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Lecture 12

1. Applications of Linear Programming, Part I

1.1. Network max flow. A network consists of nodes (vertices) and links (edges), and may
represent lots of interesting real-world scenarios where one may want to maximize flow (or, as we
will see later, to find the most efficient way of cutting edges to interrupt the flow), such as:

(1) a railway system through which supplies and passengers move, like the NYC subway system,
or the freight or passenger train systems in a given country;1

(2) an electrical wiring diagram for a certain circuit, through which electrical current flows;
(3) a wired communication network between computers, through which bits of data flow;
(4) a wireless communication network between Wi-Fi devices, or between satellites, through

which data flows;
(5) a system of financial transactions, through which money flows between different investments;
(6) a contagion diagram for an infectious disease, e.g. COVID-19, spreading through individuals;
(7) a trafficking scheme for moving illegal narcotics between various locations.

We assume that each link has a bounded capacity, that is, only a limited amount of material
(passengers, bits of data, US dollars,...) can be transported along each edge, and only in a given
direction indicated by the arrow.

For example, consider the following network, where the numbers along links indicate their ca-
pacity; e.g., the link from node 2 to node 3 supports up to 1 unit of material any given time.2

1

2

3

4

5

6

7

3

1

1

1

1

3

4

4

4

1

Exercise 1. What is the maximum amount of material that can be transported from node 1 to
node 7 along the above network, respecting the capacity limits of all links, and assuming that no
material can be stored in any intermediate node?

Solution to Exercise 1. Let xij , i 6= j, denote the amount of material to be transported between
nodes i and j in the network, for which a link is available, as shown in the diagram below:

1The origins of the max flow problem we are discussing today go back to an effort to analyze capabilities of the So-
viet rail network, see Alexander Schrijver “On the history of the transportation and maximum flow problems”, Math-
ematical Programming vol 91, p. 437–445 (2002), https://link.springer.com/article/10.1007/s101070100259

2This example is modified from Sec. 2.2 in “Understanding and Using Linear Programming”, by Jiri Matousek
and Bernd Gärtner (Springer).

https://link.springer.com/article/10.1007/s101070100259
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The directionality and capacity bounds of the links give the following constraints:

0 ≤ x12 ≤ 3 0 ≤ x36 ≤ 3

0 ≤ x13 ≤ 1 0 ≤ x45 ≤ 4

0 ≤ x14 ≤ 1 0 ≤ x64 ≤ 4

0 ≤ x23 ≤ 1 0 ≤ x57 ≤ 4

0 ≤ x25 ≤ 1 0 ≤ x67 ≤ 1

Since no material can be stored in any node, the total amount that flows in must flow out, which
gives the following balancing constraints at interior nodes:

j = 2 : x12 = x23 + x25

j = 3 : x13 + x23 = x36

j = 4 : x14 + x64 = x45

j = 5 : x25 + x45 = x57

j = 6 : x36 = x64 + x67

or, more succinctly, for each interior node, i.e., for each 2 ≤ j ≤ 6,

∑
i

xij =
∑
k

xjk

We want to maximize the amount of material flowing into the network from the source node 1,
which, given the above constraints, is of course equal to the amount of material flowing out of the
network at the sink node 7. That quantity is

x12 + x13 + x14 = x57 + x67
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We thus arrive at the following LP:

max x12 + x13 + x14 s.t. x12 = x23 + x25,

x13 + x23 = x36,

x14 + x64 = x45,

x25 + x45 = x57,

x36 = x64 + x67,

0 ≤ x12 ≤ 3, 0 ≤ x36 ≤ 3,

0 ≤ x13 ≤ 1, 0 ≤ x45 ≤ 4,

0 ≤ x14 ≤ 1, 0 ≤ x64 ≤ 4,

0 ≤ x23 ≤ 1, 0 ≤ x57 ≤ 4,

0 ≤ x25 ≤ 1, 0 ≤ x67 ≤ 1.

The above problem is bounded and feasible. The maximum value is 4 and it is attained at

(x12, x13, x14, x23, x25, x36, x45, x64, x57, x67) = (2, 1, 1, 1, 1, 2, 3, 2, 4, 0),

see the Mathematica file lecture12.nb for details. To read more about the Max Flow problem,
see the Wikipedia page https://en.wikipedia.org/wiki/Maximum_flow_problem.

1.2. Currency arbitrage. Consider now a network given by a complete graph with 5 vertices,
where every pair of vertices is joined by two directed edges (one in each direction), see figure below.
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https://en.wikipedia.org/wiki/Maximum_flow_problem


Differently from the previous problem, we now consider the situation in which there is gain or
loss when material is transported along any given edge. This situation models trading 5 currencies
in an “ideal” foreign exchange market, for example, suppose we trade the following currencies:

1: USD (US dollars)
2: EUR (Euros)
3: GBP (Pounds)
4: JPY (Yen)
5: BRL (Reais)

The spot exchange rates below were collected from Google Finance on October 17, 2023:

1 2 3 4 5
1 − 1.05678 1.21749 0.00667535 0.198248
2 0.94627 − 1.15197 0.006316 0.187628
3 0.82145 0.868092 − 0.00548347 0.162816
4 149.819 158.313 182.402 − 29.7058
5 5.04528 5.3297 6.14255 0.0336761 −

For example, according to those rates, USD 1 buys EUR 0.94627. In other words, moving along
the edge from 1 to 2 multiplies the amount of material being transported by 0.94627. Similarly,
moving along the edge from 2 to 1 multiplies the amount of material being transported by 1.05678.

Exercise 2. Set up a linear program in the variables xij , i 6= j, to find an arbitrage opportunity
in which USD 100.00 are traded between the above 5 currencies at the above spot rates (i.e., trans-
ported through this network), leaving nonnegative balances in all currencies, and resulting in a profit
of USD 5.00. Can we arrange for the same investment to generate a profit of USD 5,000,000.00?
Can we arrange for an investment of USD 0.00 to generate a profit of USD 5,000,000.00? Explain.

Solution to Exercise 2. To generate a profit of USD 5.00 with an initial investment of USD
100.00, we attempt to maximize the amount of USD being bought, that is, max

∑
i ri1xi1, where

ri1 is the exchange rate for buying USD with currency i. With the above spot rates, this is

(1) max 1.05678x21 + 1.21749x31 + 0.00667535x41 + 0.198248x51.

The requirement that nonnegative balances are left in every currency corresponds to the constraint
that the amount of currency flowing out must be always smaller than the amout of currency flowing
in. For currency j, this is ∑

i

xji ≤
∑
i

rijxij

or, with the above rates rij , which are the entries in the transpose of the table above,

x21 + x23 + x24 + x25 ≤ 0.94627x12 + 1.15197x32 + 0.006316x42 + 0.187628x52(2)

x31 + x32 + x34 + x35 ≤ 0.82145x13 + 0.868092x23 + 0.00548347x43 + 0.162816x53(3)

x41 + x42 + x43 + x45 ≤ 149.819x14 + 158.313x24 + 182.402x34 + 29.7058x54(4)

x51 + x52 + x53 + x54 ≤ 5.04528x15 + 5.3297x25 + 6.14255x35 + 0.0336761x45(5)

Moreover, we have the constraint that USD 100.00 are invested, and the desired profit is USD 5.00,
so we also include

(6)
x12 + x13 + x14 + x15 = 100

1.05678x21 + 1.21749x31 + 0.00667535x41 + 0.198248x51 − (x12 + x13 + x14 + x15) ≤ 5,

which, of course, can be combined into a single inequality. Finally, we have the constraint

(7) xij ≥ 0.
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The LP consisting of (1) – (7) is bounded and feasible, with optimal value 105, achieved by setting

x14 = 100, x21 = 95.5733, x35 = 1,455.15, x43 = 265,370.00, x52 = 509.377, x54 = 8,428.94,

and the remaining xij = 0. See lecture12.nb for details.

Replacing the right-hand side of the constraints in (6) with 100 and 5 × 106, or 0 and 5 × 106,
respectively, we obtain other bounded and feasible LPs, so these arbitrage opportunities also exist
(the optimal solution xij can be found in lecture12.nb, see figure below for the scheme that
generates USD 5,000,000.00 from a USD 0.00 investment). If we do not impose a constraint of the
form (6), where profit is bounded from above (or, alternatively, daily trading limits xij ≤ cij), then
the resulting LP is feasible but unbounded, that is, the arbitrage found would yield infinite profit.

An explanation for such unrealistic arbitrage opportunities is that if there exists a cycle of trades
i 7→ j 7→ k 7→ i that multiplies the amount of currency i by a factor > 1, then, in principle, it could
be used indefinitely to generate arbitrarily large profits. This is the case with the above exchange
rates, e.g., trading 5 7→ 4 7→ 3 7→ 5.

Some underlying assumptions in this model render it completely implausible as a trading strategy:

• We assumed the bid-ask spread is equal to zero on all currencies (perfect liquidity);
• We assumed unbounded and immediate availability of funds in all traded currencies (very

large amounts are needed to produce meaningful profits, even if positions offset each other);
• We assumed simultaneous instant transactions without fees are possible (real buy/sell orders

generally do not execute simultaneously, transaction fees usually apply).

For a more thorough discussion, see:

• Smith, Rachel. “A Discussion of Linear Programming and its Application to Currency
Arbitrage Detection” Undergraduate thesis at University of Redlands: https://inspire.

redlands.edu/work/ns/46f3971d-8d2a-4537-afbb-c91bf859c18e

• Triangular Arbitrage (Wiki). https://en.wikipedia.org/wiki/Triangular_arbitrage
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