MATH71000, Spring 2024 Renato Ghini Bettiol

Midterm Exam

DuE: MAR 29, 2024

1. On a Riemannian manifold (M,g), let z: U C M —> z(U) € R™ be a local chart

which determines metric components g;; = g( az ' 0y ) and Christoffel symbols FZ],

i.e., such that the Levi-Civita connection satisfies V 2 830 ZI’W 9o Prove that
J

Tq

R(X,Y)Z = VxVyZ — VyVxZ — Vixy|Z satisfies R(g7. 57-) g0, = ZRUJ@%
L

8$k
where .
2 ¢
Riji’ = O arlk ZF Fé-
) 81‘1 jm
We have that [ 82~’ %] = 0 since these are coordinate vector fields, so
i J
0 o) o)
R(g5: 9550 =V oV 0 50: =V o Voo g
J Jxz;  Oxj Oz;  Ox;
- Z ij Oxm | L Z Flk 0T,
8:131 Ox;
61"771 F'm )
— o) m . _0
- axL 8xm oz > 6.27] sz Flkvl OTm
Bml al‘]

=[] S[Vj

81"777, b dF’LkJ
8$Z 8:1: ZF 8905) - (8@ 8J:m ermﬂx/)

(3
<
<8rz
[

BIZ+EF )aﬁ‘Z( m*’zr )a;;g
88mz ZF )dzz

¢
Rijk

- -

2. Let (N,dy?) be a 1-dimensional Riemannian manifold. Endow M = (a,b) x N with the
metric g = dr? + f(r)2dy?, where f: (a,b) — R is positive and smooth. Consider the
vector fields X = % tangent to meridians in M and Y = % tangent to parallels in M.

a) Compute g(R(X,Y)Y, X). Here, you may use the formula for R in Problem 1 and
the answer to Problem 6a) in HW2.

f(r)

fr)

c¢) Compute the volume form vol, of g.

b) Show that secg(X AY) = —



For the remaining items, assume (N, dy?) = ($!,d6?) is the unit circle (of length 27).

d) If g extends smoothly to r = a but f(a) = 0, what prevents secy(X AY) from
blowing up? Compute the sectional curvature at r = a in terms of f.

e) Compute [ A 5ecg(X AY)volg. What happens to this quantity when the metric
extends smoothly to both 7 = a and r = b with f(a) = f(b) = 07 Explain.

a) We use a chart z: (a,b) x N — (a,b) x R with coordinate fields 8%1 = % = X and
0 — 8% =Y. From HW2 Problem 6a), we have that the only nonzero Christoffel

%/Tri1bols are /
20 == 0,

Thus, by the formula for R in Problem 1, since g(X, X) =1 and g(X,Y) =0,
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g(R(X,Y)Y, X) = g(Ri22" X + R122%Y, X)
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= —f(r)f"(r).

b) From the previous item, since g(X, X) = 1, g(X,Y) =0, and g(Y,Y) = f(r)?, it

follows that Y Y
—F) )
fr)? f(r)
Note that secy depends only on r and not on y € N, in accordance with ¥ = 8y
being a Killing vector field.

c) volg =+/detgdrdy = fdrdy
d) If (N,dy?) = ($!,d6?) is the unit circle (of length 27) and the metric extends
smoothly to r = a and f(a) = 0, then f'(a) = 1 and f**¥)(0) = 0 for all k € IN,

secg (X NY) =

i.e., all derivatives of even order vanish at » = a. In particular, f”(a) = 0,
which prevents secy from blowing up at r = a. Moreover, by the L’Hospital rule,
secg(X NY) = f,((aa) =—f"(a).

e) By the items above, and the Fundamental Theorem of Calculus,

/ secg(X ANY) volg —/2Tr/ f” ) drdf = 27 (f'(a) — f'(b)).



If the metric g extends smoothly to both » = a and r» = b with f(a) = f(b) =0,
then the manifold (M, g) is isometric to the open and dense subset of a Riemannian
sphere ($2,g) obtained by puncturing it twice (at r = a and r = b), where the
Riemannian metric g is smooth on $2 and restricts to g on M. A consequence of
smoothness of g at = a and r = b is that f’(a) = 1 and f’(b) = —1. This recovers
the Gauss-Bonnet formula for the integral of the Gauss curvature Kz on ($2,8),

/5;2 Kgvolg = /M secg (X AY)voly = 41 = 27x($?).

3. Consider the metric g = # da? +22dy? on M = (0,00) x R. Replace z by an arclength
parameter r = r(x) to recognize that g is isometric to a warped product dr2+f (7“)2 dy?.
Compute its curvature and use the outcome to show that given p,q € M, and given
an orthonormal basis {e1, ez} of T, M and an orthonormal basis {e7, ez} of T,M, there
exists an isometry ¢ of (M, g) such that ¢(p) = ¢ and dp(p)e; = ¢€; for i = 1, 2.

The arclength parameter in the x direction is 7 = r(z) such that dr = r'(z) dz = 1 da,
hence r = log z. It follows that = = e”, hence 1*g = dr? + e?"dy?, where : R? — M,
Y(r,y) = (e",y). Thus, g is isometric to the warped product metric dr? + f(r)2dy? on
(—00,00) x R with f(r) = e". From the Problem 2), its sectional curvature is
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so it is locally isometric to the hyperbolic plane H?, by Cartan’s theorem. In particular,
given p,q € M, and the linear isometry I: T,M — T,M defined by the prescribed
orthonormal bases, that is, Ie; = €;, ¢ = 1,2, the hypothesis of Cartan’s theorem are
satisfied since the curvature tensor R of (M,g) is R(X,Y)Z =g(X,Z)Y —g(Y,Z)X at
all points. As (M, g) is simply-connected and complete, by the Cartan—Ambrose—Hicks
theorem, there exists a global isometry ¢: M — M such that ¢(p) = ¢ and dp(p) = I.

sec =

4. For n > 2, does there exist a Riemannian metric g on R™ whose distance function is
distg(p,q) = max lpi — qi|, for all p= (p1,...,pn),q¢ = (q1,...,qn) € R"? Explain.

No. Suppose there exists such a Riemannian metric g on R", n > 2, and consider the
points p = (0,0,...,0), ¢ = (¢,0,...,0), 1 = (¢/2,0,...,0), 7o = (¢/2,¢/2,...,0), so

distg(p,q) = ¢, distg(p, i) =¢/2, distg(rs,q) =€/2,

for i = 1,2. Let € > 0 be sufficiently small so that there exists a unique minimizing
geodesic v,y between each pair of points x and y among {p, ¢, 71,72}. (It follows from
the Gauss Lemma that within any sufficiently small ball on (M, g) there is a unique
minimizing geodesic between any pair of points.) As these geodesics are minimizing,

Lg(’Ypm) = 6/2 and Lg(’}/rlq) — 6/2



Concatenating vy,, and ,,4 we obtain a curve 1 of length € that joins p to ¢; similarly,
concatenating 7,,, and 7,,4 we obtain a curve 72 of length ¢ that joins p to ¢. Both
~v1 and 9 are minimizing geodesics from p to ¢, but they are not the same curve since
r1 # r2. This contradicts the uniqueness of the minimizing geodesic 7,4 from p to gq.
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5. Can a complete manifold (M",g) with sec; < —1 admit a complete metric with sec > 17
Explain.

No. If (M", g) is complete and sec, < —1, then (by the Cartan-Hadamard Theorem) its
universal cover is diffeomorphic to R™. If M™ also supported a complete Riemannian
metric with sec > 1, in particular Ric > (n — 1), then its universal cover would be
compact (by Myers’ Theorem), so no such metric can exist.

6. Let (M,g) be a complete manifold and fix p € M.

a) Prove that M is noncompact if and only if there exists a unit speed geodesic
v: R — M such that v(0) = p and distg(y(t),p) =t for all ¢ > 0; in particular, v
is such that distg(y(t),v(s)) = |t — s| if t,s > 0.

b) Can one arrange for v to be such that disty(y(t),v(s)) = |t — s| for all t,s € R?

a) If M is compact, then f(¢) = dist(p,y(t)) is continuous and hence bounded for
any curve y(t). Thus, existence of a unit speed geodesic v: R — M such that
7(0) = p and distg(y(t),p) =t for all ¢ > 0 implies that M is noncompact.

Conversely, if (M, g) is complete and noncompact, there exists a sequence g, € M
such that distg(p,qn) = L, /* 400 as n / +oo0 by the Hopf-Rinow Theorem.
Also by the Hopf-Rinow Theorem, there exist minimizing unit speed geodesics
Yn: [0, L,] — M such that 7,(0) = p and v,(L,) = ¢,. The corresponding initial
velocities vy, = 4,(0) form a sequence on the unit sphere in 7,/ which hence
admits a convergent subsequence. Up to reindexing, let us assume that v, — v
itself converges to a unit vector v € T, M. Let v: R — M, ~(t) = exp,, tv.

We claim that distg(p,v(t)) = t for all ¢ > 0. If not, there exists t, > 0 with
distg(p, ¥(t«)) < ti. Note that t, < L, for n sufficiently large, as L, ,* 4o0.
By construction, we have that v, (t«) = exp,(t«vn) — v(t«) as n ~ +oo. Thus,



distg (yn (t4), 7(tx)) < ti« — distg(p,y(t«)) for all n sufficiently large. Since the
geodesic vy, : [0, L] — M is minimizing, by the triangle inequality, for n large,

te = distg(p, Y (ts)) < distg(p, y(tx)) + distg(v(ts), v (ts))
< distg(p, y(t4)) + (t« — distg(p, ¥(ts))) = s,

a contradiction, which proves the claim. Moreover, for any ¢,s > 0, we have

s = distg(p,v(s)) < distg(p,v(t)) + distg(v(t), 7(s)) = t + distg(v(t),¥(s))
t = distg(p, v(t)) < distg(p,(s)) + distg((2),7(s)) = s + distg((2),7(s))

hence
6= 5| = max{t — 5,5 — t} < distg(1(£), 7(s))

and distg(y(¢),v(s)) < |t —s| as v is a curve of length |t — s| joining v(t) and ~(s).
Even though the above geodesic v is a ray, i.e., satisfies distg((2),v(s)) = |t — 5]
for all t,s > 0, it is not always possible to arrange for it to be a line, i.e., satisfy
distg(y(t),v(s)) = |t — s| for all ¢, s € R. For example, if (M, g) is the paraboloid
(R?,g) and p is the origin, then unit speed geodesics v: R — M with v(0) = p are
meridians. All of them are rays, none of them are lines. Indeed, if ¢ > 0 is large
enough, then distg(v(—t),7(t)) < 2t since one one can use a parallel as shortcut.

It can be shown that if M has at least two ends, i.e., M is disconnected at infinity,
e.g., M diffeomorphic to $"~! x R, then it has lines.



