p, \gamma\left(t_{*}\right)\right)\right)=t_{*}
\end{aligned}
$$

a contradiction, which proves the claim. Moreover, for any $t, s \geq 0$, we have

$$
\begin{aligned}
& s=\operatorname{dist}_{\mathrm{g}}(p, \gamma(s)) \leq \operatorname{dist}_{\mathrm{g}}(p, \gamma(t))+\operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s))=t+\operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s)) \\
& t=\operatorname{dist}_{\mathrm{g}}(p, \gamma(t)) \leq \operatorname{dist}_{\mathrm{g}}(p, \gamma(s))+\operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s))=s+\operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s))
\end{aligned}
$$

hence

$$
|t-s|=\max \{t-s, s-t\} \leq \operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s))
$$

and $\operatorname{distg}_{g}(\gamma(t), \gamma(s)) \leq|t-s|$ as γ is a curve of length $|t-s|$ joining $\gamma(t)$ and $\gamma(s)$.
b) Even though the above geodesic γ is a ray, i.e., satisfies $\operatorname{dist}_{\mathrm{g}}(\gamma(t), \gamma(s))=|t-s|$ for all $t, s \geq 0$, it is not always possible to arrange for it to be a line, i.e., satisfy $\operatorname{distg}_{g}(\gamma(t), \gamma(s))=|t-s|$ for all $t, s \in \mathbb{R}$. For example, if $(M, \mathrm{~g})$ is the paraboloid $\left(\mathbb{R}^{2}, \mathrm{~g}\right)$ and p is the origin, then unit speed geodesics $\gamma: \mathbb{R} \rightarrow M$ with $\gamma(0)=p$ are meridians. All of them are rays, none of them are lines. Indeed, if $t>0$ is large enough, then $\operatorname{distg}_{\mathrm{g}}(\gamma(-t), \gamma(t))<2 t$ since one one can use a parallel as shortcut.

It can be shown that if M has at least two ends, i.e., M is disconnected at infinity, e.g., M diffeomorphic to $\mathbb{S}^{n-1} \times \mathbb{R}$, then it has lines.

