Lecture 20

1. Spectrahedral shadows

A subset $S \subset \mathbb{R}^n$ is a spectrahedral shadow if there exists a spectrahedron $S' \subset \mathbb{R}^m$ and an affine-linear map $f \colon \mathbb{R}^N \to \mathbb{R}^n$ such that S = f(S'). In other words, it is a set of the form

$$S = \left\{ x \in \mathbb{R}^n : \exists y \in \mathbb{R}^m, \ A_0 + \sum_{i=1}^n x_i A_i + \sum_{j=1}^m y_j B_j \succeq 0 \right\},\$$

where $A_i, B_j \in \text{Sym}^2(\mathbb{R}^d)$ are symmetric matrices. Note that, letting $f \colon \mathbb{R}^n \oplus \mathbb{R}^m \to \mathbb{R}^n$ be the projection map f(x, y) = x, we have that S = f(S'), where S' is the spectrahedron

$$S' = \left\{ (x,y) \in \mathbb{R}^n \oplus \mathbb{R}^m : A_0 + \sum_{i=1}^n x_i A_i + \sum_{j=1}^m y_j B_j \succeq 0 \right\}.$$

Optimization problems where the target function is linear and the feasible region is a spectrahedral shadow can be solved as a semidefinite program (SDP) by introducing slack variables.

Exercise 1. ¹ Describe geometrically the spectrahedron

$$S' = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} z+y & 2z-x & 0\\ 2z-x & z-y & 0\\ 0 & 0 & 1-z \end{pmatrix} \succeq 0 \right\},\$$

and the spectrahedral shadow f(S'), where $f \colon \mathbb{R}^3 \to \mathbb{R}$ is given by f(x, y, z) = (x, y).

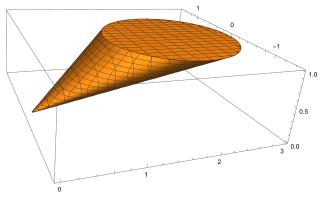
Solution to Exercise 1. As the matrix is block-diagonal, it is positive-semidefinite if and only if

$$z \pm y \ge 0$$
 and $z^2 - y^2 - (2z - x)^2 \ge 0$ and $z \le 1$,

which is equivalent to

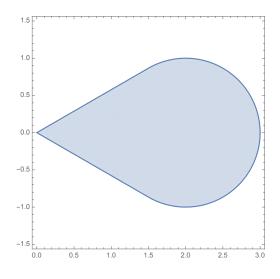
$$|y| \le z \le 1$$
 and $(x - 2z)^2 + y^2 \le z^2$.

For each $0 \le z_0 \le 1$, the above describes a closed disk in the plane (x, y, z_0) with center $(2z_0, 0, z_0)$ and radius z_0 . Thus, the spectrahedron $S' \subset \mathbb{R}^3$ is the cone in \mathbb{R}^3 given by the convex hull of the origin (0, 0, 0) and the disk of radius 1 in the plane (x, y, 1) centered at (2, 0, 1).



Accordingly, the spectrahedral shadow $f(S') \subset \mathbb{R}^2$ is the convex hull of the origin (0,0) and the disk of radius 1 centered at (2,0).

¹This exercise is taken from "Semidefinite Optimization and Convex Algebraic Geometry", MOS-SIAM Series on Optimization, edited by G. Blekherman, P. Parrilo, and R. Thomas.



Exercise 2. a) Use Mathematica to plot the *old-fashioned TV screen* given by

$$C = \left\{ (x_1, x_2) \in \mathbb{R}^2 : x_1^4 + x_2^4 \le 1 \right\}.$$

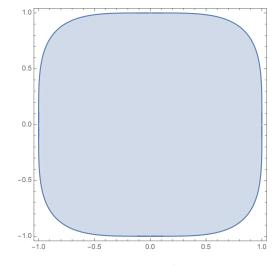
- b) Compute (geometrically) the maximum value of $x_1 + x_2$ among $(x_1, x_2) \in C$.
- c) Check that C can be written as a spectrahedral shadow

$$S = \left\{ x \in \mathbb{R}^2 : \exists y \in \mathbb{R}^2, \ \begin{pmatrix} 1 & x_1 \\ x_1 & y_1 \end{pmatrix} \succeq 0, \ \begin{pmatrix} 1 & x_2 \\ x_2 & y_2 \end{pmatrix} \succeq 0, \ \begin{pmatrix} 1 - y_1 & y_2 \\ y_2 & 1 + y_1 \end{pmatrix} \succeq 0 \right\},$$

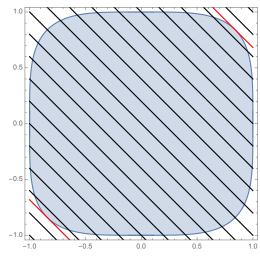
and use this to write an SDP that confirms the computation in b).

d) Taking inspiration from the above, can you represent the set $\{(x_1, x_2) \in \mathbb{R}^2 : x_1^6 + x_2^6 \le 1\}$ as a spectrahedral shadow? What about $\{(x_1, x_2) \in \mathbb{R}^2 : x_1^{2k_1} + x_2^{2k_2} \le 1\}$ for any given $k_1, k_2 \in \mathbb{N}$?

Solution to Exercise 2. a) The plot of the region C is as follows:



b) Geometrically, we find that the maximum value is $\frac{2}{\sqrt[4]{2}}$, which is achieved when $x_1 = x_2 = \frac{1}{\sqrt[4]{2}}$.



c) Clearly, $x_1^4 + x_2^4 \leq 1$ if and only if $(x_1^2)^2 + (x_2^2)^2 \leq 1$. If $x \in C$, setting $y = (x_1^2, x_2^2)$ we see that $x \in S$. Recall that positive-semidefiniteness of the third 2×2 matrix in the definition of S describes a disk of radius 1 centered at the origin in the (y_1, y_2) -plane. Thus, conversely, if $x \in S$, then $x_i^2 \leq y_i$ and $y_1^2 + y_2^2 \leq 1$, hence $x_1^4 + x_2^4 \leq 1$, which means $x \in C$. The SDP is simply:

$$\max x_1 + x_2 \quad \text{s.t.} \quad \begin{pmatrix} 1 & x_1 & & & \\ x_1 & y_1 & & & & \\ & 1 & x_2 & & & \\ & x_2 & y_2 & & \\ & & x_2 & y_2 & & \\ & & & 1 - y_1 & y_2 \\ & & & y_2 & 1 + y_1 \end{pmatrix} \succeq 0.$$

d) To obtain x_1 to the power $2k_1, k_1 \in \mathbb{N}$, set $z_{1,1} = x_1$ and use k_1 auxiliary variables $z_{1,2}, \ldots, z_{1,k_1+1}$ such that $\begin{pmatrix} 1 & z_{1,j} \\ z_{1,j} & z_{1,j+1} \end{pmatrix} \succeq 0$, for $j = 1, \ldots, k_1$, which is equivalent to $x_1^{2k_1} \leq z_{1,k_1+1}$. Proceed analogously to obtain $x_2^{2k_2} \leq z_{2,k_2+1}$. Finally, use the spectrahedral description of the unit disk on $(z_{1,k_1+1}, z_{2,k_2+1})$, as above.