Lecture 11

1. Two-Phase simplex method

Recall that the two-phase simplex method takes a general LP as input, and, after finitely many steps (e.g., if the lexicographic pivoting rule is used), outputs one of the following:

- LP is infeasible;
- LP is unbounded;
- LP is feasible and bounded, and optimal solution is $x_{\text {opt }}$.

First, we introduce the appropriate (nonnegative) slack and artificial variables:
(1) Let $V=\left\{j_{1}, \ldots, j_{k}\right\}$ be the list of rows $a_{j 1} x_{1}+\cdots+a_{j n} x_{n} \square b_{j}$ where \square is $=$ or \geq.
(2) Add a slack variable to rows where \square is and subtract a slack variabl ${ }^{1}$ to rows where \square is \geq.
(3) If $j \in V$, then add an artificial variable to row j.

Second, we begin Phase I, in which we solve an auxiliary LP that tests feasibility of the original LP, by finding the minimum of the sum of artificial variables. (If there are no artificial variables, skip to Phase II.) As discussed in the previous lecture, this minimum is 0 if and only if the original LP is feasible, in which case we find an optimal solution $x_{a u x}$ for the auxiliary LP. The feasible basis of the auxiliary LP corresponding to the optimal solution $x_{a u x}$ may or may not contain artificial variables.

Third, to begin Phase II, if no artificial variables are basic in the last tableau of Phase I, then eliminate the columns of the artificial variables and replace the target row with the original target function to proceed. If some artificial variables are basic (they must have value 0), then eliminate the columns of all nonbasic artificial variables and of any variable from the original LP with a negative entry in the target row. Then, replace the (remaining entries in the) target row with the original target function and proceed.

Exercise 1. Introduce the appropriate slack and artificial variables and solve the feasibility test (Phase I) for the following LP:

$$
\begin{aligned}
\max \quad 2 x_{1}+3 x_{2} \quad \text { s.t. } & \frac{1}{2} x_{1}+\frac{1}{4} x_{2} \leq 4, \\
& x_{1}+3 x_{2} \geq 36, \\
& x_{1}+x_{2}=10, \\
& x \geq 0 .
\end{aligned}
$$

If it is feasible, then proceed to Phase II to either find an optimal solution or show the LP is unbounded.

Exercise 2. Introduce the appropriate slack and artificial variables and solve the feasibility test (Phase I) for the following LP:

$$
\begin{array}{cc}
\max \quad x_{1}+x_{2} \quad \text { s.t. } \quad & 5 x_{1}-x_{2} \geq 5, \\
& 2 x_{1}+x_{2} \geq 3, \\
& \frac{1}{2} x_{1}-x_{2} \leq-4, \\
& x \geq 0 .
\end{array}
$$

If it is feasible, then proceed to Phase II to either find an optimal solution or show the LP is unbounded.

[^0]Exercise 3. Introduce the appropriate slack and artificial variables and solve the feasibility test (Phase I) for the following LP:

$$
\begin{aligned}
\max \quad 40 x_{1}+10 x_{2}+7 x_{5}+14 x_{6} \quad \text { s.t. } \quad & x_{1}-x_{2}+2 x_{5}=0, \\
& -2 x_{1}+x_{2}-2 x_{5}=0, \\
& x_{1}+x_{3}+x_{5}-x_{6}=0, \\
& x_{2}+x_{3}+x_{4}+2 x_{5}+x_{6}=4, \\
& x \geq 0 .
\end{aligned}
$$

If it is feasible, then proceed to Phase II to either find an optimal solution or show the LP is unbounded.

Solution to Exercise 1. We add a slack variable x_{3} to row 1 , subtract a slack variable x_{4} from row 2, and add artificial variables x_{5} and x_{6} to rows 2 and 3 , so the original LP can be written in equational form as:

$$
\begin{aligned}
\max \quad 2 x_{1}+3 x_{2} \quad \text { s.t. } & \frac{1}{2} x_{1}+\frac{1}{4} x_{2}+x_{3}=4, \\
& x_{1}+3 x_{2}-x_{4}+x_{5}=36, \\
& x_{1}+x_{2}+x_{6}=10, \\
& x \geq 0 .
\end{aligned}
$$

The auxiliary LP is to minimize the sum of artificial variables:

$$
\begin{aligned}
\min \quad x_{5}+x_{6} \quad \text { s.t. } & \frac{1}{2} x_{1}+\frac{1}{4} x_{2}+x_{3}=4, \\
& x_{1}+3 x_{2}-x_{4}+x_{5}=36, \\
& x_{1}+x_{2}+x_{6}=10, \\
& x \geq 0 .
\end{aligned}
$$

Setting up a tableau using the feasible basis $B=\{3,5,6\}$ we have:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{3}	$\frac{1}{2}$	$\frac{1}{4}$	1	0	0	0	4
x_{5}	1	3	0	-1	1	0	36
x_{6}	1	1	0	0	0	1	10
	0	0	0	0	-1	-1	0

Performing row operations to have 0 in the target row on columns of basic variables:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{3}	$\frac{1}{2}$	$\frac{1}{4}$	1	0	0	0	4
x_{5}	1	3	0	-1	1	0	36
x_{6}	1	1	0	0	0	1	10
	2	4	0	-1	0	0	46

Choosing x_{1} as entering variable, we compute $\theta\left(x_{3}\right)=8, \theta\left(x_{5}\right)=36, \theta\left(x_{6}\right)=10$, so x_{3} is the departing variable, and we obtain the next tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{3}	1	$\frac{1}{2}$	2	0	0	0	8
x_{5}	0	$\frac{5}{2}$	-2	-1	1	0	28
x_{6}	0	$\frac{1}{2}$	-2	0	0	1	2
	0	3	-4	-1	0	0	30

There are still positive entries in the target row, so we select x_{2} as entering variable, and compute $\theta\left(x_{1}\right)=16, \theta\left(x_{5}\right)=\frac{56}{5}, \theta\left(x_{6}\right)=4$, so x_{6} is the departing variable, as we obtain the next tableau:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	
x_{3}	$\frac{1}{4}$	0	1	0	0	$-\frac{1}{4}$	$\frac{3}{2}$
x_{5}	-2	0	0	-1	1	-3	6
x_{2}	1	1	0	0	0	1	10
	-2	0	0	-1	0	-4	6

The above is an optimal solution to the auxiliary LP, so the original LP is not feasible.

Figure 1. Constraints have empty intersection, so LP is infeasible.

Solution to Exercise 2. We first multiply row 3 by -1 so that the right-hand sides of all rows are ≥ 0. Then, subtract slack variables x_{3}, x_{4}, and x_{5} and add artificial variables x_{6}, x_{7}, and x_{8}, one in each row, so that the LP can be written in equational form as:

$$
\begin{array}{cc}
\max \quad x_{1}+x_{2} \text { s.t. } \quad & 5 x_{1}-x_{2}-x_{3}+x_{6}=5, \\
& 2 x_{1}+x_{2}-x_{4}+x_{7}=3, \\
& -\frac{1}{2} x_{1}+x_{2}-x_{5}+x_{8}=4, \\
& x \geq 0 .
\end{array}
$$

The auxiliary LP is to minimize the sum of artificial variables:

$$
\begin{aligned}
\min \quad x_{6}+x_{7}+x_{8} \text { s.t. } & 5 x_{1}-x_{2}-x_{3}+x_{6}=5, \\
& 2 x_{1}+x_{2}-x_{4}+x_{7}=3, \\
& -\frac{1}{2} x_{1}+x_{2}-x_{5}+x_{8}=4, \\
& x \geq 0 . \\
& 3
\end{aligned}
$$

Setting up a tableau using the feasible basis $B=\{6,7,8\}$ we have:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
x_{6}	5	-1	-1	0	0	1	0	0	5
x_{7}	2	1	0	-1	0	0	1	0	3
x_{8}	$-\frac{1}{2}$	1	0	0	-1	0	0	1	4
	0	0	0	0	0	-1	-1	-1	0

Performing row operations to have 0 in the target row on columns of basic variables:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	
x_{6}	5	-1	-1	0	0	1	0	0	5
x_{7}	2	1	0	-1	0	0	1	0	3
x_{8}	$-\frac{1}{2}$	1	0	0	-1	0	0	1	4
	$\frac{13}{2}$	1	-1	-1	-1	0	0	0	12

Choosing x_{1} as entering variable, we compute $\theta\left(x_{6}\right)=1$ and $\theta\left(x_{7}\right)=\frac{3}{2}$ so x_{6} is the departing variable, and we obtain the next tableau. See lecture11.nb for the remaining details.

Figure 2. Constraints have unbounded intersection, and target function $x_{1}+x_{2}$ takes arbitrarily large values, so LP is unbounded.

Solution to Exercise 3. The variable x_{4} only appears in row 4 and with coefficient +1 , so we may use it as an artificial variable. We add artificial variables x_{7}, x_{8}, x_{9}, to rows $1,2,3$, respectively.

In equational form, the LP becomes:

$$
\begin{aligned}
\max \quad 2 x_{1}+3 x_{2} \quad \text { s.t. } & \frac{1}{2} x_{1}+\frac{1}{4} x_{2}+x_{3}+x_{7}=4, \\
& x_{1}+3 x_{2}-x_{4}+x_{5}+x_{8}=36, \\
& x_{1}+x_{2}+x_{6}+x_{9}=10, \\
& x \geq 0 .
\end{aligned}
$$

The auxiliary problem (Phase I) is to minimize the sum $x_{7}+x_{8}+x_{9}$ of artificial variables, and results in an optimal tableau where the mininum 0 is achieved, but some basic variables are artificial
variables. Thus, to proceed with Phase II, we drop the columns of nonbasic artificial variables and columns with negative entries in the target row. Then, Phase II terminates at the optimal value 9 , attained at $x=\left(0, \frac{2}{3}, \frac{8}{3}, 0, \frac{1}{3}, 0\right)$. See lecture11.nb for details, where all tableaus are presented.

[^0]: ${ }^{1}$ These are usually called excess or surplus variables.

