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Lecture 10

1. Two-phase simplex method

So far, we have assumed that LPs can be written as

(1)
min cT x s.t. Ax ≤ b

x ≥ 0

where b ≥ 0. Under these assumptions, the LP is always feasible, as x = 0 is a feasible solution.
Let us now discuss the case of a general LP, which, up to multiplying certain rows by −1, can be
assumed to be of the form

(2)

min cT x s.t. a11 x1 + · · ·+ a1n xn � b1,

. . .

am1 x1 + · · ·+ amn xn � bm,

x ≥ 0

where b ≥ 0 and � stands for either ≤, =, or ≥. Recall that a LP of the above form need not be
feasible.

The goal is to build on the simplex method we discussed earlier for LPs of the form (1) to have a
similar algorithm that handles any input LP of the form (2) and, after finitely many steps, outputs
one of the following options:

• LP is infeasible;
• LP is unbounded;
• LP is feasible and bounded, and optimal solution is xopt.

The simplex method algorithm accomplishing this is the two-phase simplex method. The first phase
is to solve an auxiliary LP to determine feasibility of the original LP and obtain (if possible) an
initial basic feasible solution; the second phase is similar to our earlier discussion, either finding an
optimal solution or determining that the original LP is unbounded.

1.1. Getting ready. Given (2), where b ≥ 0, we proceed as follows:

(1) Let V = {i1, . . . , ik} be the list of rows ai1x1 + · · ·+ ainxn � bi where � is = or ≥.
(2) Add a slack variable to rows where � is ≤ and subtract a slack variable1 to rows where �

is ≥.
(3) If i ∈ V , then add an artificial variable to row i.

All new variables introduced above are assumed nonnegative. For example, given

max 4x1 + 5x2 s.t. 2x1 + 3x2 ≤ 6,

3x1 + x2 ≥ 3,

x ≥ 0,

the steps above are

(1) V = {2}.
(2) Add a slack variable x3 to row 1, subtract a slack variable x4 from row 2.
(3) Add an artificial variable x5 to row 2.

Altogether, we obtain the following LP in x = (x1, . . . , x5)

(3)

max 4x1 + 5x2 s.t. 2x1 + 3x2 + x3 = 6,

3x1 + x2 − x4 + x5 = 3,

x ≥ 0.

1These are usually called excess or surplus variables.



1.2. Phase I. In the first phase, we shall determine if the LP is feasible, and, if so, compute a
basic feasible solution. This is based on the following elementary result:

Proposition 1. Let A be an m× n matrix. The LP on x = (x1, . . . , xn) ∈ Rn given by

max cT x s.t. Ax = b, x ≥ 0,

is feasible if and only if the LP on x̄ = (x1, . . . , xn, xn+1, . . . , xn+m) ∈ Rn+m given by

min xn+1 + · · ·+ xn+m s.t. (A| Idm)x̄ = b, x̄ ≥ 0,

has optimal value 0, where (A| Idm) is the m × (n + m) matrix obtained juxtaposing A and the
m×m identity matrix.

Exercise 1. Prove Proposition 1.

We shall apply Proposition 1 to our setup with xn+1, . . . , xn+m being the union artificial variables
(which we want to get rid of) and slack variables added to rows where � is ≤. Since we want to
get rid of artificial variables, the target function to be minimized in the auxiliary LP is their sum.
For example, the auxiliary LP to determine feasibility of (3) is

min x5 s.t. 2x1 + 3x2 + x3 = 6,

3x1 + x2 − x4 + x5 = 3,

x ≥ 0.

This is arranged so that x = (0, 0, 6, 0, 3) is an obvious basic feasible solution, with tableau

x1 x2 x3 x4 x5
x3 2 3 1 0 0 6
x5 3 1 0 −1 1 3

0 0 0 0 −1 0

Note that the auxiliary target function takes value 3 at this basic feasible solution. However, there
are nonzero entries in the target row on the columns of x3 and x5. In order to rectify this, we
perform row operations (in this case, just adding the row of x5 to the target row) and obtain an
equivalent tableau satisfying the usual properties:

x1 x2 x3 x4 x5
x3 2 3 1 0 0 6
x5 3 1 0 −1 1 3

3 1 0 −1 0 3

We now proceed with the simplex method to find the optimal value. Using entering variable x1 we
compute θ(x3) = 3, θ(x5) = 1 so the departing variable is x5, and we arrive to

x1 x2 x3 x4 x5

x3 0 7
3 1 2

3 −2
3 4

x1 1 1
3 0 −1

3
1
3 1

0 0 0 0 −1 0

By the above, the minimum value of the auxiliary target function is 0 hence the LP (3) is feasible
keeping any artificial variables set to 0. Namely, x = (1, 0, 4, 0, 0) is a basic feasible solution
corresponding to the feasible basis B = {1, 3} ⊂ {1, . . . , 5}.

Exercise 2. Check that x = (1, 0, 4, 0) is indeed a basic feasible solution for (3).

We then remove the artificial variable x5 and proceed to Phase II. If the optimal value at the
end of Phase I is > 0, then the original LP is not feasible and the algorithm terminates.
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1.3. Phase II. Using the basic feasible solution resulting from Phase I and the original target
function, we build the tableau

x1 x2 x3 x4

x3 0 7
3 1 2

3 4

x1 1 1
3 0 −1

3 1

−4 −5 0 0 0

Performing row operations to eliminate the nonzero entries in the target row for columns of basic
variables, we obtain:

x1 x2 x3 x4

x3 0 7
3 1 2

3 4

x1 1 1
3 0 −1

3 1

0 −11
3 0 −4

3 4

Exercise 3. Finish the example above to find that the maximum value of the target function is
12, which is attained at the basic feasible solution x = (1, 0, 0, 6) with B = {1, 4}.

Solution to Exercise 3. See lecture10.nb.
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