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Lecture 22

1. Examples

Let us work through some examples of semidefinite programs that can be solved geometrically.
Recall that the feasible set of an SDP is a spectrahedron, hence a basic closed semialgebraic set.

Exercise 1. Consider the spectrahedron S ⊂ R2 defined by

S =

(x, y) ∈ R2 :

(
x− y + 1 x− 1
x− 1 y + 1

)
� 0,

y + 1 x 1
x x y
1 y 1

 � 0


a) Write S as a basic semialgebraic set using the fewest possible polynomial inequalities.
b) Plot S and describe it geometrically (e.g., “intersection of a disk and a half-space”).
c) Solve (geometrically1) the following semidefinite programs:

i) min x− y s.t. (x, y) ∈ S
ii) max x− y s.t. (x, y) ∈ S

d) The image of S under the linear map f : R2 → R, f(x, y) = x − y, is a spectrahedral shadow.
It is a convex subset of R, hence an interval. Compute the endpoints of this interval.

Solution to Exercise 1. See Mathematica file lecture22.nb for details.

a) Analyzing the inequalities given by leading minors of each matrix, we obtain the following:

After some simplifications and using quantifier elimination to algorithmically check inclusions
between semialgebraic sets, we find that the red region on the right (which corresponds to
where the 3×3 matrix is positive-semidefinite) is entirely contained in the red region on the left
(which corresponds to where the 2× 2 matrix is positive-semidefinite). Thus, the spectrahedron
S coincides with the red region on the right; in other words, we can write it as the basic closed
semialgebraic set

S = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 3xy − x2 − y3 − y2 ≥ 0}.

b) The region S is the intersection of the cubic 3xy − x2 − y3 − y2 ≥ 0 with the positive quadrant
x ≥ 0, y ≥ 0, and can be plotted as follows:

1i.e., analyzing the overlap of levelsets of the target function with the feasible set S.



c) Clearly, the extremal values of f(x, y) := x− y are attained at the boundary of S, which is the
portion of the cubic g(x, y) := 3xy− x2− y3− y2 = 0 that lies in the first quadrant. In order to
find these extremal points explicitly, we use the method of Lagrange multipliers. We compute
∇f(x, y) = (1,−1) and ∇g(x, y) = (−2x+ 3y, 3x− 2y − 3y2). Thus, ∇f(x, y) = λ∇g(x, y) and
λ 6= 0 is equivalent to 1/λ = −2x+ 3y = −(3x− 2y − 3y2). Solving the polynomial system{

−2x+ 3y = −(3x− 2y − 3y2)

3xy − x2 − y3 − y2 = 0

we find solutions (0, 0), (1027 ,
5
9), (2, 1), where the target function takes values f(0, 0) = 0,

f(1027 ,
5
9) = − 5

27 , f(2, 1) = 1. Thus,

i) minS x− y = − 5
27 , attained at (1027 ,

5
9) ∈ S;

ii) maxS x− y = 1, attained at (2, 1) ∈ S.
Alternatively, one can solve g(x, y) = 0 locally as x = x(y) and then substitute these solutions
to obtain functions of a single variable φ(y) = f(x(y), y) whose minimum and maximum are the
above extremal points. In the plot below, S is overlaid with some levelsets {(x, y) : f(x, y) = c}.
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d) f(S) =
[
− 5

27 , 1
]
.
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