Lecture 10

1. Two-phase simplex method

So far, we have assumed that LPs can be written as

$$
\begin{array}{lll}
\min & c^{T} x \quad \text { s.t. } & A x \leq b \\
& & x \geq 0 \tag{1}
\end{array}
$$

where $b \geq 0$. Under these assumptions, the LP is always feasible, as $x=0$ is a feasible solution. Let us now discuss the case of a general $L P$, which, up to multiplying certain rows by -1 , can be assumed to be of the form

$$
\begin{align*}
\min \quad c^{T} x \quad \text { s.t. } & a_{11} x_{1}+\cdots+a_{1 n} x_{n} \square b_{1}, \\
& \tag{2}\\
& \ldots \\
& a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \square b_{m}, \\
& x \geq 0
\end{align*}
$$

where $b \geq 0$ and \square stands for either $\leq,=$, or \geq. Recall that a LP of the above form need not be feasible.

The goal is to build on the simplex method we discussed earlier for LPs of the form (1) to have a similar algorithm that handles any input LP of the form (2) and, after finitely many steps, outputs one of the following options:

- LP is infeasible;
- LP is unbounded;
- LP is feasible and bounded, and optimal solution is $x_{\text {opt }}$.

The simplex method algorithm accomplishing this is the two-phase simplex method. The first phase is to solve an auxiliary LP to determine feasibility of the original LP and obtain (if possible) an initial basic feasible solution; the second phase is similar to our earlier discussion, either finding an optimal solution or determining that the original LP is unbounded.
1.1. Getting ready. Given (2), where $b \geq 0$, we proceed as follows:
(1) Let $V=\left\{i_{1}, \ldots, i_{k}\right\}$ be the list of rows $a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \square b_{i}$ where \square is $=$ or \geq.
(2) Add a slack variable to rows where \square is \leq and subtract a slack variabl \rrbracket^{1} to rows where is \geq.
(3) If $i \in V$, then add an artificial variable to row i.

All new variables introduced above are assumed nonnegative. For example, given

$$
\begin{array}{rlrl}
\max \quad 4 x_{1}+5 x_{2} \quad \text { s.t. } & 2 x_{1}+3 x_{2} \leq 6, \\
& & 3 x_{1}+x_{2} \geq 3, \\
& x \geq 0,
\end{array}
$$

the steps above are
(1) $V=\{2\}$.
(2) Add a slack variable x_{3} to row 1 , subtract a slack variable x_{4} from row 2 .
(3) Add an artificial variable x_{5} to row 2 .

Altogether, we obtain the following LP in $x=\left(x_{1}, \ldots, x_{5}\right)$

$$
\begin{align*}
\max \quad 4 x_{1}+5 x_{2} \quad \text { s.t. } & 2 x_{1}+3 x_{2}+x_{3}=6, \\
& 3 x_{1}+x_{2}-x_{4}+x_{5}=3, \tag{3}\\
& x \geq 0 .
\end{align*}
$$

[^0]1.2. Phase I. In the first phase, we shall determine if the LP is feasible, and, if so, compute a basic feasible solution. This is based on the following elementary result:

Proposition 1. Let A be an $m \times n$ matrix. The LP on $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ given by

$$
\max c^{T} x \quad \text { s.t. } \quad A x=b, x \geq 0
$$

is feasible if and only if the LP on $\bar{x}=\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right) \in \mathbb{R}^{n+m}$ given by

$$
\min x_{n+1}+\cdots+x_{n+m} \quad \text { s.t. } \quad\left(A \mid \operatorname{Id}_{m}\right) \bar{x}=b, \bar{x} \geq 0,
$$

has optimal value 0 , where $\left(A \mid \operatorname{Id}_{m}\right)$ is the $m \times(n+m)$ matrix obtained juxtaposing A and the $m \times m$ identity matrix.
Exercise 1. Prove Proposition 1.
We shall apply Proposition 1 to our setup with x_{n+1}, \ldots, x_{n+m} being the union artificial variables (which we want to get rid of) and slack variables added to rows where \square is \leq. Since we want to get rid of artificial variables, the target function to be minimized in the auxiliary LP is their sum. For example, the auxiliary LP to determine feasibility of (3) is

$$
\begin{aligned}
\min \quad x_{5} \quad \text { s.t. } \quad & 2 x_{1}+3 x_{2}+x_{3}=6 \\
& 3 x_{1}+x_{2}-x_{4}+x_{5}=3 \\
& x \geq 0
\end{aligned}
$$

This is arranged so that $x=(0,0,6,0,3)$ is an obvious basic feasible solution, with tableau

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{3}	2	3	1	0	0	6
x_{5}	3	1	0	-1	1	3
	0	0	0	0	-1	0

Note that the auxiliary target function takes value 3 at this basic feasible solution. However, there are nonzero entries in the target row on the columns of x_{3} and x_{5}. In order to rectify this, we perform row operations (in this case, just adding the row of x_{5} to the target row) and obtain an equivalent tableau satisfying the usual properties:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{3}	2	3	1	0	0	6
x_{5}	3	1	0	-1	1	3
	3	1	0	-1	0	3

We now proceed with the simplex method to find the optimal value. Using entering variable x_{1} we compute $\theta\left(x_{3}\right)=3, \theta\left(x_{5}\right)=1$ so the departing variable is x_{5}, and we arrive to

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{3}	0	$\frac{7}{3}$	1	$\frac{2}{3}$	$-\frac{2}{3}$	4
x_{1}	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	$\frac{1}{3}$	1
	0	0	0	0	-1	0

By the above, the minimum value of the auxiliary target function is 0 hence the LP (3) is feasible keeping any artificial variables set to 0 . Namely, $x=(1,0,4,0,0)$ is a basic feasible solution corresponding to the feasible basis $B=\{1,3\} \subset\{1, \ldots, 5\}$.
Exercise 2. Check that $x=(1,0,4,0)$ is indeed a basic feasible solution for (3).
We then remove the artificial variable x_{5} and proceed to Phase II. If the optimal value at the end of Phase I is >0, then the original LP is not feasible and the algorithm terminates.
1.3. Phase II. Using the basic feasible solution resulting from Phase I and the original target function, we build the tableau

	x_{1}	x_{2}	x_{3}	x_{4}	
x_{3}	0	$\frac{7}{3}$	1	$\frac{2}{3}$	4
x_{1}	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	1
	-4	-5	0	0	0

Performing row operations to eliminate the nonzero entries in the target row for columns of basic variables, we obtain:

	x_{1}	x_{2}	x_{3}	x_{4}	
x_{3}	0	$\frac{7}{3}$	1	$\frac{2}{3}$	4
x_{1}	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	1
	0	$-\frac{11}{3}$	0	$-\frac{4}{3}$	4

Exercise 3. Finish the example above to find that the maximum value of the target function is 12 , which is attained at the basic feasible solution $x=(1,0,0,6)$ with $B=\{1,4\}$.
Solution to Exercise 3. See lecture10.nb.

[^0]: ${ }^{1}$ These are usually called excess or surplus variables.

